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GENERALIZED JENSEN DIFFERENCE BASED 
ON ENTROPY FUNCTIONS1 

P R A S A N N A K. S A H O O , A. K. C. W O N G 

This paper concerns an upper bound for a diversity measure between subpopulations (also 
called the generalized Jensen difference) based on entropy functions. We show that the diversity 
measure between the subpopulations with given a priori probabilities and induced by either 
the Shannon entropy or the entropy of degree « can never exceed the corresponding entropies 
of the a priori probabilities. Through this bound we prove a conjecture of Wong and You [25] 
in affirmative and suggest a new definition for the index of diversity based on entropy functions. 
An upper bound for the second order generalized Jensen difference based on entropy functions 
is also obtained in this paper. 

1. INTRODUCTION 

Consider a set of populations {nk , where the individuals of each population nk 

are characterized by a set of measurements A in a measurable space (Q, Sfi). The set 
Q is the sample space and M is a er-algebra of subsets of Q. The discrete probability 
distribution function of A in nk is denoted by Pk which belongs to an n-dimensional 

simplex A„ := {P = (pu p2, •••, P„) \ 0 <\ pk <\ 1, £ pk = 1}. Let A° be the interior 
k= I 

of the n-dimensional simplex A,„ that is, A° = \P = (p{, p2, ...,p„) \ 0 < pk < 1, 

£ pk = 1}. Notice that A„ and A° are convex subsets of U". A real valued function 
jt = i 

D: A„ -»• U is called a diversity measure on A„ if it satisfies the following conditions: 

(a) D(P) ^ 0 for all P e A,„ 
(b) D(P) = 0 if, and only if, p{ = 1 for some i and Pj = 0 for all j + i, 
(c) D is a concave function on A,„ that is, if Xu).2, ...,)-,„ are nonnegative real 

numbers such t h a t ^ / l , = 1 and Pu P2, ..., P,„ s A,„ then 
i = 1 

O-i) D(X4^) = Z4D(n)-
k=l k=l 

1) This work is partially supported by a NSERC of Canada grant. 
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While the conditions (a) and (b) are natural, the condition (c) was motivated by the 
consideration that the diversity in a mixture of populations should not be smaller 
than the average of the diversities within the component populations. Some examples 
of the diversity function defined on the set A„ are the followings (Nayak [14] and 
[15]): 

(1-2) H(P)= -tpk\og2pk 
k=l 

(1.3) Ha(P)~ * At A-1)* « > ° > K * 1 ' 
2 — 1 k=i 

(1.4) H*(P) = -±~\og2(tP?), « e ] 0 , l [ , 
1 — a k=i 

0-5) S(P)=\-tpl, 
k=l 

(1-6) B(P) = ~ A - - I [ l - ( i ^ ) 7 ] , y > 0 , y * l , 
1 — T t=i 

(1.7) R(P) = PMP1', 

where M is an n x n matrix such that PMP1 satisfies conditions (a), (b) and (c). 
The first three diversity measures are the Shannon entropy [22], the entropy of 
degree a [10], and the entropy of order a [19], respectively. The fourth diversity 
measure is a special case of the entropy of degree a and is known as the Gini-Simpson 
index in statistics. The fifth diversity measure in the example is the y-entropy introdu
ced by Arimoto [1] and axiomatically characterized by Behara and Chawla [2]. 
The diversity measures (1.3), (1.4) and (1.6) are entropies which depend on a parameter. 
In applications, one expects that these should be monotonically increasing functions 
of the parameter. As for the entropy of degree a and the entropy of order a, it is 
well known that they are monotonically increasing functions of a. Regarding the 
monotonicity of (1-6), it was conjectured that the y-entropy is also an increasing 
function of the parameter y (see Nayak [14]). Recently, Sahoo [20] has shown that 
this conjecture is true. The last diversity measure was suggested by Rao [18] and it is 
often referred to as the Rao's quadratic entropy. The Shannon entropy, the entropy 
of degree a, the entropy of order a, the Gini-Simpson index, and the y-entropy are 
all invariant under permutation of their arguments. As a result, they all have certain 
flaws. In spite of these flaws, entropic diversity measures are widely used in genetics, 
sociology, statistics [14, 15, 24], anthropology, and recently in pattern recognition 
[3, 12, 25]. 

Given a set of probabilities measures P1, P2,..., P„,eAn andX = (xlt x2,..., x,„) e 
e A,„, and a concave function D defined on A,„ the following decomposition was 
suggested by Rao ([17] and [18]). 

(1.8) D( f xkPk) = t *k D(Pk) + JD({Pi}, {*,]) • 
k=1 k=l 

242 



The second term, J^Pi), {xt)), in (1.8) is called the generalized Jensen difference 
in Burbea and Rao [4] of the function D. If Pu P2, ..., Pm are probability distribu
tions in m subpopulations with a priori probabilities (or a priori weights) xu x2,... 

..., xm, then the term D(Y xkPk) is known as the total diversity whereas the quantity 
m k = i 

Y xk D(Pk) is the average diversity within subpopulations. Thus, JD({P ;], {x;]) may 
i t= I 

be interpreted as the diversity between the subpopulations. In biological works, 
JD when D is the Shannon entropy, is defined to be the information radius on prob
ability distributions P , , P2,..., P,„ (see Sibson [23]) and some applications of this 
concept to cluster analysis are discussed in Sibson [23] and Jardine and Sibson [11]-
The ratio 

G D = U{r,\W)  

Jo({Pl},{^) + txkD(Pk) 
k=i 

is the index of diversity induced by the functional D between subpopulations compared 
to the total. The index GD has been used widely in genetics by Lewontin [13], Nei 
[16] and Chakraborty [6] when D is the Shannon entropy. For convenience, we 
will refer JD({Pt}, (x;]) to as the diversity (between the subpopulations) induced 
by the function D. 

This paper is organized as follows: In Section 2, we prove a upper bound for JD 

when D is the Shannon entropy. Section 3 presents an upper bound for JD assuming 
D to be entropy of degree a. In Section 4, some inequalities regarding the generalized 
Jensen difference are proven. In Section 5, we propose a new index of diversity. 

2. UPPER BOUND FOR JD INDUCED BY THE SHANNON 
ENTROPY 

In this section, we prove the following theorem. 

Theorem 1. Let P ; = (pn, pj2,..., pu) e A° for /' = 1,2,..., m be the m complete 
probability distributions. Let X = (xt, x2, ..., xm) e Am, then inequality 

(2.1) JH({P(},{xt})<H(X) 

holds, where H is the Shannon entropy. 

Proof. Using (1.8) and the form of the Shannon entropy in (1.2), one obtains 

(2.2) JH({P?, {x,.1) - H(X) = I t pJk log2 Sfi + £ Xl l0 g 2 x>, 
j = i k = 1 rk ; = r 

where rk = Y. xiPik (k = 1,2,..., n). Since Y, Pik = I for all / = 1,2,..., m, there
in t k = i 
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fore (2.2) can be rewritten as 

(2.3) JH({Pi},{Xi})~H(X) = i ixiPtklog2^. 
. - = i * = i rk 

The use of the inequality 
log2 x < (x - 1) log2 e 

(with equality if, and only if, x = l) in (2.3) results in the following: 

(2.4) JH({Pt}, {xt}) - H(X) < i i xiPJ^k - i) log2 e . 

This strict inequality is due to the fact that P ; e A° and X e Am. Some algebraic 
simplifications of (2.4) yield 

JH({P f], {x.}) - H(X) < log2 e l i ^LTJ^MLI . 
/ = i s = i rk 

Some further simplifications of the above inequality lead to 

(2.5) J^P,), {x;}) - H(X) < log2 (e-') £ - J I x s x ( P s f c ^ , 

k=1 ,-k s = i t * s 

where £ denotes the summation over all < except r = s. Since x ; and pik are strictly 

greater than zero, we have 
(2.6) l ' Z E W A > 0 . 

t = i rfc s = i t * s 

Hence, from (2.6) and (2.5) one obtains 

Jll({Pi[,{x^)<H(X). 

This completes the proof of the theorem. • 

Remark 1. The proof of Theorem 1 can also be obtained using the analytic and 
algebraic properties of mutual information, since ^({P,-1 , {x,1) (see Gallager [9] 
p. 90) is the mutual information associated with the m-input symbol distribution 
and the so called channel matrix (Pij)mxa. However the proof given in this paper 
is straightforward and does not use the properties of mutual information. 

The proof of the following corollary is similar to that of Theorem 1 and is therefore 
omitted. 

Corollary 1. Let P ; e An (i = 1, 2 , . . . , m) and X e Am. Then the following ine
quality holds 

JB({Pl,{x$<H(X) 

with equality if, and only if, x,- = 1 for some j and x ; = 0 for all i =t= j . 
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3. UPPER BOUND FOR JD INDUCED BY THE ENTROPY 
OF DEGREE a 

In this section, we shall derive an upper bound for the diversity (between the sub-
population) induced by the entropy of degree a. We denote the entropy of degree 
a by Ha. Notice that the definition of Ha is valid only for all a (>0) and a 4= 1. When 
a = 1, we define Ha through the limit a -> 1. That is, 

(3.1) / / , := l im/J , . 
< * - > l 

It is not difficult to prove, using l'Hopital rule, that the right hand side of (3.1) is 
the Shannon entropy H. 

Theorem 2. Let Pu P2, ..., Pm e A° and X e A°„ then JHj({Pi}, {xt}) satisfies the 
inequality 

(3.2) JH.({P,}, {*,})< # , ( * ) , aeR+, 

where Hx is the entropy of degree a. 

Proof. Let a > 0 and consider the following 

i[iixiP,jr-i(xiP,ir]-tx" + ^ 
j - i i = i ; = i ; = i 

Since £ x ; = 1 = £ ptJ, the above expression can be written as 
i = i j = i 

i [ ( £ xiPuY - i (xiPu + xiPu - xiPu)~] • 
j = i i = i ; = i 

Let 

(3.3) <Pj(a) := ( £ xtPijy - £ (x;p^. + x?Pij. - x ; P i 7 ) . 
i = i ; = i 

At this point we would like to prove the following inequalities 

a A\ v *.i \ f<0 r o r « e ] 0 , 1[ 
(3-4) , ? i ^ a ) i > 0 for a e ] l , i [ . 

First consider the case, when a. e ]1 , oo[. Since xh PiJ e ]0, 1[, therefore ( £ xiPiJ)
x > 

m i = l 

> Y, X1P1J- Thus, in view of this, (3.3) becomes 
i = l 

(3.5) <2>/a) > £ \x*iP
a
tJ - xiP\j + xiPiJ - x*iPiJ] . 

i = i 

Rewriting (3.5), we have 

(3-6) * / a ) > £ (PiJ -ptJ)(xi- xl). 
i = l 

Since PiJ and x ; are in ]0, l[ , therefore (PiJ — p?7) > 0 if a > 1. Similarly we get 
(X; - x*) > 0. Hence from (3.6), we obtained the second half of the inequality (3.4). 
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Now consider the case when 0 < a < I. Here, the inequality (3.6) will reverse 
its sign, that is 

(3-7) * / a ) < i (Pij - p'fj) (xi - x j ) , 
;= I 

since (YJ
xiPijf < ExiP*j , o r a e ]°> •[• I n t h i s c a s e (Pu ~ Ptj) a n d (x> ~~ x " ) 

i = l i= 1 

are strictly less than zero. Thus, by (3.7) the first half of the inequality (3.4) is proven. 
By using the definition of Hx and the definition of JHJ{Pi , j * ; 1 ) , we obtain 

(3.8) JHS{Pi}, [xt)) - HX(X) = (21- - I ) " 1 i * / « ) . 
j = 1 

Note that if a > 1 then (21"" - l ) " 1 < 0. T h u s , using (3.4) in (3.8) we obtain (3.2). 
Again, if 0 < a < 1, then (21~a - 1 )~ J > 0 and (3.2) follows. The case, when 
a = 1 can be obtained from Theorem 1 since Vim JH=c({Pr, {x^) = / H ( { P ; \ {x ; l ) . 
This completes the proof of the theorem. a"+1 • 

Remark 2 . Daroczy [7 ] defined channel capacity of degree a using the quant i ty 

lx(X, Y) : = ffa(Y) - Ha(Y\X), where Yis the distr ibution associated with the mix

ture, tha t is, ixkPk and ffa(7| X) = f x*k Hx(Pk). Thus , JHx({Pt], {xs}) is not 
k = i it = i 

the mutual information of Daroczy and hence one cannot use the properties of 
mutual information of degree a to obtain another proof of Corollary 1 unlike the case 
in Theorem 1. For definition and some applications of HX(Y\X), the conditional 
entropy of degree a, refer to El-Sayed [8] and Sahoo [21]. 

The following corollary can be proven by mimicking the proof of Theorem 2. 

Corollary 2. Let P ; e A„ (i = 1,2,..., m) and X e A,„, then the inequality 

JHX{Pt}, {*«}) £ HX(X) 

holds, with equality if, and only if, Xj = i for some ;' and x ; = 0 for all i 4= j -

4. UPPER BOUND FOR SECOND ORDER GENERALIZED 
JENSEN DIFFERENCE 

The concept of the generalized Jensen difference was extended to higher order 
in [5] by Burbea and Rao. In view of this extension, the Jensen difference JD defined 
through (1.8), is the Jensen difference of order one. In this section, we derive an 
upper bound for the second order Jensen difference based on the Shannon entro
py or the entropy of degree a. 

Consider the set of rc-ary complete probability distributions {Pf,.2 e A„ I i, = 
= 1, 2 , . . . , m t ; »2 — 1,2, . . . ,m2} index by combinations of the levels i1 and i2 

of two factors with independent a priori distributions XU) in Amj, where XU) = 
= (xU),xU),..., xU)), j = 1, 2. The conditional distributions subject to individual 
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levels of I'I and i2 and the unconditional distributions are 

(4-1) Pi, = f *£*...,, 
; 2 = i 

(4-2) P«2 = I 4 1 ) P , 1 i 2 . 
•i = i 

and 

(4-3) P = Z tx?M?Phh-
i 1 = l ; 2 = i 

The conditional Jensen difference between the levels of X""' for a given level i2 

of X(2) is, given by (see Burbea and Rao [5]) 

(4-4) JiUh) = D ( f x > P l l l 2 ) - I x i I
1 > D ( P i u , ) . 

ii = l ii = l 

The Jensen difference between the levels of X(l) averaged over all the levels of X(2) is 

(4-5) 41'") = D(P)-ZD(P,). 
ii = i 

The second order generalized Jensen difference (or interaction between factor 1 and 
2) is defined in [5] as 

(4.6) #'2> - I * M ' , a ) - j(or2)-
. 2 - 1 

In [5], Burbea and Rao studied the convexity of higher order generalized Jensen 
difference. Regarding second order generalized Jensen difference the followings 

(a) , ( - . - > = # • » , 

(b) J(
D

l-2) ^ 0 if and only JD ^ 0, 

are true. For details readers should refer to [5]. Now we prove the following lemma. 

Lemma 1. If D is a concave function, then the inequality 

(4.7) j£-2) ^ f x « [ D ( g *<2>Pil(2) - f x<2> D(Piii2)] + 
i l = l . 2 = 1 «2 = 1 

+ E42)[D(!:4i)Pi,,2)-!:41)D(iji,i2)] 
1*2 = 1 . 1 = 1 ' 1 = 1 

holds, where P , i 2 e An(i1 = 1,2,..., m,; i2 = 1, 2 , . . . , m2) and^O) e Am (j = 1,2). 

Proof. By (4.4) and (4.3), (4.5) becomes 
m 2 mi mi 

(4.8) J<1'2) = I xg>[D( I x<:>P,,) - £ *.? D(Pll(l)] + 
i2 = i ii = i ii = i 

+ I ^ D( Z *g>P.lfJ - D( g £ ^.W-P.,0 • 
.1 = 1 . 2 = 1 .1 = 1 .*2=1 

247 



Since D is a concave function, 

(4.9) D ( | Z ^ M 2 ) P ; , ; , ) ^ I Z*(;M2)D(P;i i2). 
ii = l .2=1 .1 = 1 f a - 1 

In view of (4.9), (4.8) yields (4.7). This completes the proof of the lemma. • 

Now we proceed to determine an upper bound for J D ' 2 ) when D is either the 
Shannon entropy of the entropy of degree a. We denote J ^ ' z ) as the second order 
generalized Jensen difference based on the entropy of degree a. 

Theorem 3. Let PhheAn(ii = \,2,...,mu i2 = l,2,.. . ,m2) and X(J)eAmj(j = 1,2). 
Then the inequality 

(4.10) j £ 2 ) g £ ffa(*
U)) 

j = i 
holds for all a in R+ . 

Proof. Since for a in R+ - {!}, Hx is a concave function of the probabilities, 
using Lemma 1 we obtain 

(4.11) ^ ^ I W E - I X J - l^Hx(Phh)] + 
i 2 = l ii = l ii = l 

+ "t ^Wfx^Phi2) - gx(2) Ha(PhiJ] . 
ii = l i 2 = l i2 = l 

Now Corollary 2 in (4.11) yields 

(4.12) jy;
2> ^ x -42) HXxW) + I *(!} Ila(^(2)) • 

i 2 = l '1 = 1 
mi "12 

Using the fact £ x ^ = 1 and ^ x<2) = 1, we get (4.10) from (4.12). If a = 1, 
il = l i 2 = l 

by Corollary 1 we again obtain (4.10). This completes the proof of the theorem. • 

5. COMMENTS 

By maximality of the Shannon entropy, we obtain the following inequality, an 
obvious consequence of Corollary 1: 

(5.1) / H ( { P £ } , { x , } ) g l o g . m , 

where Pu P 2 , . . . , P„, e A„ and X e Am. 

In the context of structural pattern recognition, Wong and You [25] observed 
the necessity of an upper bound for JD when D is the Shannon entropy. They con
jectured on the basis of computer simulation that, for all x e [0, 1 [ and for every 
Pu P2 e A„ the quantity H(xPx + (l - x) P2) - x H^^ - (l - x) H(P2), which 
they call 'increment of entropy', is bounded from above by 1 (see [25, p. 604]). 
From (5.1), it is quite obvious that the conjecture is true. 
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Since D is a concave function, by Jensen inequality for concave function, we see 
from (1.8), that J^P^, {x(}) is nonnegative. Thus, the 'increment of entropy' 
(which is equivalent to the mutual information associated with a 2-symbol source 
and channel matrix (p0)) can be used as an index of diversity. This index is success
fully used in the comparison of random graphs in pattern recognition (see Wong 
and You [25]). Similar to the index of diversity GD one can define another index 
of diversity by normalizing the diversity between the subpopulations by its (best) 
upper bound. Tf the concave function used in the definition of JD is either the Shannon 
entropy or the entropy of degree a, then the index of diversity can be defined as 
follows: 

(5.2) G* = 
n1-' - 1 

JD(W,W) 

if D = H„ 

if D = H . 

In summary, we have shown that the diversity between subpopulations (or the 
generalized Jensen difference) induced by either the Shannon entropy or the entropy 
of degree a can never exceed the corresponding entropies of the prior probabilities 
of subpopulations. The second order generalized Jensen difference (which is also 
interaction between factor 1 and 2) is bounded from above by the sum of the entropies 
of prior distributions of the factor 1 and 2. 
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