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DIVERGENCES OF GAUSS-MARKOV RANDOM FIELDS 
WITH APPLICATION TO STATISTICAL INFERENCE 

MARTIN JANZURA 

In addition to the previous asymptotic theory of parameter estimation (cf. [2]) further asymp
totic properties of the Gauss-Markov random fields are studied in the present paper. The explicit 
formulas for the entropy rate, the /-divergence, and the a-divergence are obtained. Applications 
to parameter estimation and hypotheses testing are included. 

1. INTRODUCTION 

The Gauss-Markov random fields are used as the probability models for the 
statistical analysis of spatial data. In the preceding paper [2] a convenient way 
of their parameter description was given, and a method for the parameter estimation 
was proposed. 

The method and its asymptotic properties are closely connected with those charac
teristics of distributions which are studied in frame of thermodynamics or, parallelly, 
in frame of information theory. Namely, we mean the entropy rate, the /-divergence 
(information gain), and the a-divergence (for the definitions see below). 

Thus, the present paper is devoted to deriving the explicit form of these characteris
tics for the Gauss-Markov random fields. The main results are obtained in Section 3 
with the proofs and some auxiliary results in the following Section 4. 

As an application in Section 5 we investigate the connection between the estimator 
proposed in [2] are the so called minimum distance methods (cf. [6]). This connection 
is based on the considered notions, and it seems to be interesting and fruitful from 
both the computational and the methodological aspects. 

Section 6 contains an application of the results to testing hypotheses, namely 
the appropriate versions of the Stein and the Chernoff theorems on the asymptotic 
behaviour of the error probabilities are introduced. 

Some of the asymptotic results were attained by Kiinsch [3] with the aid of a bit 
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different methods. But only the Gauss-Markov fields with zero mean value were 
considered, and the question of a-divergence was not studied at all. 

The divergences of probability measures and related topics being concerned, 
we follow [8] as the main reference. 

2. PRELIMINARIES 

We shall only briefly recall some basic definitions and results concerning Gauss-
Markov random fields (for more details cf. [2] — Section 2 and Section 3). 

By a Gauss-Markov random field we mean a stochastic process {X,}te&d on 
a i-dimensional lattice OX* with 

i) translation invariant distribution P; 

ii) Gaussian finite-dimensional marginals P r , 

-V e 5t = {T <= &a; 0 < \T\ = card "T < oo} ; 

iii) spectral density given by 

fv(X) = [2 . £ U(k) cos kX]~1 for every X e St = [ - it, - . ] ' , 
keM 

where 

U = {U(k)}keJt e T>J( = {Ue m[MU, £ U(k) cos kX > 0 for every XeJ?d} , 
keM 

JleSi, Jl <= 2£\ = {te&d; t ^ 0} ("^" is the lexicographical ordering); 

iv) constant mean value given by 

HH,V= ~h.fv(0), he®. 

Thus, we can see that the distribution P depends on a (1 + |./#|)-dimensionaI 
parameter 6 = (h, U)effl x T)M = 0 . 

In what follows we shall use the term "random field" for the distribution and we 
shall deal with the (locally asymptotically normal — cf. [2]) parameter family 
P = {P0}es© °f Gauss-Markov random fields. 

Let us note that the Gauss-Markov random field P e may be understood as a Gibbs 
field with a finite range pair potential U given by 

U{t)(xt) = U(0) x] + hx, for every t e &d, 
and 

UM(xv xt) = U[tiS}(x„ xs) = U(t - s) xtxs for t - se Jl \ {0} 

(for detailed treatment of this approach cf. [1] and [3]). 
For every Ue T>J( the corresponding covariance function 

Rv(t) = (2n)-«lsd^fv(X)dX, teS*, 

is absolutely convergent: £ |^t/(t)| < °o • 
tsSd 
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Let a function a: 3£d -* 'M be given by 

«(0) = 2 . U(0) 

a(t) = U(t) for teJ/\{0} or -teJi\{0} 

a(t) = 0 otherwise . 

Then we can easily verify that 

a(t) = (2-)-* \St z-u\fv(l)-]-1 dX for every t e %* 

and the infinite matrix A = (a(t — s))tsfsSd is inverse to the infinite covariance matrix 
R|7 = (RtV ~ S))t,se%«-

3. ENTROPY RATE, /-DIVERGENCE, AND a-DIVERGENCE 

Suppose a stationary random field P to be given by its densities pr, "V e .H. 

Then we define the entropy rate as the limit 

S(P) = l i m j ^ | - 1 E P { - l o g p r } 
V/iHSd 

which always exists (it can be equal to — oo, cf. [4]). 

For a pair P, Q of stationary random fields with densities pr and qr, f e ft, 
respectively, we define the/-divergence of P with respect to Q by 

H/(P|Q) = lim|ir|-) EP{log/v/^} 
•r/S' 

whenever the integrals and the limit exist. Otherwise we set H7(P | Q)= oo. 

The convergence "V S 3£d is defined in order to satisfy 

M_1 K*l -•*' for everv ke &* > 
where Tk = r n(r + k). 

We denote by M the family of all stationary random fields with finite second 
moments, finite entropy rate, and with all the marginal densities, i.e. 

P e M iff E P [ ^ ] < oo , S ( P ) > - o o , and pr exists for every 1T eft. 

Theorem 3.1. Let Q e M, P 6 e P. Then 

i) S(P6) = J-(l + log(27t) + (2-)-d$,alogfv(X)dX) ; 

ii) H,(Q | Pe) = |{log (2n) + ( 2 B ) - - \,t \ogfv(X) dX + 2 £ U(k). [RQ(k) + 
+ ( ^ - v Q ) 2 ] } - S ( Q ) , 

where vQ = EQ[Z0] and R$(k) = EQ[(X0 - vQ) (Xk - vQ)] are the mean value 
and the covariance function, respectively, of the random field Q. 

The proof of the theorem is given in Section 4. Here we continue with some easy 
consequences. 
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Corollary 3.2. i) Let P0, P e . e P. Then 

+ £ U(k) [Rp.(k) + (fihiV - nh*,u*Y] . 
keJl 

ii) F o r Q e M it holds 
H,(Q | Pe„) = min H.(Q | Pe) iff 

Oe0 
VQ = /V,i/° a n d ^ ( k ) = Ru»(k) for every ke Ji . 

Proof. The first statement is straightforward if we properly substitute for the terms 
from Theorem 3.L 

If the minimum in the second statement is reached at 0° we obtain the claimed 
identities by differentiation of the /-divergence with respect to the parameters. 

From the other side if the condition is satisfied we have 

H,(Q | Pe) - H,(Q | Pe0) = H,(Peo | Pe) ^ 0 
for every 0 e 0 . • 

It is not difficult to see that for a pair P, Q of stationary random fields with densities 
pr and qr, i^ e ft, respectively, we have 

3ns make sense, and similarly whenever the expressions make sense, and similarly 

Therefore, we can understand the /-divergence as a special case of the a-divergence 
defined by , r / ry 

H.(P | Q) = -y—r lim \r-\~1 log EP li-
<x[cc — 1) -r/s* i\P 

if the integrals and the limit exist. 
For the sake of brevity let us denote 

w(c) = (I - c)~l c for c < l , and 

w(c) = + oo for c > 1 . 

[mnЩ), 1 + w L i n M î ) 

Theorem 3.3. Let P e , Pe« e P, 

V . - W T "V"-^./w(A) 
Then 

H«(Pe. | Pe) = i{(2n)-" \,„ [(1 - a ) " 1 log/,,(/) + a ' 1 \o%fv.(X) 

- (a(l - a))"1 log faV+l!_„£,.(;.)] dA + 

+ [/-(o) -Mo)]'1 L._+(i-«)ir«(o). (uh,v - ^,vr\ • 
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The proof of the theorem is given again in the next section. 

Corollary 3.4. Let Pe, Pe« e P. Then 

H/(P8* | Pe) = Urn Ha(Pe. | P0) 
a->0 

and 
H,(Pe | P..) = lim Ha(P0. | Pe) . 

a-+l 

Proof. We may write 

limHa(Pe.|Pe) = iJ(2rc)-'!f [log & 
«-o 2 I JsdL Jv* 

+ [fv(o)yl(nh,v-nh*,v,y\, 

and, since [/^(O)]"1 = 2 £ U(fc) and 

Ш + ^ _ _ _ 1 | ( U + 
.(A) Л(A) 

(27Г)-" Г MŞdA--2X:ł7(k)Mfe). 
J л juW *«.** 

we obtain the claimed statement for a -» 0. 

For a ^ l w e proceed in the same way. • 

4. PROOFS AND AUXILIARY RESULTS 

In this section we intend to prove the theorems introduced in the preceding section. 
In fact, we shall prove something more general. 

Let © be the class of bounded, positive, real valued and differentiable functions/ 
defined on Jd by 

/(A) = _; v(t) e i U for every XeJd. 
tESd 

Then, according to Corollary VII 1.9 in [5] the Fourier coefficients are absolutely 
summable, i.e. 

EI40l<-o. 
te&" 

and the same is true for the Fourier coefficients of the reciprocal function, i.e. 

EI40I<°° 
tear* 

where 
[/(A)] " > = Z 4 0 ^ for every A e Jd . 

tear" 

It is easy to see that the infinite matrix A - (a(t — s))tssZi is inverse to the matrix 
R = (r(t - s))ttSeS4. 

Let us denote / m a x _ max/(A), / m i n = min/(A). For an m x m matrix D with 
?.e£d XeSd 
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the eigenvalues Cj,j = 1 , . . . . m, let us denote g(D) = max |c,-|. Further, we 
J=J m 

introduce some useful basic results concerning positive definite matrices. 

Lemma 4.1. i) For C, D > 0 it holds 

— log Det (yC + (1 - y) D) = Tr {(yC + (1 - y) D)"1 (C - D)} . 
dy 

ii) ForC, D ^ 0 it holds 
0 < Tr(CD) ^ e ( C ) T r ( D ) . 

The results are well-known and need not be proved. 

Lemma 4.2. Let R* be an arbitrary infinite covariance matrix, i.e. R* is positive 
semidefinite and R* = (R*(f, s)= r#(t — s))tiSeZ<i, and A corresponds to some 
je®. Then 

i) ] im|^|-1Tr(RrA-) = I^(0«(0; 
•V/S* teSd 

ii) lim \r\ -1 T r ( R r A ^ c ( A ^ c ) - 1 A*D = 0 . 
•r/<&* 

Proof. We may write 

\ - r \ - - 1 >-,(t - s) «(s - 0 = 1 r*(fc) «(fc). K l " 1 • I n l • 

Since |i**(fc)| g r*(0) and ]T |«(fc)| < oo, the convergence is dominated and we 
obtain the first statement. ksXd 

In order to prove the second one we observe R ^ " - (Air°irc)~1 ^ 0 and therefore 

0 < I^T1 Tr [RrA^XV^)"1
 A ^ ] = \r\~' Tr [ R ^ ^ R ^ A ^ ] = 

= '*(<>) • I E Kfc)l K 0 | • I, k(m)| . I ^ - 1 . \(r + fc) n (TT + / + m) n 

c\rc n (-T0 + m)| -> 0 

again by the dominated convergence arguments. • 

Lemma 4.3. For fl,f2,f3 e © it holds 

lim \r\~l l^Or]"1 KTCRT]"1 V = [ti(0)/3(0)]-Va(0) • 
* • , / # -

Proof. We have 

[Rr]-1 Rrp-n-1 - ^v^v^v = 
= ^r] -x Rr([Rr] - * - A D + ([Rr] - * - A D *V^V . . 

Now, due to Lemma 4.1 ii) and Lemma 4.2 ii) it follows 

o = |^|-1 IJCRTT1 RHP-IT1 - AD v ^ 
^ /Hjr-'Ki-1 Tr (i^Ar^Am-1 A n - 0 , 

and similarly for the second term. 
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Thus, we finish the proof by 

\r\-^ i j A r * r A T -* - 1 -i(o s »•-(«) i «B(«) . n 
«s2-'i ue2rd r e * * 

Lemma 4.4. It holds 
lim \r\~i log Det (R^) = (in)-* \,t log (/(A)) dA . 

Proof. Due to Lemma 4.1 i) we may write 

Gr =\r\~l (log Det (Arr) - log Det ([R^]"1)) = 

= \r\^ Tr(y* Arr + (1 - y*) [R^]" 1 )" 1 (Arr - [R^]"1) 

for some y* e [0, 1], 
Since Arr - [ R ^ ] " 1 = A ^ A ^ " 1 Ay'r it holds 

o = c r £ / . l-rl"1 ^ ( A ^ T A ^ T 1 Arc#) -+ 0 

according to Lemma 4.1 ii) and Lemma 4.2 ii). Therefore 

lim \r\ ~' log Det (R^) = - lim \r\"' log Det (Arr) = 
•r/2Cd ir/g;a 

= (27tY 'f,>g(/(A))dA • 
by Theorem 2.5 in [3]. 

Now, we may prove the main results of the preceding section. 

Proof of Theorem 3.1. We may write 

-ot-logpf] = i [ M M 2 * ) + log Det (RT) + 
+ Tr ( R ^ W r *) + (^,, - vQ)2 l ^ R ^ ] - 1 V] , 

where 
\r\ - 1 log Det ( R H -> (2ir)"- Jy„ log/^A) dA 

by Lemma 4.4; 
K | - 1 Tr(R^[Rr ] - 1 ) -2£U ( f c )R Q ( f c ) 

by Lemma 4.2. i) and ii); 

and \r\~i J* [R7] - - V - [/„(0)] - ' = 2 . £ U(fc) 
keJi 

by Lemma 4.3. 
Since for Q = P0 we have 2. £ U(k) RQ(k) = 1 and vQ = [ihV we obtain 

keJt 

S(Pe) = l i m ^ l - 1 EPe[-logp^] = i [ l + log(2«) + (27C)-iJ^log/rj(A)dA] . 
-r/xd 

For general Q e M we have 

H,(Q | P.) = lim \r\-" EQ[-logpf] - S(Q) = 
tr/iX* 

= i{log (2i.) + (2-.)-' J,, log/^A) dA + 2 £ U(A) [tfQ(fc) + ^ _ V Q ) 2 ]} -
keJt 

- S ( Q ) . • 
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The remaining Theorem 3.3 we obtain as a corollary to the more general following 
proposition. 

Proposition 4.5. For j = 1,2 let Qy be the stationary Gaussian random field 
with the spectral density j,- e © and a mean value pj. 

We i i x a j e l satisfying 

P> -«(j2/j1)min if « = o ; 

»> -«(j2/ji)max if « < 0 . 
Then 

l.m|Tr|-1logEQl{[9n-1[«n'}-
•r/zd 

= i{(l - a - fi) log (2n) + ( 2 K ) - " },„ [(1 - a) logL(A) + (1 - J8) logj2(A) -

- log (aj2(A) + /?/x(A))] dA - a/fyi,. - n2f [aj2(0) + /Jj^O)]"1} . 

Proof. Let us denote j 3 = aj2 + Pfv Then we have 

h T 1 log ^{bn--1 [«m = Ha - « - /o-o8(-«)) + Ti_ l • 
. i { ( l - a) log Det ( R D + (l - /?) log Det (R**) - log Det (R**)} + 

+ I^THKaftKT1 -* + ""-P-IT1 iTWRH"1 + / W T T 1 • 
. (a^K]-1 v + ̂ p-rT1 M - *A up-rr1 -*• - fc*i sp-rr1 M • 

By Lemma 4.4 we obtain 

lim |T^"|-- . i{(l - a) log Det ( R D + (1 - /?) log Det ( R ^ ) - log Det (R|*)} = 

= $(2*)-' J,d {(1 - a) log/^A) + (1 - /?) log/2(A) - log/3(A)} dA . 

The last term may be rewritten as 

Ti-1 na^i I K T Rrp-n-1 v + 2â x̂ 2 -jp-rr1 v + 
+ /^2 Op-rT1 - - r p - r r -*• - «!t? tfP-IT1 -*- -

- fti* l ^ R l T 1 M - i{«2^[ j1(0) j3(0)]-1 j2(0) + 

+ 2aJW2[j3(0)]-1 + PYzifiWfMY'fM - *i«i[ti(0)]-.1 -
- ^ ^ ( O ) ] - 1 } = -i«j8(^i - /U2)2 [ja(O)]-1 

by Lemma 4.3. D 

Proof of Theorem 3.3. If we substitute p = 1 - a, Qt = Pe, Q2 = Pe», and 

realize 

/ r f r + a - . ) D . - ( « [ / i 7 ] - 1 + / » [ / - . ] " 1 ) " 1 . 

we obtain directly the statement of Theorem 3.3. D 
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5. APPLICATION TO ESTIMATION 

At first let us try to give a brief sketch of the basic idea of the so called "minimum 
distance method" used in statistical decision (for detailed explication see [6]). 

Thus, suppose we are given (in some sense regular) parameter family of probability 
distributions 

P = {PeVo 
and a collection of observed data {xt}teir. On the basis of the given data we intend 
to estimate an unknown parameter 0° e 0 . 

We suppose the data to generate some "empirical distribution" P which need 
not be from P. Therefore we seek for the distribution Vg e P with minimal distance 

fr0m P : 2(P, P j ) = min 9(P, P e ) , 
960 

where 9> is some suitably chosen measure of distance. And 9 is considered to be the 
estimate of 6°. 

There are two obvious questions, namely what distance 3 to choose and what 
to understand under the "empirical distribution" in a considered situation. 

If the parameter family is of an "exponential-like" type, and the Gauss-Markov 
random fields represent such a case, the /-divergence seems to be the convenient 
measure of distance. 

Let P e M- According to Corollary 3.2. ii) the minimization of Ht(P ] P0) is equi
valent to solving the system of equations 

HA.V = vp 

R0(k) = RP(k) for k e Jt. 

Therefore it is obvious that we may not construct any "empirical distribution" P, 
but the above mentioned moments are all what we actually need to know. 

If we set 
vP = lir(xr) 

and 

where 
RP(k) = Mr,k(xr) - (Mxr))2 for ke Jí 

h{^) = \rlí^xt, 
tef 

Mirjk(x~ir) = 1^*1_1 Y, XtXt-k f ° r k S Jí , terk 

then the solution 8 = (%, U) coincides with the estimate introduced in [2]. 
Thus, we know that there is at most one solution, and the solution exists with 

a probability tending to one for growing V . The other asymptotic properties were 
also derived in [2]. 

Moreover, Corollary 3.2. ii) represents also the key for the implementation of the 
method since we obtain the estimate as the solution of the minimization problem 
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which, under some reasonable assumptions on the dimension d and the "range" 
M, is numerically solvable. 

The only possible defect of the described method may consists in the absence 
of robustness. It is well known that the estimates of the "maximum likelihood 
type" are highly efficient but not robust enough. The proposed estimator is not 
exactly the maximum likelihood one, but asymptotically it coincides with such a one 
and therefore it may be considered as an approximate maximum likelihood estimator. 

From the general theory (cf. e.g. [7]) it follows that, using the a-divergence instead 
of the /-divergence, we should obtain a more robust estimator. Nevertheless, there 
are several new problems connected with this approach, namely, 

i) what a to choose; 

ii) how to construct the "empirical spectral density"/e © which is explicitly needed 
for expressing the a-divergence formula (cf. Proposition 4.5), and which should 

be a consistent estimate of the unknown spectral density; 

iii) how many (if any) local minima there are, i.e. the question of existence and 

uniqueness of the solution; 

iv) what are the (asymptotic) properties of the obtained estimate. 
Some of the indicated problems might be (with some additional assumptions) 

solved in a satisfactory way but the necessary effort does not seem worthwhile to 
compare with the possible gain. 

Let us realize that the main weak point of the maximum likelihood estimation, 
i.e. the nonuniqueness of the estimate, does not occur in the proposed method 
based on the minimum /-divergence. And if we feel some doubt about the contamina
tion of the given data we may apply some known robust estimators of the first and 
the second moments instead of Jir and {Mrtk\keJl, respectively. 

Thus, we may keep the /-divergence as the proper distance. 

6. APPLICATION TO TESTING HYPOTHESES 

In this section we intend to show the role of the divergences for a characterization 
of the asymptotic behaviour of the error probabilities in testing simple statistical 
hypotheses. 

Suppose we are given a collection of observed data xr = {x,}ter. Testing the 
hypothesis H 0 : P = P0o against the alternative H ^ P = P0i (6°, 01 e 0 ) , we reject 
the hypothesis H0 whenever 

plo(xr) S cr . p&(xr) 

with some constant cr > 0 called the critical value. 
Thus, the test is given by the critical region 

^r(cr) = {xr e &*; p%o(xr) 5£ cr pl(xr)} . 
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The probabilities of the errors of the first kind and of the second kind are given by 

e l = P » + > > ) ) and e* = P£((<^(<v))<) , 
respectively. 

We are interested in the asymptotic behaviour of the error probabilities for growing 
•f. We shall treat two basic possibilities of choice of the critical values {cr}rB®. 

At first let the critical value be fixed, i.e. cr = c > 0 for every f" e &. Then the 
test corresponds to the optimal Bayes test which minimizes the mixed errors 

<7ief + q24 , 

where the prior probabilities are given by qt = (1 + c ) _ l and q2 = c(l + c)"1 , 
respectively. 

In the second case let the critical value cr be given by 

eT = KfrA'r)) = ' 
for some fixed / e (0, 1), i.e. the test is optimal on the level /. 

Theorem 6.1. i) Let cr = c > 0 for every f" e R. Then for j = 1,2 

lim {- \t'\ ~l log ejj = max («(l - a) Ha(Pe„ | Pel)} . 
•v/is* <*6[0,i] 

ii) Let cr be for every i'~ e R given by 

er = p0
ro((M^)) = ^ ( o j ) . 

Then 
lim {-\r\ " ' l o g er

2} = HXPeolPo.). 
•i-/sed 

Proof. With the aid of Theorem 3.3, Theorem 3+ and Corollary 3.4 the statements 
follow from Theorem 12.19 and 12.20 in [8]. • 

7. CONCLUDING REMARK 

Some other applications of the divergences are introduced in [8] where the above 
mentioned problems are treated in general. The reader can find many interesting 
results and consequences there as well as a lot of useful references relevant for the 
topic. 

(Received April 5, 1988.) 
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