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TESTING HYPOTHESIS FOR THE SHIFT PARAMETER 
IN DIFFUSION PROCESSES 

GEJZA DOHNAL 

The problem of testing hypotheses for diffusion type processes when the unknown parameter 
plays the role of shift is considered. The parametric family of distributions is LAMN in this 
model and there are no satisfactory results for asymptotic optimality of the tests in the literature. 
Using the conditional inference approach a test is constructed which is asymptotically optimal 
under the conditional distribution. Numerical results are presented to illustrate the problem. 

1. INTRODUCTION 

Dealing witli the asymptotic inference for stochastic processes many authors 
distinguish two type of processes. 
(a) the ergodic one and 
(b) the non-ergodic one 

(see [2] for definition). In particular for tlie diffusion stochastic processes it means 
the distinction between the processes satisfying 
(a') the local asymptotic normality (LAN) condition, and 
(b') the local asymptotic mixed normality (LAMN) condition (see [6], [7]). 

This partition involves different statistical approaches. While the case (a) permits 
us to use some classical statistical methods and procedures (least-squares or maximum-
likelihood estimates, maximum-likelilTood ratio tests or tests based on a score statistic, 
etc.), the situation (b) is quite different. The main difficulties arise from the fact that 
the estimators and test statistics have non-standard limiting distributions. 

The problem of estimation in non-ergodic models was treated by several authors 
(Basawa and Prakasa Rao [3], Basawa and Brockwell [ l ] , Dohnal [6], Feigin [9], 
Heyde [16], Jeganathan [11], Swansen [13] and others). 

This paper is concerned with a testing hypothesis problem in the LAMN (non-
ergodic) case. For ergodic models there exists the uniformly most powerful test based 
on the log-likelihood ratio (see [3], [13]). Swansen in [13] showed that it is im-
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possible to achieve any similar result in the non-ergodic model. The difficulties 
regarding the efficiency questions were treated by Basawa and Scott [4], Feigin [8] 
and Sweeting [14]. Basawa and Koul [2] derived the limit distributions of the score 
and likelihood-ratio statistics. 

Some approaches to the investigation of the asymptotic properties of tests in 
non-ergodic models lead to the conditional inference. The works of Basawa and 
Brockwell [ l ] and of Feigin [9] represent the two directions in this way. In this 
paper the result of the former is used to construct a likelihood-ratio tests which is 
optimal under the conditional probability measure. 

2. THE MODEL 

Let the process {c„ te [0, T]} be defined by the stochastic differential equation 

dc, = a(ct - 3) df + b(ct - 3)dWt, t e [0, T] , 

where [Wt, t e [0, T]} is the standard Wiener process, 3 is an unknown real parameter 
from an open set 0 a M. a(x) and b(x) are continuous real-valued functions with 
continuous derivatives a', a", b', b", b'", b(x) > 0 for all x e U. Suppose that c,0 is 
a random variable with probability density n(x — 3). 

Denote by T3 the probability distribution of the process c, with 3e 0, defined 
on (Q, F) where F = a(c„ t e [0, T]). Consider the sample X" = (X0, Xu . ..,X„) from the 
process £, such that Xk = ckT/„. k = 0, 1, . . . , n. The chain X" induces the probability 
measure T3 on (Q, T"), F" = a(X0, ..., X„). P"a is a restriction of Ts to T". 

Theorem 1. In the model described above, the family {Pl,3e0)„^l satisfies 
the local asymptotic mixed normality (LAMN) condition in 3 e 0, i.e., 

(i) there exist sequences {A„(3)}„^1, {T„(#)}„>i of T"-measurable random variables, 
T„ > 0 a.s. for n = 1, 2 , . . . so that 

(1) L„(3'h\ 3) = log (di^/dTS) = h A„(3) - ih2 F„(3) + oP(\) , 

as n -> co under PI, where 3"h = 3 + hn~1/2, heU,n = 1, 2, ... 
(ii) there are almost surely positive random variable T(S) and a random variable 

A(3) ~ N(0, 1) independent of r(3) so that 

(A„(3), r„(»)) - (A(3) r^2(3), r(3)) 

in distribution under T3 as n -* co. 

Moreover 

(hi) rP)^r(3) = 2!Tjlg2(£t-3)dt, 

in T3-probability as n -» co, where g(x) = b'(x)jb(x). 

Proof. Recall that 

L„(3l, 3) - log n(X0 - 31) - log n(X0 -3) + L°n(3"h. 3), 

where L°„(3"„ 3) is the log-likelihood ratio in the model with fixed initial value c0 = x0. 
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Using the Taylor's expansion for logarithm we obtain 

Ln(9"h, 9) = L°n(9"h, 9) + oP(\) , n -> oo . 

Now, the assertions (i), (ii) of Theorem 1 follow immediately from Proposition 1 
in [6]. 

To derive an explicit formula for _„ and T„ we employ the result of Dacunha-
Castelle and Florens-Zmirou [5] which gives a very useful expansion of transition 
probability density for a transformed process 

This expansion has the form 

«f •*»r') - fe)"-{- _ « - *-•>+£ .*•s,d' -

-WS*-s)+h** fy'Y* - r'-'r+*.(T\-
where f(y, 9) = a(T^(y) - 9)jb(T^(y) -9)- W(T^\y) - 9). For 91 and 90 

we obtain 

^(-.Y&.YJ* 
(2) —£— - — - -- exp[£ [a(Xfc - S0) Л«-]/2 + (g'(X_ - 90) 

„Soí1 v»0 v»o\ l У 

ЧЏo - , - ï ï i . У , 

- ^ - So)) fcan-J] (X - Wt_.Y + Op(n"1/2) [X - »_-•) + 

+ «P(»~3/2)}. 
Notice that 

~,Xk-UXk) „ b(T^(П0)-^)q"(L,Yt-г,Yk' 
n / _ гr Vn ЛP» » På 

£ř = П -^г-
dPÖ 0 t = i 

Hence from (2) and using the Taylor's expansion for the logarithm of b(x - 9) 

LK< -»o) = ̂  l-jn 9(Xk - 90) (± (5Wk)
2 - A - ^ a2(Xt - 90)1 + R„ 

where R„ is such that P£0 ~" l ' m ̂ „ = 0- This gives 

(3) rn = 2Jn)Tjg\Xk-90) 
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(4) 4 = [ I n-i>2g(Xk - S0) («(<5^)2 - l ) ] T , 7 ^ . 
* = i 

(iii) of Theorem 1 follows from the convergence of sums (3) to the integral 2/T. 
. JJ g2(Xt — 9) dt. The expression of A„ will be used in the sequel. • 

Remark. If T(S) is a non-degenerate random variable then the model is called 
non-ergodic. The case when r(9) is nonrandom corresponds to the ergodic model 
and coincides with occursof g is constant. Thus the model satisfy the LAN condition. 

3. TESTING HYPOTHESIS 

Let us consider the problem of testing hypothesis H: 9 = 90 against the one-sided 
alternative K: 9 > 90. The test is defined by the indicator function cp„ = l(T„(X") e C), 
C eU, where T„(X") is a test statistic. The power function of the test cp„ is given by 

pVn(9)= E9l(T„(X")eC). 

The test q>„ is said to be of size a (or simply a-test) if P,Pn(90) = a, a e [0, 1). 
One way to compare tests in parametric families of distributions is to consider 

a sequence of testing problems H: 9 = 90 against K„: 9 = 9"„ h > 0, n = 1, 2, .... 
We shall say that a sequence of a-tests is (locally asymptotically) optimal if there 
exists h0 > 0 so that 

h m / ? J ^ ) ^ l i n i / i J ^ ) 

for all sequences of a-tests {iA„}„̂  i and for all h e [0, h0\ 
In the LAMN model a uniformly most powerful test does not exist. From the 

Neyman-Pearson Lemma it follows that the most powerful a-test of hypothesis 
H: 9 = 90 against K„: 9 = 9", we have in the form cp„ = l(L„(9"„, 90) > k"a), 
n = 1,2, ..., what gives (see (1)) 

cp„ = I(h A„(90) - \h2 F„(90) + 0,(1) > IQ , n = 1, 2 , . . . 

where k"x is defined by 

E9o/(h A„(90) - \h2 r„(90) > K) = a . 

Swansen in [13] shows that there exists an optimal sequence of uniformly most 
powerful a-tests only if T(90) is non-random. 

4. CONDITIONALITY 

Define a regular conditional probability measure P^y on (Q, F) by 

Psiy(A) = P,(A I T(9) = y2), AeT. 

Let T9|y be a restriction of P^y on (Q, F"). T(9) is so called "mixing variable" and 



the LAMN family {PI, , 9 e 0 } „ g l can be considered intuitively as a mixture of 
a LAN families of conditional measures [Pl\y, S e 6>}„> t in the following sense, 

Pl = SPHyP3(r(S)edy2). 

When the mixing variable T(S) is ancillary then it is natural to consider a condi
tional inference approach (see [10]). Basawa and Brockwell in [ l ] proved the next 
theorem. 

Theorem 2. Suppose that the conditions (i), (ii), (iii) from Theorem 1 hold. Let 
Tsi7 be the conditional probability measure under Ta for X" given F(S) = y2. Then 
under T3|7 and n -> oo 

(I) LB(Sl, S) = h An(S) - \h2y2 + oP(i), 
(II) (An(S), rn(S)) -> (/ly, y2) in distribution, 

(III) T„(,9) -> y2 in probability 
(excepting y2 6 N(S) such that TS(T(9) e N(S)) = 0). 

See [ l ] for the proof. 

In the case studied here we can show that T(S) is an ancillary variable. We change 
the integral 

T(3) = 2 / T f 0 V ( X , - S ) d ; 
into 

T = 2/TJ£a2(Z t)clt 

by the substitution Z, = X, — S. {Zt, t e [0, T]} is the process satisfying the stochastic 
differential equation 

dZr = a(Zt) dt + b(Zt) dWt, te [0, T] , 

with initial density n(z) for Z0. Hence T is independent of S and thus it is ancillary. 
Now, using Theorem 2 and the Neyman-Pearson Lemma we are able to construct 

a test <p„ which is optimal under T9|r When T = y2 is fixed then from (1) and (4) 
we obtain the test statistic in the form 

7 ^=0 V(«) * (-*,t - y0) 

Tn(X") has asymptotically the iV(0, 1) distribution under P^y and the a-test can be 
given by 

l(Tn(X") > u.) 
or 

l(\Tn(X")\ > uix) 

as two-sided alternative test. ua is a-percentile of JV(0, 1) distribution. Under PSnh|y 

has T„(;Y") the JV(0, l) distribution (see [15]). 
To perform the conditional inference we cannot use the principle of ancillarity 

directly since T depends on S. We don't know the true value of y. Thus we replace 
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Tn(X") by 

fn(X") - 4 
Jn 

n-1 

where J„ == An(S0), y2
n = 2/ra £ g2(Xk — 30). We can show that the limiting distribu

t e 
tion of Tn(X") is the same as of Tn(X"), as n -» co, under P$0\y, P»nh\y respectively. 

Lemma 1. (T„(X") — f„(X")) -> 0 in probability under Psiy and Ts„hJy, respectively 
as n —> oo. 

Proof. Let 

n - l 

where y2(S) = 2jn £ 02(^t - >9)- First> w e s h o w t h a t 
k = 0 

(5) Tn(X", S§ = T„(X", S0) + OP( I _ 1 / 2 ) , n -> oo . 

Denoting 

G )̂ = 4 = - I # ) , gk(») = g(xk~9), 
yn(9j \nk=o J 

using Taylor's expansion we obtain 
G„(SU) = G„(S0) + C:(S0) A + 0P(n~^), 

sin 
where 

f2'~l „„ A"3/2 

G;(S0) = - ( - "t g'k(&0) gk(90)) (- Ig2
k(9o)\ 

\n k=o } \n k=o ) 

inequality follows 

- I9'k9k S 0P(l) 1 "i)gk\ £ 0,(1) (1 "i'gl)1 

n k=o n k=o \n k = o J 

for all n. Hence 
1 V/ 2 

XÄГ Gn(%)íOP(l)^ ' ZOMzL 
,3/2 = " A V ^ 

and 

G• ( s : )^ ; iy + 0'<"""!,• • 
which implies (5). 
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Note that T„(X", 90) = f„(X"). Moreover (III) in Theorem 2 implies 

(T„(Xn, 9) - T„(X")) -» 0 as n -> oo 

in PS|y probability. The assertion of Lemma 1 follows immediately. • 

5. NUMERICAL RESULTS 

This section gives some numerical results obtained by simulation. The process c, 
was simulated using the Heune's scheme (see [12]) for the equation 

d£r = - ( £ , - 9) dt + (1 + (c, - 9)2) dWt, IE [0, 1] , 

n(x-9) = - ^ _ e x P ( - i ( * - 9 ) 2 ) . 

In this case 

Vy •k V) 
1 + (Xk -эf 

90 »1 n m mл 
X = 0-05 

mл 
a = 0-1 

T„ Gn 

1-0 0-5 100 20 10 3 2-112 1-352 

10 1-0 100 20 18 18 0-929 0-253 

1-0 1-1 100 20 20 18 0-8586 0-288 

1-0 1-2 100 20 18 16 1-123 0-392 

1-0 1-3 100 20 15 10 1-402 0-609 

1-0 1-5 100 20 6 2 2-385 1-361 

10 2-0 100 20 0 0 4-764 1-916 

3-0 2-4 100 20 4 2 2-839 1-328 

30 2-7 100 20 14 11 1-389 0-631 

3-0 3-25 100 20 17 17 1-230 0-514 

The test statistic was constructed for the hypothesis H: 9 = 90. Hence its value and 
the value of y„ was computed with 90, while the simulation of the process £ was done 
with 9 = St. There were performed m simulations with the step n~l for every #0, 9,. 
The number of acceptances of the hypothesis was denoted by mA. T„, G„ denote 
the average value of |T„|, G„, respectively. 

(Received June 12, 1987.) 
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