KYBERNETIKA - VOLUME 24 (1988), NUMBER 5

ON THE CONSISTENCY OF A LEAST SQUARES IDENTIFICATION PROCEDURE*

PETR MANDL, TYRONE E. DUNCAN, BOŻENNA PASIK-DUNCAN

Conditions for the convergence of parameter estimates to the true value applicable in selftuning control models are presented. Persistent excitation property is proved by control theory methods.

1. INTRODUCTION

The paper deals with random processes the trajectory of which fulfills

(1)
$$dX_t = f(\alpha) X_t dt + U_t dt + dW_t, \quad t \ge 0.$$

In (1) $W = \{W_t, t \ge 0\}$ is the *n*-dimensional Wiener process with incremental variance matrix *h*,

$$dW_{\cdot} dW'_{\cdot} = h dt$$
.

Prime denotes the transposition. $U = \{U_i, t \ge 0\}$ is a random process nonanticipative with respect to W. $f(\alpha)$ denotes an $n \times n$ -matrix of the form

$$f(\alpha) = f_0 + \alpha^1 f_1 + \ldots + \alpha^m f_m, \quad \alpha = (\alpha^1, \ldots, \alpha^m)' \in \mathbb{R}^m.$$

 $f_0, f_1, ..., f_m$ are given matrices, α is a parameter the true value α_0 of which is to be estimated from the observation of X and U.

The paper continues the research of parameter estimation in linear systems initiated in [2], [5], and shows that the applications of control theory methods to the consistency problems presented in [4] can be developed to obtain explicit results. The methods were extended in [1] to embrace the estimates of the drift parameters.

The least squares estimate of α_0 on the basis of $\{X_i, t \leq T\}$, $\{U_i, t \leq T\}$ is denoted by α_T^* . It is defined as follows. Let *l* be a nonnegative definite symmetric matrix. Heuristically α_T^* is the minimizer of the quadratic functional

(2)
$$\int_0^T (\dot{X}_t - f(\alpha) X_t - U_t)' l(\dot{X}_t - f(\alpha) X_t - U_t) dt,$$

* This research has been partially supported by the U.S. National Science Foundation Grant ECS-8403286-A01.

where \dot{X}_t denotes the derivative of X_t which in fact does not exist. To improve this we substract from (2)

$$\int_0^T \dot{X}'_t l \dot{X}_t dt$$

which does not depend on α and rewrite the remaining terms as

(3)
$$\int_0^T (f(\alpha) X_t + U_t)' l(f(\alpha) X_t + U_t) dt - 2 \int_0^T (f(\alpha) X_t + U_t)' l dX_t.$$

Equating the derivatives of (3) with respect to x^i to 0 one obtains the linear system of equations

(4)
$$\sum_{j} \int_{0}^{T} X' f'_{i} lf_{j} X \, \mathrm{d}t \, \alpha_{T}^{*j} = \int_{0}^{T} X' f'_{i} l (\mathrm{d}X - f_{0}X \, \mathrm{d}t - U \, \mathrm{d}t) \,, \quad i = 1, \dots, m \,,$$

for $\alpha_T^{*1}, \ldots, \alpha_T^{*m}$. We remark that (4) is a recursive estimation procedure (see [1]). The estimator α_T^* is *consistent* if $\alpha_T^* \to \alpha_0$ in probability. It is *strongly consistent* if $\alpha_T^* \to \alpha_0$ almost surely (abbreviated a.s.).

2. STATEMENT AND PROOF OF RESULTS

Lemma 1. Let g be an $n \times n$ -matrix. If

(5)
$$\frac{1}{T} \int_0^T |X_t|^2 \, \mathrm{d}t \,, \quad T > 0 \,,$$

is bounded in probability (respectively a.s.), then

(6)
$$\lim_{T \to \infty} \frac{1}{T} \int_0^T X'_i g' \, \mathrm{d}W_i = 0 \quad \text{in prob. (respectively a.s.).}$$

Proof. Introduce

$$V_T = \int_0^T X'g'hgX \,\mathrm{d}t \,.$$

The following equation is satisfied

$$\int_0^T X'g' \,\mathrm{d}W = \mathscr{W}_{V_T},$$

where $\{\mathscr{W}_s, s \ge 0\}$ is a Wiener process. Let (5) be bounded in probability. Choose $\varepsilon > 0$ and find K_s such that

$$\mathsf{P}(V_T/T \leq K_{\varepsilon}) > 1 - \varepsilon, \quad T > 0.$$

Then

(7)
$$\mathsf{P}\left(\left|\frac{1}{T}\mathscr{W}_{V_{T}}\right| > \varepsilon\right) \leq \varepsilon + 2 \mathsf{P}\left(\sup_{s \leq K_{\varepsilon}T}\mathscr{W}_{s} > \varepsilon T\right) = \varepsilon + 4\Phi(-\varepsilon T/\sqrt{(K_{\varepsilon}T)}),$$

where $\Phi(y)$ is the standardized normal distribution function. The last term in (7) tends to 0 as $T \to \infty$, which proves (6) in probability.

The alternative with a.s. convergence is proved directly using the strong law of large numbers for \mathscr{W} .

Proposition 1. Let the matrices

(8) $\sqrt{l f_i \sqrt{h}}, \quad i = 1, ..., m,$

be linearly independent where \sqrt{l}, \sqrt{h} is the symmetric square root of l and of h, respectively. If

(9)
$$\frac{1}{T}\int_{0}^{T} (|X_{t}|^{2} + |U_{t}|^{2}) dt, \quad T > 0,$$

is bounded in probability (respectively a.s.), and

(10)
$$\lim_{T \to \infty} |X_T|^2/T = 0 \text{ in prob. (respectively a.s.),}$$

(11)
$$\lim_{T \to \infty} \alpha_T^* = \alpha_0 \quad \text{in prob. (respectively a.s.).}$$

Proof. Inserting (1) with $\alpha = \alpha_0$ into (4) we get

$$\sum_{j} \int_0^T X' f'_i l f_j X \, \mathrm{d}t \big(\alpha_T^{*j} - \alpha_0^j \big) = \int_0^T X' f'_i l \, \mathrm{d}W,$$

and hence

(12)
$$\sum_{ij} \frac{1}{T} \int_0^T X' f'_i \, lf_j X \, dt (\alpha_T^{*i} - \alpha_0^i) \, (\alpha_T^{*j} - \alpha_0^j) = \sum_i \frac{1}{T} \int_0^T X' f'_i \, l \, dW(\alpha_T^{*i} - \alpha_0^i) \, .$$

To investigate the left-hand side of (12) take $\mu \in \mathbb{R}^m$, $|\mu| = 1$, and denote

(13)
$$p(\mu) = \sum \mu^i \sqrt{l} f_i, \quad q(\mu) = p(\mu)' p(\mu)$$

Consequently,

$$\sum_{ij} \frac{1}{T} \int_0^T X' f'_i l f_j X \, \mathrm{d}t \, \mu^i \mu^j = \frac{1}{T} \int_0^T X' \, q(\mu) \, X \, \mathrm{d}t \, .$$

Set $f = f(\alpha_0)$. It can be assumed that f is a stable matrix because without loss of generality it can be replaced by f - aI where I is the unit matrix. Introduce the quadratic functional

(14)
$$Q_T(\mu) = \int_0^T X' q(\mu) X \, \mathrm{d}t + c \int_0^T |U|^2 \, \mathrm{d}t$$

where c > 0. Consider U as a control process and $Q_T(\mu)$ as a cost functional. The minimum of EQ_T over all U nonanticipative is obtained by solving a Riccati equation whose limiting form as $T \to \infty$ is

(15)
$$wf + f'w - c^{-1}w^2 + q(\mu) = 0$$

where w is nonnegative definite. It follows then

(16)
$$\inf \left\{ 2x'w(fx+u) + x'q(\mu)x + c|u|^2 \right\} = 0, \quad x \in \mathbb{R}^n$$

From (1) and (16) applying the Itô formula to $\int_0^T d(X'wX)$ it follows that

(17)
$$Q_T(\mu) - T \operatorname{trace}(hw) + X'_T w X_T \ge 2 \int_0^T X' w \, \mathrm{d}W.$$

Setting $v = c^{-1}w$ we get from (15)

$$vf + f'v - v^2 + c^{-1} q(\mu) = 0$$
.

From here it follows that

(18)
$$v \sim c^{-1/2} \sqrt{q(\mu)}, \quad c \to 0+.$$

Because of the linear independence of (8), $\sqrt{h} q(\mu) \sqrt{h}$ is nonzero, and hence $\sqrt{h} q(\mu)^{1/4}$ is nonzero. Consequently,

$$\inf_{\substack{|\mu|=1}} \operatorname{trace} \left(h \sqrt{q(\mu)}\right) = \inf_{\substack{|\mu|=1}} \operatorname{trace} \left(\sqrt{h} \sqrt{q(\mu)} \sqrt{h}\right) > 0.$$

From (18) we deduce that

trace
$$(hv) \ge r/\sqrt{c}$$
,

(19)
$$\operatorname{trace}(hw) \geq r \sqrt{c},$$

where r > 0 is independent of μ and c, $|\mu| = 1$, c < 1.

Let (9) be bounded in probability and let (10) hold in probability. Applying Lemma 1 to the integral in (17) we obtain using (10) and (19) that for $\delta > 0$

(20)
$$\lim_{T \to \infty} \mathsf{P}\left(\frac{1}{T} \mathcal{Q}_T(\mu) \ge r \sqrt{c} - \delta\right) = 1$$

Using (20) we shall estimate the left-hand side of (12). Let $\varepsilon > 0$. Find K_{ε} such that

(21)
$$\mathsf{P}\left(\frac{1}{T}\int_0^T (|X|^2 + |U|^2) \, \mathrm{d}t \le K_{\varepsilon}\right) \ge 1 - \varepsilon, \quad T > 0.$$

Then

or

(22)
$$\mathsf{P}\left(\left|\frac{1}{T}\int_{0}^{T}X'(q(\mu)-q(\nu))X\,\mathrm{d}t\right| \leq |q(\mu)-q(\nu)|K_{\varepsilon},\,\mu,\,\nu\in\mathbb{R}^{m}\right) \geq 1-\varepsilon\,.$$

Further fix c > 0 such that

$$(23) r\sqrt{c} - cK_{\varepsilon} - 3\delta > 0$$

Next choose a finite set μ_k , k = 1, ..., N, $|\mu_k| = 1$, such that

(24)
$$\inf_{k} |q(\mu) - q(\mu_{k})| K_{\varepsilon} \leq \delta \quad \text{whenever} \quad |\mu| = 1.$$

By virtue of (20) for $T > T_0$

$$\mathsf{P}\left(\frac{1}{T} Q_T(\mu_i) \ge r \sqrt{c - \delta}, \ i = 1, ..., N\right) \ge 1 - \varepsilon$$

and hence from (14), (21) (23)

$$\mathsf{P}\left(\frac{1}{T}\int_0^T X' q(\mu_i) X \, \mathrm{d}t \ge 2\delta, \, i = 1, \dots, N\right) \ge 1 - 2\varepsilon.$$

(22) and (24) imply the persistent excitation condition (see [3])

(25)
$$\mathsf{P}\left(\frac{1}{T}\int_{0}^{T}X' q(\mu) X \, \mathrm{d}t \ge \delta |\mu|^{2}, \, \mu \in \mathbb{R}^{m}\right) \ge 1 - 2\varepsilon \, .$$

Consequently,

(26)
$$\mathsf{P}\left(\sum_{ij} \frac{1}{T} \int_{0}^{T} X' f'_{i} l f_{j} X \, \mathrm{d}t (\alpha_{T}^{*i} - \alpha_{0}^{i}) (\alpha_{T}^{*j} - \alpha_{0}^{j}) \ge \delta |\alpha_{T}^{*} - \alpha_{0}|^{2} \right) \ge 1 - 2\varepsilon \,.$$

Regarding the right-hand side of (12) we have by Lemma 1 for $T > T_0$

$$\mathsf{P}\left(\left(\sum_{i} \left(\frac{1}{T} \int_{0}^{T} X' f'_{i} l \, \mathrm{d}W\right)^{2}\right)^{1/2} \leq \delta^{2}\right) \geq 1 - \varepsilon,$$

and hence

(27)
$$\mathsf{P}\left(\sum_{i}\frac{1}{T}\int_{0}^{T}X'f'_{i}l\,\mathsf{d}W(\alpha_{T}^{*i}-\alpha_{0}^{i})\leq\delta^{2}|\alpha_{T}^{*}-\alpha_{0}|\right)\geq1-\varepsilon\,.$$

From (12), (26), (27) it follows that

$$\mathsf{P}(|\alpha_T^* - \alpha_0| < \delta) \ge 1 - 3\varepsilon, \quad T > T_0$$

Note that δ in (23) can be chosen arbitrarily small. The validity of (11) in probability is thus established.

The boundedness of (9) and the validity of (10) almost surely implies

$$\mathsf{P}\left(\liminf_{T\to\infty}\frac{1}{T}\,Q_T(\mu)\geq r\,\sqrt{c}\right)=1$$

Moreover $T > T_0$ can be added to the events whose probabilities are computed starting with (21) and ending with

$$\mathsf{P}(|\alpha_T^* - \alpha_0| < \delta, \quad T > T_0) \ge 1 - 3\varepsilon,$$

which proves the validity of (11) almost surely.

Assume next that h is singular, $0 < \operatorname{rank} h = s < n$. Renumbering the coordinates if necessary h can be expressed as

$$h = \begin{pmatrix} h^{00}, h^{01} \\ h^{10}, h^{11} \end{pmatrix} = (h^0, h^1),$$

where rank $h^{00} = s$. The same partitioning will be used also for the blocks of other matrices. Recall the definition (13) of $p(\mu)$, $q(\mu)$.

Proposition 2. The implication of Proposition 1 remains valid if

(28)
$$\operatorname{rank} p^{1}(\mu) < \operatorname{rank} p(\mu), \quad \mu \in \mathbb{R}^{m}$$

Proof. Write $X_t^0 = (X_t^1, ..., X_t^s)'$, similarly for U_t^0 , W_t^0 , and set $V_t = (X_t^{s+1}, ..., X_t^n)'$. From (1) it follows

$$dX_t^0 = f^{00}X_t^0 dt + f^{01}V_t dt + U_t^0 dt + dW_t^0, \quad t \ge 0.$$

Consider U^0 and V as control processes and proceed as in the proof of Proposition 1. It holds $X' q(\mu) X = X^{0'} q^{00}(\mu) X^0 + 2V' q(\mu)^{10} X^0 + V' q^{11}(\mu) V.$

$$X' q(\mu) X = X^{0'} q^{00}(\mu) X^{0} + 2V' q(\mu)^{10} X^{0} + V' q$$

Note that

$$q^{00} = (p^0)' p^0$$
, $q^{10} = (p^1)' p^0$, $q^{11} = (p^1)' p^1$.

Without loss of generality it can be assumed that q^{11} is nonsingular, i.e., p^1 has linearly independent columns. Otherwise the dimension of V could be reduced. Moreover, let $h^{00} = I$, and let f^{00} be a stable matrix.

Introduce the functional

$$Q_T = \int_0^T \left(X^{0\prime} q^{00} X^0 + 2V' q^{10} X^0 + V' q^{11} V \right) dt + c \int_0^T \left(\left| U \right|^2 + \left| V \right|^2 \right) dt$$

We shall demonstrate the analogues of (17) and (19). The rest of the proof follows that of Proposition 1. Writing x, u instead if $x^0 u^0$ we replace (16) by

(29)
$$\inf_{(u,v)} \{ 2x'w(f^{00}x + f^{01}v + u) + x'q^{00}x + 2v'q^{10}x + v'q^{11}v + c(|u|^2 + |v|^2) \} = 0 .$$

The minimum of the expression in braces is attained for

$$u = -c^{-1}wx$$
, $v = -(cI + q^{11})^{-1}((f^{01})'w + q^{10})x$.

Inserting these values into (29) we obtain

(30)
$$\begin{aligned} x'(2wf^{00} - c^{-1}w^2 + q^{00} - wf^{01}(cI + q^{11})^{-1}(f^{01})'w - \\ &- 2wf^{01}(cI + q^{11})^{-1}q^{10} - q^{01}(cI + q^{11})^{-1}q^{10} - \\ &- cq^{01}(cI + q^{11})^{-2}(q^{10} + 2(f^{01})'w))x = 0. \end{aligned}$$

From here we conclude that the asymptotic behaviour of $c^{-1}w$ as $c \to 0+$ depends on the matrix

(31)
$$q^{00} - q^{01}(q^{11})^{-1}q^{10}$$
.

From

$$\inf_{v} |p^{0}x + p^{1}v|^{2} = x'(q^{00} - q^{01}(q^{11})^{-1} q^{10}) x$$

it is seen that (28) implies that (31) is a nonzero matrix. Consequently,

$$\inf_{|\mu|=1} \operatorname{trace} \left(q^{00}(\mu) - q^{01}(\mu) q^{11}(\mu)^{-1} q^{10}(\mu) \right) > 0 \,.$$

From this inequality and from (30) it follows that

trace
$$(w) \ge r \sqrt{a}$$

with r > 0. This inequality with the inequality

$$Q_T(\mu) - T$$
 trace $(w) + X_T^{0'} w X_T^0 \ge 2 \int_0^T X^{0'} w \, \mathrm{d}W$

enables us to continue as in the proof of Proposition 1.

Example. A self-tuning control model is described by the equation

$$\mathrm{d}X_t = f(\alpha_0) X_t \,\mathrm{d}t + k(\alpha_t^*) X_t \,\mathrm{d}t + \mathrm{d}W_t \,, \quad t \ge 0 \,,$$

where $k(\alpha)$ are given feedback gain matrices. Assume that

$$\mathscr{K} = \{k(\alpha), \alpha \in \mathbb{R}^m\}$$

is a bounded set and that the following Liapunov type assumption (see [5]) is fulfilled. There exists a symmetric matrix z > 0 such that

(32)
$$z(f + gk) + (f + gk)' z + I \leq 0, \quad k \in \mathscr{K}$$

The inequalities denote positive definiteness and negative semidefiniteness, respectively. (32) implies (9), (10) and Propositions 1, 2 give sufficient condition for the self-tuning property.

(Received February 12, 1988.)

REFERENCES

- [2] T. E. Duncan and B. Pasik-Duncan: Adaptive control of continuous time linear systems. Preprint. University of Kansas 1986.
- [3] P. R. Kumar and P. Varaiya: Stochastic Systems: Estimation, Identification. and Adaptive Control. Prentice Hall, Engelwood Cliffs 1986.
- [4] P. Mandl: On evaluating the performance of self-tuning regulators. In: Proc. of 2nd Internat. Symp. on Numerical Analysis, Prague 1987. B. E. Teubner, Leipzig. To appear.
- [5] B. Pasik-Duncan: On Adaptive Control (in Polish). Central School of Planning and Statistics Publishers, Warsaw 1986.

RNDr. Petr Mandl, Dr.Sc., matematicko-fyzikální fakulta Univerzity Karlovy (Faculty of Mathematics and Physics--Charles University), Sokolovská 83, 186 00 Praha 8. Czechoslovakia. Prof. Tyrone E. Duncan, Ph. D., Prof. Dr. hab. Boženna Pasik-Duncan, Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045. U.S.A.

M. Boschková: Self-tuning control of stochastic linear systems in presence of drift. Kybernetika 24 (1988), 5, 347-362.