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ON THE CONTINUOUS DEPENDENCE 
OF TRAJECTORIES OF BILINEAR SYSTEMS 
ON CONTROLS AND ITS APPLICATIONS 

SERGEJ CELIKOVSKY 

Special representation of dependence of trajectories of a bilinear time dependent system 
on controls is obtained. On the basis of this representation an estimate for continuous dependence 
of trajectories of a bilinear time dependent system with single input on controls is developed. 
In the last section a numerical method for determination of optimal control in problems with 
constant parameters and fixed time interval is suggested. This method is a modification of the well-
known gradient projection method and employs the developed estimate. Illustrative examples 
are given. 

1. INTRODUCTION 

Let us consider the following control system: 

(1) x = A(t) x + B(t) u(t) x + c(t) u(t) + f(t) , 

x(t0) = x0 , f e [f0, f,] c R . 

In the sequel, (1) will be called the bilinear time dependent system with single input 
(BTDSSI). Here A(t), B(t) are (n x n)-dimensional matrix-valued functions, c(t), 
f(t) are functions with values in R". The scalar control (or input) u(t) is assumed 
to beameasurabe function on every finite time interval [f0, f,] such that for given 
real numbers «min, wmax «(f) e [«mi,„ «max] almost everywhere (a.e.) on [f0, t,]. Such 
a control will be called admissible. Finally, x e R" is the vector of state variables 
and x0 e R" is the given initial state of the system. 

The aim of this contribution is twofold. First, to generalize the results of [3]. 
Second, to give some more elaborated examples of possible applications of this 
kind of results. In [3] a time independent bilinear system was considered, namely, 
the system (1) with A(t) = A, B(t) = B, c(t) = c and /(f) = 0. For this case a re
presentation of dependence of trajectories of system (l) on controls was obtained. 
On the basis of this representation the following estimate for continuous dependence 
of trajectories of system (l) on controls in certain norms was derived: 

(2) max |x,(f) - x2(f)||R„ S K max |JJ0 (u,(s) - u2(s)) dsj . 
f e [ f o , f l ] <6[ fo , f l I 
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Here xx(i) and x2(t) are solutions of the system (I) for controls M,(/) and M2(t), 
respectively, K is a constant depending only on the parameters of system (1). 

In this paper validity of the above facts is extended to the case of BTDSSI under 
some additional assumptions. Note that estimate (2) in fact establishes a Lipschitzian 
dependence of the trajectories of BTDSSI on controls in norms max [|-\'(?)||R„ and 

'e[»o,r,] 
max |JJo u(oc) da]. Estimates of type (2) are useful in order to study bilinear control 

tet'o.fi] 
systems as it was shown in [3]. 

In this contribution also a numerical method for searching the optimal control 
of time independent bilinear systems is described, which is a modification of the well-
known gradient projection method. This modification is based on estimate (2) and 
allows to obtain such an approximation of optimal control which has only two 
values: wmin and Mmax (although a very high number of switchings may occur). 

2. ANALYTICAL REPRESENTATION OF DEPENDENCE 
OF TRAJECTORIES OF BTDSSI ON CONTROLS 

Let us introduce the following notation 

(3) w(0 = J(pw(s)d5. 

Let us remind that exp (F) (or eF) denotes matrix-valued functions of an (n x n)-
matrix argument F defined by: 

(4) eF = exp(E) = X £ . 
k = o k\ 

Our aim in this section is to find a special representation of x(t), the solution of (1) 
for a given u(t), which allows us to obtain the estimate (2). First we construct a special 
representation for the fundamental matrix <P(t) of system (l) and its inverse <P~1(t). 
Let us recall that the fundamental matrix <P(t) of system (l) is the solution of the 
following matrix differential equation 

(5) ±X(t) = (A(t) + B(t)u(t))X(t), X(t0) = I 
at 

and its inverse matrix <t>~1(t) is the solution of 

(6) 1 Y(t) = - Y(t) (A(t) + B(t) u(t)), Y(t0) = / , 
at 

where / denotes the (n x «)-dimensional identity matrix. 

We say that a matrix-valued function is integrable (absolutely continuous) if 
each of its elements exhibits the appropriate property. 

Throughout this paper it is assumed that B(t) is absolutely continuous and the 
norm of its derivative is almost everywhere on [f0, f t] bounded by a constant 
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BDM, 0 <, BDM < oo. Moreover, it is assumed that for every t', t" e [f0, r t] the matrices 
B(t') and B(t") commute, that is, B(f') B(t") = B(f") B(t'). This second requirement 
is necessary in order to have possibility to represent the solution of the system 
y = B(t) u(t) y, y(t0) = y0, as y(t) = exp (JJ0 B(s) u(s) ds) y0. It is fulfilled, e.g. 
when B(t) = g(t) B, where B is a certain matrix and g(t) is a scalar function. 

Theorem 1. Let us consider system (l), where B(t) satisfies the above conditions 
and A(f) is a function integrable on certain time interval \t0, f,]. Then we can repre
sents the fundamental matrix of this system and its inverse on [r0, t[\ as the sums 
of the following infinite series: 

(7) 0(t) = exp(j;0B(sKv)ds)(/ + I \Tk + i ••• ^n{exp(-J- + w B(s) . 
k=l j=l 

. u(s) ds) A(rk+1_j) exp (J-+ ' - ' B(s) u(s) ds)} dr. ... dTk) 
and 

(8) <p->(t) = (I + I JJ0— ... j;0n(exp(- J?0B(s)«(s)dS)(-A(T,)). 
k = 1 J = 1 

. exp (jt
r
o B(s) w(s) ds)} . 6xt... dT„) exp (- J|o 8(5) u(s) ds) . 

Proof. Let us consider the following sequence of matrix-valued functions of real 
variable t {<P'(t)}" 0: 

tf °(f) = exp (J{0 B(s) u(s) ds), 

± <p«+i(f) = B(f) „(,) $ i + 1 (0 + A(r) $'(f), 0i+\to) = / , 
df 

that is 

0i+ '(f) = exp (j;0 B(s) u(s) ds) (/ + Jf. exp ( - ft, B(«) u(«) da) A(s) 4>'(s) ds), 

or 

4>i+1(/) = exP(j;0B(s)l((s)ds)(/ + If*"*1 ••• n0(n iexp(-J;r ,-B(s)«(s)ds). 
.A(T,+ 1_,)exP(Jr ,^B(5)"(Ods))dTI...dTfc). 

For the solution of (5) it holds clearly: 

4>(0 = exp (j;0 B(S) u(s) ds) + JJ0 exp (Js B(s) u(s) ds) A(s) 4>(s) ds . 
Hence 

|* i + 1(0 - 4>(f)|s < Jr'oe
BAf""(t-"s)AM||<f(s) - 4>;(s)||sds < 

< Mr,0 Ms) - Hs)h*s = ^j^f- max i*(o - *°(0I|S • 
[I + 1)1 te[(0,ti] 

Here ||-||s denotes the spectral matrix norm, 

M = e
BM»"^-<°>AM , BM = max |B(f)||s , AM = max (|A(f)|s . 

<e[<o,<il <e£<o,<i] 

So we can see that in the spectral matrix norm the sequence {<Pl}?=0 converges 
to the solution of (5) as i tends to infinity. On the other hand, it is obvious that the 
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series on the right hand side of (7) is just the limit of the sequence {<P'}f=0. Hence 
representation (7) has been proved. 

In the same way we can prove representation (8), the only difference is that the 
appropriate sequence {<*5

I~
1}̂ L0 is of the form: 

V ( / ) = exp(-J ( 'oB(.s>(s)ds) 

~<PiA = ^\(-B(t)u(t))-0r A(t), <P7+\(to)=l- • 
d/ 

The following theorem gives a representation of the solution x(t) of system (1) 
in which x(t) depends only on w(t), t e [/0, / J , where w(t) is given by (3). 

Theorem 2. Let us consider system (1) with a given initial state x(t0) = x0 for the 
control «(/). Let us assume in addition to the conditions of Theorem 1 that c(t) 
is absolutely continuous and / ( / ) is an integrable function on [r0, / , ] . Then for the 
solution x(t) of system (l) the following formula holds: 

(9) x(t) = <P(t) (x0 + j ; 0 $- \s) A(s) Ew(s) exp (B(s) w(s)) c(s) ds -

- ft, <P~l(s) Ew(s) exp (B(s) w(s)) (B'(s) w(s) c(s) + c'(s)) ds) + 

+ Ew(t) exp (B(t) w(t)) c(t) + <P(t) J[0 *~ l(s)f(s) d s , 

where EH.(s) is the following matrix-valued function of a real variable s (depending 
on w(a), a e [/0, / ,] given by (3)): 

(,o) Bj,)-i *MM:\-iy + ti^B(«)y-iB'{«)^d« 
; = o (; + 1)! ; = i (i + 1)! 

and <£(/), (P^1(t) are given by (7) and (8). Moreover, as we can easily see, it is possible 
to replace everywhere in (7) and (8): 

(11) fc B(s) u(s) ds = B(rt) w(xt) - J?0 B'(a) w(a) da . 

Proof. Let us first remark that the infinite series on the right hand side of (10) 
evidently converge for any real matrix B(a), a e [/0, / , ] , real number s and function 
w(a), ae [/0, / , ] . Furthermore, the following relations hold: 

(12) ~ Ew(s) = u(s) exp (-B(s) w(s)), Ew(t0) = 0 . 
ds 

As it is known from the theory of ordinary differential equations (see e.g. [11], p. 
135) the solution x(t) of system (1) has the following form: 

(13) x(t) = $(t) (x0 + J,'0 <P- l(s) (c(s) u(s) + f(s)) ds . 

Here <P(t) is again the fundamental matrix of (1). From (8) it follows that we can 
write 
(14) <P~\t) = $Jt) exp ( - j ; 0 B(a) w(a) da), 
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where 

(15) cpjt) = i + fjrt+i... nsn{«p(- M ^ - M ^ K - ^ . ) ) • 
/c = 1 i = 1 

. exp ( JJo B(a) «(a) da)} dT, ... dTfe. 

By direct evaluation we obtain that 

(16) ~ 0A(t) = - <PA(t) exp ( - j ; o B(a) «.(«) da) A(t) exp ( j ; o B(a) u(a) da) , 
at 

(17) * i t o ) = I. 

Using relations ( l l ) - (12) and (14) —(17) we have 

j ; 0 # - ' ( - ) c(S) «,(•) ds = JJ0 $x(s) «(s) exp ( - J*0 B(«) «(a) da) c(S) ds = 

= j ; 0 *x(s) «(s) exp ( -B(s) w(s)) exp (J*0 B'(a) w(a) da) c(s) ds = 

= J[0 <^(s) f A Ew(s)) exp (J?o B'(a) w(a) da) c(s) ds = 

= 4»x(0 Ejt) exp (J|0 B'(a) w(«) da) c(f) - J|0 (-*Js)) exp ( - JJo B(a) u(a) da) . 

. A(s) exp (JJo B(a) u(a) da) Ew(s) exp (JJo B'(oc) w(a) da) c(s) ds -

- J|0 4>A(s) Ejs) B'(s) w(s) exp (Jj0 B'(«) w(a) da) c(S) ds -

- j ; 0 $x(s) Ejs) exp (J«0 B'(«) w(a) da) c'(s) d s . 

The last equality is integration by parts. Let us remark that under the conditions 
of Theorem i 

exp (Jj0 B'(«) w(a) da) ; exp (B(s) w(s)), B'(s), Ejs) 

commute evidently with each other. So we can write 

(18) JJ0 0 - l(s) c(S) u(s) ds = 4>A(t) Ejt) exp (J|0 B'(«) w(«) da) c(.) + 

+ j ; 0 <P~\s) A(s) E„,(s) exp (B(s) w(s)) c(s) ds - \'t0 <t>~\s) E,v(s). 

. exp (fl(») w(s)) (fl^s) w(s) c(s) + c'(s)) ds . 

When the substitution from (18) into the right hand side of (13) is performed taking 
into account (14) and (11) we obtain representation (9). Theorem 2 is proved. Q 

Remark 1. Analyzing relations (7) —(11) we can find that x(t) depends on u(x), 
a e [/0, fj], explicitly only through the function w(s) = Js

t0 u(a) da, s e [ ( 0 A , ] . 
This fact will be employed in Theorem 3 which establishes estimate (2). 

Remark 2. Note that there are no requirements on the commutativity between 
A(t) and B(t), so the assumptions of Theorem 2 may be considered to be quite general. 
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3. ESTIMATE FOR CONTINUOUS DEPENDENCE OF TRAJECTORIES 
OF BTDSSI ON CONTROLS 

In this section estimate (2) will be derived. 

Theorem 3. Let us consider the BTDSSI (1) defined on the time interval [/„, / , ] . 
We impose the following assumptions: 
1) B(t), c(t) are absolutely continuous and almost everywhere on [/„, f, J 

||S(/)||,. < B M < o o , 

||B'(.)||S < BDM < oo , 

| |c(0|R . S cM < oo , 

[|c'(/)[|K.. <= cDM < 00 . 

2) A(/), / ( / ) are essentially bounded measurable functions and almost everywhere 
on [/„, / ,] 

[|A(/)!|S < AM < oo , | j / ( / ) | [ R „ < / M < a , . 

Let x(t0) = x0 be the initial state of system (l) and let xx(t) and .v2(/) be trajectories 
of this system for admissible controls ux(t) and w2(/), respectively. Then estimate (2) 
is valid, where 

(19) K = KxK2\\x0\\Rn + 2KXK2
2(K, + K4K5u„(tx - t0))K4K6(tx - t0) + 

+ K2
2K4(1 + K4K5(\ + BMu„(tx - t0)))K6(tx - t0) + 

+ K2
2K4(K, + K4K5u„(,x - t0)) BDMcM(tx - t0) + 

+ K4(l + K4K5(\ + BMup(,x - /0)))cM + 2K1X^(/1 - / 0 ) / M . 

Hete we used the notation 

(20) Kx = (BM + (/, - t0) BDM) (1 + AM(h - to)) + BMAM(tx - t0) 

(21) K2 = eaAM + BM"^'^t0» 

(22) K3 = {e(
BM"^"-'»)) - \}IBM 

(23) K 4 = e(
BMM«.-o)) 

(24) K5 = up(tx - ,0)
2 BDM 

(25) K6 = AMcM + BDMcMu„(tx - t0) + cDM 

(26) up = max {|Mmin|, |Mmax|] . 

Finally, ||-||s stands for the spectral matrix norm and J["||Rn for the Euclidean vector 
norm in R". 

Proof. Let us denote the fundamental matrices of system (1) for control ux(t) and 
u2(t) by 4>x(l) and <P2(t), respectively. First we establish the estimates for 

max ||<2>i(f) - ®z(t)\\s and max \\<P^l(t) - *J1(it)||s • 
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It is easily verified that for any square matrices Xt,X2, ...,Xk, Yt, Y2,..., Yk the 
following identity holds 

(27) fl^-rly- = i(UYJ)(Xi - Y;)(fl Xj). 
i = l i = l i = l j = l j=i+1 

'/ 
(We define that f j Z), = 1 for q < p.) 

i = p 

Using this identity, formulas (7) and (11) we obtain: 

(28) $,(0 - *a(o = E(o + £ r,:tk+i - is i (ff-*-' <%-,-)) • 
* = 1 i = l j = 0 

. ( ^ - ' + 1 - Dr i+,)A(Tt-,. + 1)(nDrj'A(T4-,))exp(B(T1)w(T1) -
/-. 

- j :0B(a)w(a)da)dT!. . .dT f c + 

+ 1 y,r+*.. • is (n I^ri A(xk^)) F(xt) dxt... dxk, 
i = l i = 0 

where 

B* = exp (jll^ B(s) u„(s) ds) = exp (B(xq+t) wp(xq+t) - B(xq) wp(xq) -

- J ^ ' B ' ( s ) w p ( s ) d s ) , 

F(s) = exp (B(s) wt(s) - J*0 B'(a) w,(a) da) -
- exp (B(s) w2(s) - Jj0 B'(a) w2(a) da) . 

Further 

||D? - B2I|S < max {||exp(W*)||s} B(xq+t) wt(xq+1) - B(T4) wt(xq) + 
0 S 8 S 1 

+ £*•, B ' (5) wi(*) d 5 - 5 ( v 0 w2(xq+t) + B(T,) W2(T,) - £*+1 JT(s)w2(s) ds | , 

where 

JF* = (1 - 0) £ • • B(s) Ml(s) ds + 0 £ • ' B(s) u2(s) ds . 

So we can write 

||W*||S < (1 - < 9 ) B % | T 4 + 1 - xq\ + &BMup\xq+1 - xq\ = B % | V l - t , | . 

Hence 

[B! - B I | S < ***\^-H\ . { B * ( | W I ( T 4 + 1 ) - w2(t a + 1) | + \wt(xq) - w2(xq)\) + 

+ BDM\xq+1 - T,| max |Wl(s) - w2(s)|} . 
se[T, , r g + i ] 

Now we can write the estimate 

(29) ||D; - BI||S < e»-».l«.*--«.l(2B« + B™\xq+1 - t , | ) . 

max \wt(t) - w2(t)\ . 

Moreover, 

(30) I- ' f ls =a e f lM| t '+ '-T»i"". 
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In the same way as for }D\ - D\\s we can obtain the estimate for |E(s)||s 

(31) [|E(s)|s = e
BM"^-'°\BM + (s-~ t0) B

DM) max \wt(t) - w2(t)\ . 
te[fo,fi] 

Using relations (28) —(31) we obtain 

|*.(0 - ^(t)||s .§ {eBM»^-'°\BM + (h - t0)B
DM) + 

+ (2BM + BDM(tl - /0))f k ^\..fce
BM%l^^ (AMf cBM«^-<°> dr, ...dxk 

k=l 

+ (BM + (h - t0)B
DM)l\l" ...\?0c

BM'\h^^(AMf . 
k=l 

f*„,i*i-ua d T j dTj,j m a x | W i ^ _ W2(f)| _ 
<6[<0,tl] 

Let us observe that rk+1 ^ rft = ... = T2 = T,, hence 
k 

Z k + 1 - T«| = T*+l - Ti = t - Tj . 
« = 1 

Thus 

[#.(«) - $2(t)||s g e * M ^ ' -"»{(5 M + (t% - /0)B™) + (2BM + BDM(tt - /„)). 

.lk(AMf{^^^+(BM + (tl-t0)B
DM)l(AMfi^^\ max |Wj(r) - w2(/)| = 

k=l Id k=l K\ J fe[fo.ti] 

= eB«M<.-<o)|e^«l-<o)(jBM + (^ _ g ^ M ) + (25M + (^ _ g f i D ^ 

• (^M(t, - to)) I W 1 { \ " ^ " 1 1 max |w.(0 - vv2(/)|. 

fc=i (fc - 1)! J te[to,f,] 

Finally, we can write the following estimate 

(32) max ^ ( z ) - <2>2(/)||s = X.X2 max |w,(/) - w2(/)j , 
te£to,fl] .6[to,<i] 

where Ku K2 are given by (20) and (21). 
Analogously as for <£>(/) we can obtain the estimate for <P_1(/): 

(33) max ([<*>;̂ z) - <P2
l(t)\\s = K,K2 max | *.(.-) - w2(/)| . 

te[to,fi] fe[fo,ti] 

We can also see that 

(34) 

and 

max |Ф(/)j| s = K2 

tфo.tü 

(35) max Џ-ЩsśKz-
tфo.Пl 

By similar arguments it follows from (10): 

|Ew(s)| s = (e»"-*<»-">> - \)JBM + eBAf"f<s~"» M̂ (s - t0)
3 BDM , 

285 



that is, 

(36) \K(s)\\s SK3+ K4K5 up(s - t0) . 

In the same way as (29) we obtain: 

(37) ||EW](s) exp (B(s) w,(s)) - Ejs) exp (B(s) w2(s))\\s g 

^ K4(1 + K4K5(] + BMup(ti - t0))) max \Wi(t) - w2(t)\ . 
ts[*o,fi. 

Now we can complete the proof of estimate (2). From (9) it follows that 

A-,(0 - *2(0 = (*i(0 - * 2 (0) (*o + J*!. *i" l W 4 s ) Ewi(s) e xP (fi(s) ^ ( s ) ) • 

. c(s) ds - r;o <P-I(s) Ejs) exp (B(s) w,(s)) (B\s) W,(S) C(S) + c'(s)) ds) + 

+ * 2 ( 0 JJ, (^L1^) - ^ (X» 4 s ) E»£s) ^ P (B(0 w,(s)) c(s) ds -

- ^2(0 J l (*rJ(s) - ^ ( s ) ) * U - ) « p (B(s) w,(s)) (fl'(s) Wl(s) c(s) + c'(s)). 

• ^ + # 2 (0 j ; 0 * 2 *(s) A(s) (EWl(s) exp (B(s) wt(s)) -

- Ejs) exp (B(s) w2(s))) c(s) ds - </>2(0 ft, ^ " ' ( s ) (£w,(s) exp (B(s) W.(S)) -

- EW2(s) exp (B(s) w2(s))) (B'(s) W{(s) c(s) + c'(s)) ds -

" H') ]*!„ * I l W lUs) exp (-*(*) w2(s)) (8'(s) (K>.(S) - w2(s)) c(s)) ds + 

+ (EW1(0 exp (8(0 w ;(0) - EWl(t) exp (B(t) w2(t))) c(0 + 

+ (*i(0 - * i (0) L * 2
_ 1 ( s ) / ( s ) d s + * 3 ( 0 K o ( V ( * ) - *2" l ( s ) / ( - ) d s • 

Using estimates (32) —(37), the triangle inequality and the relation between spectral 
matrix norm of an (n x n)-dimensional matrix E and the Euclidean vectornorm of some 
vector v e R" (see e.g. [2]): 

\\F.y\\Rn^\\F\\s.\\y\\Rn, 

we obtain estimate (2) with K given by (19)-(26). The proof of Theorem 3 is com
pleted. • 

Remark 3. Theorem 3 is a direct generalization of Theorem 3 in [3]. If we take 

BDM _ JM _ CDM _ Q̂  w e o b t a i n t h e c o n s t a n t K, given by (19)-(26), which is 
exactly the same as in [3]. 

4. MODIFIED GRADIENT METHOD FOR NUMERICAL SOLUTION 
OF OPTIMAL CONTROL PROBLEMS 

In this section we suggest some applications of estimate (2). In [3] some interest
ing properties of the so-called attainable set of bilinear systems were derived on the 
basis of the estimate (2). This properties can be evidently extended also to the case 
of time dependent systems. 

In [3] an attempt was made to use estimate (2) for numerical computations, 
namely, an algorithm for determination of trajectories of a bilinear system with 



arbitrary control u(t) was suggested. This algorithm was based on the following 

lemma. 

Lemma 1. Let us consider any function M(S) measurable on a closed interval 

[/0, / , ] , such that M(S) E [«m i n, Mmax] a.e. on [/0, / , ] . Let us divide the closed interval 

[/0, /,] into k closed subintervals [/0 + (/ - 1) h, t0 + ih], i = 1,2,..., k, h = 
= (ti — to)/!c- Then there exists a function u*(s) with the following properties: 

1) M*(S) is constant on each subinterval of the form [/0 + (i — 1) /;, /„ + ih] 

2) u*(s) e {umin, Mmax] for all s e [f0, /,] 

3) for all 16 [f0, /,] 

(38) \\'lo u(s) ds - \\0 u*(s) ds| g -&L2 ".«*• /,. 

The p r o o f of this lemma is performed in [3] in detail. The proof is constructive, 

i.e., it gives a simple algorithm how to construct for any function u(s) the appro

priate function u*(s). Moreover, by combining Theorem 3 and Lemma 1 we can 

obtain: 

Theorem 4. Let us consider an arbitrary admissible control u(s) for the system (I) 

on time interval [/0, /,] and let us denote by x(t) the corresponding trajectory of 

system (1) with initial condition x(/0) = x0. Further, let [/0, /,] be divided into k 

subintervals as in Lemma 1, let u*(s) be the control constructed to the control u(s) 

by Lemma 1 and let x*(t) be the corresponding trajectory of system (l) with initial 

condition x(t0) = x0. Then 

(39) max \\X(t) - x*(t)\\Rn =g K < ^ M ^ <-±SZjo 
telto.til 2 k 

Here K is given by (19)-(26). 

So we can see that x*(t) may be considered as a numerical approximation of x(z) 

with the first-order accuracy. Furthermore, x*(t) may be computed in the following 

way. (For the sake of simplicity we consider further only time independent case, 

i.e. A(t) = A, B(l) = B, c(t) = c, /(/) = 0.) 

Let us consider two operators L+ and L~ which act from R" to R": 

L+

hx = exp ((A + Bwmax) h) x + um a x J* exp ((A + Bumax) (h - s)) c ds 

L~x = exp ((A + Bumin) h) x + um i n 'hQ exp ((A 4 Bumin) (h - s)) c ds . 

h) = LyL2 ...LLx(t0), i = 1,2 k, 

<*(*) - "max for S 6 [t0 + (j ~ 1) h, t0 + jll] 

Lj - L~ , if u*(s) = Mmi„ for s e [t0 + (./' - 1) h, t0 + 7/7] . 
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Then 

x*(t0 4 
where 

L, ---П, if 
and 



The matrices exp ((A + Bumax) h), exp ((A + Bumin) h) and vectors 

f0 exp ((A + Bumax) (h - s)) c ds , f0 exp ((A + Bumin) (h - s)) c ds 

can be either computed analytically or in more complicated cases can be approximated, 

e.g., for exp ((A + Bumax) h): 

exp ((A + Bumax) h)xl + (A + Bumax) h + (A + Bumaxf h2/2l . 

Thus, the algorithm for determination of trajectories of time independent bilinear 
systems is as follows. We choose h = (tr — t0)jk according to the required accuracy, 
then compute L^ and L^. After these steps we construct for an arbitrary admissible 
control u(s), s e [t0, f,], the function u*(s) according to Lemma 1 and then we can 
compute x*(tl),ti = t0 + ih,i = 1,. . . , k. In [3] the reader can find concrete examples 
of applications of this algorithm. 

Now we intend to use this algorithm in order to modify the gradient method 
for finding the solution of the optimal control problem. We explore simple and well-
known method of the gradient projection which is described in [6] in detail. 

Let us consider time independent system (l) with the performance index 

(40) J(x(t), u(t)) = g(x(t1)) + \\l «a0, x} + <b0, x) u + c0u) df, 

a0eR", b0eR", c0eR, g(x)eCi(R") 

which is to be minimized. Time interval is supposed to be fixed. Then, according 
to [6], the following minimization method can be used: 

(41) uj+1= P%(uj- J(uj)aj), 

where uj+1 is the ,,new" approximation, Pqi is the projection operator on set of all 
admissible controls aU, OCJER is the stepsize, and J'(-) is the gradient of performance 
index (40) given by 

(42) J'(u) = (b0, x} + c0- <(Bx + c), <Ht, «)> , 

where 

(43) $(t, u) = (-A* - B* u(t)) <l,(t, u) + a0 + b0 u(t) , 

Ht,«)=-dJ>M . 
Sx x=x(t0 

In the other words, in order to obtain the approximation uj+1 one has to solve the 
system (l) with initial condition (or left-end condition) x(t0) = x0 and for the control 
Uj(t), t e [t0, / , ] , then to evaluate the right-end condition \//(tu u}) = - V , g(x(t1)) 
and to solve the system (43) with this condition. After these steps it is possible to 
compute J'(uj), to choose a stepsize and then according to (41) obtain the approxima
tion uJ+1. In the same time it is necessary to check if J(uJ + 1) < J(uj). This not 
being the case the stepsize a} must be adjusted, e.g., by using bisection procedure, 
until the condition J(uj+1) < J(iij) is met. 

Our modification of this method consists in constructing the control uf+l to the 



control uj+1 by Lemma 1. Therefore we take uf+1 instead of uJ+, as an approxima
tion of the optimal control. All these approximations are piecewise constant functions 
with values in {Mmin, umax}. Solution of systems (l) and (43) for these piecewise 
constant controls are obtained according to the algorithm which was described 
earlier. On the other hand, the corresponding trajectory xf+l(t), t e [t0, / ,] approxi
mates xj+1(t), t e \_t0, (.], and i//*+1(t) approximates \jjj+i(t) with first-order accuracy 
with respect to h = (f, — t0)jk. When a certain h = (t. — t0)jk is chosen, we take 
e.g. M0 = Mmax and start the computation. After certain number of steps we find 
that uf+1 = M*, because the difference between uj+i and u} is so small that for 
given h we obtain, according to Lemma 1, the same u*+, and u*. Then the use 
of smaller h is necessary. 

As a practical criterion of stopping this procedure we take \j(uj+i) — J(uj)\ < i:, 
where e is the required accuracy of approximation of optimal value of the performance 
index. As a result of this procedure we obtain a suboptimal (in the described sense) 
control which is a piecewise constant function with values in {Mmjn, um a x}. 

This modificated gradient method was tested on several examples. First, time 
independent system (l) was considered: 

-")• - P - - C D - • -
"m„x = 1 , to = 0 , tt = \K , x° = (2, 2)T . 

Two types of performance indices were investigated 

71(xO),M(0) = ( x 1 ( f 1 ) - 2 ) 2 + (x2(f1))2, 
J2(x(t),u(t))= - fcx2(t)u(t)dt. 

Theoretical optimal value of J1 equals 2-0 and it can be obtained by an infinite 
number of controls, e.g., (i) constant optimal control u(t) = u = (2JK) In \, (ii) 
bang-bang control u(t) = 1, te [0, \K + \ In \\; u(t) = - 1, t E[\K + \\n \, \K\, 
(iii) bang-bang control u(t) = - 1, t e [0, \K - \ In \\; u(t) = 1, t e [ |JI - \ In \, \K\. 
Approximations M* of optimal control converge in weak sense, i.e., in the norm 
max | JJo M(s)ds|, to the first indicated case (i). The number of switchings of control 

<e[<o,ti] 

M* increases to infinity. In fact, the sequence {M*J converges to a certain sliding 
rule (relaxed control). Let us note that constant theoretical optimal control is a singu
lar one. 

Theoretical optimal value of J2 is equal to —2-4423998 and can be achieved by 
the unique optimal control of bang-bang type: 

u(t) = 1 , t e [0, 0-98226] and u(t) = - 1 , [0-98226, \K\ . 

By the suggested method it was achieved J2 = —2-442389 and the approximate 
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optimal control was 

u{t) = 1 , f e [0,0-98104] ; u ( f ) = - l , f e [0, 98184, |TI] 

During not included negligible time interval [0-98104,0-98184] switching of w(t) 
occurs. Total number of 7 iterations was needed: 

2 iterations with h = 0-01, 2 iterations with h = 0-001 and 3 iterations with 
h = 0-0001. All these computations including use of rather slow grafics Calcomp 
took about 5 minutes of CPU time on IBM 370/135. Let us note that one iteration 
with h = 0-0001 took about hundred times more CPU time than one iteration with 
h = 001. In this case it was also necessary to use DOUBLE PRECISION because 
of some integration procedures (especially for h = 0-0001). 

Trajectories corresponding to the iterations of the method and to optimal control 
are shown in Fig. 1 (Jj) and Fig. 2 ( j2) . 

X2 

,x7it.i 

Xnnrltl 

Fig. 1. Approximations of optimal 
trajectories for J1. 

Fig. 2. Approximations of optimal 
trajectories for J2. 

Finally, the following bilinear time independent system (1) was considered: 

. 10 0\ 
n = 3 , 

/0 0 0 
= 1 0 - 1 0 - 9 0 

0 0 \o \0 0 0, 

f0 = 0 , f. = 1 , x° = (1, 0, 0)T , Km„ = 1 , Umia = 0 . 

The performance index was taken as 

J(x(f),«(.)) = x,(l) + x2(l) + x 3 ( l ) ~ l . 

This system arises in problem of optimal design of multifunctional catalysts for 
chemical reactors (see [4], [5]). Optimal control for this system was computed and 
comparison with results of [4] was performed. In Fig. 3 theoretical optimal control 
as well as our approximation after 30 iterations (about 15 minutes of CPU time) 
ate shown. Theoretical optimal value of the performance index was achieved with 
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accuracy about 10~9, but approximation of the optimal control rather differs from 
the theoretical optimal control. It is caused by fact that the value of performance 
index changes very little in the neighbourhood of the optimal control and therefore 
the convergence is slow (as well as in [4]). Moreover, the modified gradient method 
computes very well two parts of optimal control which are of bang-bang type, 
but it does not compute very well the part which is of singular type, as it can be seen 
from Fig. 3. Let us note that the approximation in Fig. 3 was computed for /; = 0001. 

0.2 1.0 

Fig. 3. Theoretical optimal control and its approximation after 30 iterations for / . 

The depicted values of control were obtained using certain averaging process (taking 
always average of 40 neighbouring points). Let us also remark that 7 iterations with 
h = 0-01 (performed in 15 seconds) suffice in order to achieve optimal value of the 
performance index with accuracy 2 . 10~4. Remaining 15 minutes are used for 
improving accuracy to 10"9. 

We can now summarize some experience connected with the use of the modified 
gradient method. It works quite well when we know a priori that the optimal control 
is of bang-bang type. In this case it is advantageous to use this method. When the 
optimal control is of a singular type, the method converges in certain sense to a sliding 
rule. Then it is necessary to make a concrete decision about any particular case 
and to use all a priori information in order to determine which kind of approxima
tion is needed. (For example, if we know a priori that the singular part in Fig. 3 is 
constant, we may take this constant as an average value of all wmil) and wmax through 
this part of time interval.) It is also advisable to use this method when it is suitable 
to have an approximation of the optimal control as a function of two values only 
(although with possible very high number of switchings). 

5. CONCLUSIONS 

Two different aims were followed in this paper. First, to show that the results 
of [3] concerning a problem of continuous dependence of trajectories of bilinear 
systems on control and their consequences can be extended to the case of time 
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dependent bilinear systems. Second, to describe a modified gradient method for the 

solution of optimal control problems with time independent parameters on the fixed 

time interval. The modification was based on continuous dependence (in fact Lip-

schitzean dependence) of trajectories of bilinear systems on control. The method 

was constructed for time independent systems only for sake of simplicity, there are 

no theoretical obstacles to consider time dependent case, too. 

(Received August 6, 1987.) 
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