NORMAL COVARIANCES

JIŘí MICHÁLEK

The main goal of this paper is to characterize the class of normal covariances for random processes. This notion generalizes a known weakly stationary case and can be a suitable mathematical tool for describing real random processes which are not weakly stationary.

The notion of a normal covariance was introduced by the author in the paper [1]. Characterization of normal covariances for random sequences is given in [2]. The class of normal covariances was discovered by studying of locally stationary covariances which were introduced by Silverman in [3]. The name - normal covariances - is based on a close connection with the theory of normal operators in Hilbert spaces.

Definition 1. Let $R(\cdot, \cdot)$ be a covariance defined in the whole plane \mathbb{R}_{2}. The covariance $R(\cdot, \cdot)$ is called normal if it can be written in the form

$$
R(s, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\lambda(s+t)} \mathrm{e}^{\mathrm{i} \mu(s-t)} \mathrm{dd} F(\lambda, \mu), \quad s \in \mathbb{R}_{1}, \quad t \in \mathbb{R}_{1}
$$

where $F(\cdot, \cdot)$ is a two-dimensional distribution function with finite variation.
The class of normal covariances is sufficiently large because every continuous weakly stationary covariance and every continuous symmetric covariance (for details see [1]) are normal. Their product is a normal covariance too. Let $\{Z(s)\}$, $s \in \mathbb{R}_{1}$, be a complex valued random process with everywhere vanishing expected value and with a normal covariance. Then by use of the Karhunen theorem such a process can be expressed in the form of a stochastic integral

$$
Z(s)=\iint_{-\infty}^{+\infty} \mathrm{e}^{s \lambda} \mathrm{e}^{\mathrm{i} \mu s} \mathrm{dd} \xi(\lambda, \mu)
$$

understood in the quadratic mean sense where $\xi(\cdot, \cdot)$ is a plane martingale satisfying $\mathrm{E}\left\{\xi\left(\lambda_{1}, \mu_{1}\right) \overline{\bar{\xi}\left(\lambda_{2}, \mu_{2}\right)}\right\}=F\left(\min \left(\lambda_{1}, \lambda_{2}\right), \min \left(\mu_{1}, \mu_{2}\right)\right)$.

Theorem 1. Every normal covariance function is continuous at the whole plane.

Proof. Let $R(\cdot, \cdot)$ be a normal covariance, let $(s, t) \in \mathbb{R}_{2}$ be quite arbitrary. Let h_{1}, h_{2} be real numbers. We must estimate the difference $\mid R\left(s+h_{1}, t+h_{2}\right)$ -$-R(s, t) \mid$ Let $z=\lambda+\mathrm{i} \mu$, then

$$
\begin{gathered}
\left|R\left(s+h_{1}, t+h_{2}\right)-R(s, t)\right|=\left|\iint_{-\infty}^{+\infty}\left(\mathrm{e}^{\left(s+h_{1}\right) z} \mathrm{e}^{\left(t+h_{2}\right) \bar{z}}-\mathrm{e}^{s z} \mathrm{e}^{t \bar{z}}\right) \mathrm{dd} F(\lambda, \mu)\right|= \\
=\left|\iint_{-\infty}^{+\infty} \mathrm{e}^{s z} \mathrm{e}^{t \bar{z}}\left(\mathrm{e}^{h_{1} z} \mathrm{e}^{h_{2} \bar{z}}-1\right) \mathrm{dd} F(\lambda, \mu)\right| \leqq \\
\leqq \iint_{-\infty}^{+\infty} \mathrm{e}^{(s+t) \lambda}\left|\mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \mathrm{e}^{\mathrm{i} \mu\left(h_{1}-h_{2}\right)}-1\right| \mathrm{dd} F(\lambda, \mu)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\lambda(s+t)} f\left(\lambda, \mu, h_{1}, h_{2}\right) \mathrm{dd} F(\lambda, \mu)
\end{gathered}
$$

where

$$
f\left(\lambda, \mu, h_{1}, h_{2}\right)=\left|\mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \cos \left(\left(h_{1}-h_{2}\right) \mu\right)+\mathrm{i} \mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \sin \left(\left(h_{1}-h_{2}\right) \mu\right)-1\right|
$$

and

$$
\lim _{\substack{h_{1} \rightarrow 0 \\ h_{2} \rightarrow 0}} f\left(\lambda, \mu, h_{1}, h_{2}\right)=0 \quad \text { for every } \quad(\lambda, \mu) \in \mathbb{R}_{2}
$$

Further $f\left(\lambda, h_{1}, h_{2}\right) \leqq 2 \mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)}+1$. When $h_{1}+h_{2} \geqq 0$ and $\lambda \geqq 0$ then $\mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \leqq$ $\leqq \mathrm{e}^{2 \lambda \varepsilon}$, if $\lambda \leqq 0$ then $\mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \leqq 1$ (it is possible to consider $\left|h_{1}\right|<\varepsilon,\left|h_{2}\right|<\varepsilon$ because of $h_{1} \rightarrow 0, h_{2} \rightarrow 0$). In case that $h_{1}+h_{2}<0$ the situation is quite analogous. For every $\lambda \in \mathbb{R}_{1}$ and every h_{1}, h_{2} with $\left|h_{1}\right|<\varepsilon,\left|h_{2}\right|<\varepsilon$

$$
\mathrm{e}^{\lambda(s+t)} \mathrm{e}^{\lambda\left(h_{1}+h_{2}\right)} \leqq \max \left(1, \mathrm{e}^{\lambda(s+t+2 \varepsilon)}\right)
$$

that is an integrable majorant function as we assume the existence of integral $\iint_{-\infty}^{+\infty} \mathrm{e}^{\lambda(s+t)} \mathrm{e}^{\mathrm{i} \mu(s-t)} \mathrm{dd} F(\lambda, \mu)$ for every (s, t). Using the Lebesgue dominated theorem we immediately obtain that $F(\cdot, \cdot)$ is continuous at (s, t).

Further properties of normal covariances are the following:

1. For every $(s, t) \in \mathbb{R}_{2}$

$$
|R(s, t)| \leqq\left(\int_{-\infty}^{+\infty} \mathrm{e}^{2 s \lambda} \mathrm{~d} F_{1}(\lambda)\right)^{1 / 2}\left(\int_{-\infty}^{+\infty} \mathrm{e}^{2 t \lambda} \mathrm{~d} F_{1}(\lambda)\right)^{1 / 2}=R^{1 / 2}(s, s) \cdot R^{1 / 2}(t, t)
$$

where $F_{1}(\cdot)$ is the first marginal of $F(\cdot, \cdot)$, i.e.

$$
F_{1}(\lambda)=\int_{-\infty}^{+\infty} \mathrm{d} F(\lambda, \mu)
$$

2. The function $R_{1}(s)=R(s, s)=\int_{-\infty}^{+\infty} \mathrm{e}^{2 s \lambda} \mathrm{~d} F_{1}(\lambda)$ is a nonnegative definite kernel with respect to sum, i.e.

$$
R_{1}\left(\tau_{1}+\tau_{2}\right)=\int_{-\infty}^{+\infty} \mathrm{e}^{2 \lambda\left(\tau_{1}+\tau_{2}\right)} \mathrm{d} F_{1}(\lambda)
$$

is a symmetric covariance in $\left(\tau_{1}, \tau_{2}\right) \in \mathbb{R}_{2}$.
3. Similarly, the function $R_{2}(t)=R(t,-t)=\int_{-\infty}^{+\infty} \mathrm{e}^{2 \mathrm{i} \mu t} \mathrm{~d} F_{2}(\mu)$, where $F_{2}(\cdot)$ is the second marginal of $F(\cdot, \cdot)$, is a weakly stationary covariance.
4. Without loss of generality, we can put $R(0,0)=1$ that means the function $F(\cdot, \cdot)$ will be a probability distribution function in the plane.

The following theorem will characterize normal covariances as functions that are in some sense nonnegative definite.

Theorem 2. A covariance function $R(\cdot, \cdot)$ defined at the whole plane is normal if and only if

1) $R(0,0)=1$
2) $R(\cdot, \cdot)$ is continuous
3) there exists a function $S(\cdot, \cdot)$ such that for every $(s, t) \in \mathbb{R}_{2} R(s, t)=S(s+t, s-t)$ and for every finite collection $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of complex numbers and every real numbers $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$

$$
\sum_{i} \sum_{j} \alpha_{i} \bar{\alpha}_{j} S\left(u_{i}+u_{j}, v_{i}-v_{j}\right) \geqq 0
$$

Proof. First, we shall construct a suitable Hilbert space. Let L be the linear set of all complex valued functions that are everywhere vanishing except a finite number of points in the plane, i.e. $f(\cdot, \cdot) \in L$ if and only if there exist $\left(u_{i}, v_{i}\right) \in \mathbb{R}_{2}, i=1,2, \ldots$ \ldots, n such that $f\left(u_{i}, v_{i}\right) \neq 0$ and $f(\cdot, \cdot)=0$ otherwise. We can in L define an Hermite bilinear form $\langle f, g\rangle, f, g \in L$ by the relation

$$
\langle f, g\rangle=\sum_{u, v} \sum_{x, y} f(u, v) \overline{g(x, y)} S(u+x, v-y)
$$

According to our assumption $\|f\|^{2} \geqq 0$ and hence $\|\cdot\|$ is a seminorm in L. Let $h \in \mathbb{R}_{1}$ and let us define a shift-operator T_{h} in L in the following way

$$
T_{h} f(u, v)=f(u-h, v-h)
$$

Let $N_{0} \subset L, N_{0}=\{f:\|f\|=0\}$ and let us consider a factor space L / N_{0}. Then the bilinear form defined above is a scalar product and $\|\cdot\|$ is a norm. Let H be a completion of L / N_{0} with respect the norm to $\|\cdot\|$. Then H is our underlying Hilbert space. As every T_{h} maps N_{0} into N_{0}, there is a possibility to translate every operator T_{h} from L into H. The definition domain $\mathscr{D}\left(T_{h}\right)$ of every T_{h} will be the linear set L / N_{0} in $H, \mathscr{D}\left(T_{h}\right)$ is thus everywhere dense in H. Let us consider for every operator T_{h} its adjoint operator T_{h}^{*} and let us prove that $\mathscr{D}\left(T_{h}^{*}\right) \supset L \mid N_{0}$. Let $f, g \in L \mid N_{0}$ then

$$
\begin{aligned}
\left\langle T_{h} f, g\right\rangle & =\sum_{u, v} \sum_{x, y} f(u-h, v-h) \overline{g(x, y)} S(u+x, v-y)= \\
& =\sum_{u, v} \sum_{x, y} f(u, v) \overline{g(x, y)} S(u+(x+h), v-(y-h))= \\
& \left.=\sum_{u, v} \sum_{x, y} f(u, v) \overline{g(x-h, y+h}\right) S(u+x, v-y)=\left\langle f, S_{h} g\right\rangle
\end{aligned}
$$

where $S_{h} g(x, y)=g(x-h, y+h)$. As this equality holds for every $f \in L / N_{0}$ that is everywhere dense in H the element $S_{h} g$ equals $T_{h}^{*} g$. We proved that $\mathscr{D}\left(T_{h}^{*}\right) \supset$ $\supset L / N_{0}$. It means the every operator T_{h} can be closed, in other words, for every T_{h} there exists a closed operator \bar{T}_{h} in $H, T_{h} \subset \bar{T}_{h}$. Now, we shall show that $T_{h} T_{h}^{*}=$ $=T_{h}^{*} T_{h}$ on L / N_{0}. When $f \in L / N_{0}$, then $T_{h} T_{h}^{*} f(u, v)=T_{h} f(u-h, v+h)=$ $=f(u-2 h, v)=T_{h}^{*} f(u-h, v-h)=T_{h}^{*} T_{h} f(u, v)$. This fact implies, further, that for every pair $f, g \in L / N_{0}$

$$
\left\langle T_{h} f, T_{h} g\right\rangle=\left\langle T_{h}^{*} T_{h} f, g\right\rangle=\left\langle T_{h} T_{h}^{*} f, g\right\rangle=\left\langle T_{h}^{*} f, T_{h}^{*} g\right\rangle
$$

because $T_{h}=T_{h}^{* *}$ on L / N_{0}. At this moment we can construct a closed enlargement \bar{T}_{h} of T_{h}. An element $f \in H$ belongs to $\mathscr{D}\left(\bar{T}_{h}\right)$ if there exists a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L / N_{0}$ such that $f_{n} \rightarrow f$ and $\left\{T_{n} f_{h}\right\}_{n=1}^{\infty}$ is convergent too. If $f_{1}=\lim T_{h} f_{n}$ then we put $f_{1}=\bar{T}_{h} f$. There is no problem to prove that \bar{T}_{h} is in this way defined unambiguously. Let $\left\{g_{n}\right\}_{n=1}^{\infty} \subset L / N_{0}$ be another sequence converging to f, but $T_{h} g_{n} \rightarrow g_{1} \neq f_{1}$. Then for any $g \in L \mid N_{0}$

$$
\begin{gathered}
\left\langle g, f_{1}-g_{1}\right\rangle=\left\langle g, \lim _{n \rightarrow \infty} T_{n}\left(f_{n}-g_{n}\right)\right\rangle=\lim _{n \rightarrow \infty}\left\langle g, T_{n}\left(f_{n}-g_{n}\right)\right\rangle= \\
=\lim _{n \rightarrow \infty}\left\langle T_{n}^{*} g, f_{n}-g_{n}\right\rangle=\left\langle T_{n}^{*} g, f-f\right\rangle=0 .
\end{gathered}
$$

Thanks to the fact that L / N_{0} is dense in $H g_{1}=f_{1}$. As $\left\|T_{h} f\right\|=\left\|T_{h}^{*} f\right\|$ for every $f \in L / N_{0}$, we can prove that $\mathscr{D}\left(T_{h}^{*}\right)=\mathscr{D}\left(\bar{T}_{h}\right)$. Further, $T_{h}^{*}=\left(\bar{T}_{h}\right)^{*}$ and because of closeness of $\bar{T}_{h} \bar{T}_{h}^{* *}=\bar{T}_{h}$. It remains to prove that $\bar{T}_{h}^{* *} \bar{T}_{h}=\bar{T}_{h} \bar{T}_{h}^{*}$ and after this we can state that \bar{T}_{h} is a normal operator in H. First, we must prove that $\mathscr{D}\left(\bar{T}_{h}^{*} \bar{T}_{h}\right)=$ $=\mathscr{D}\left(\bar{T}_{h} \bar{T}_{h}^{*}\right)$. Let $f \in \mathscr{D}\left(\bar{T}_{h}^{*} \bar{T}_{h}\right)$, i.e. $\widetilde{T}_{h} f \in \mathscr{D}\left(\bar{T}_{h}^{*}\right)$ and simultaneously $f \in \mathscr{D}\left(\bar{T}_{h}\right)$. At the same moment $f \in \mathscr{D}\left(\bar{T}_{h}^{*}\right)=\mathscr{D}\left(T_{h}^{*}\right)$ and we can consider $T_{h}^{*} f$. Let $g \in L / N_{0}$ be quite arbitrary then $\left\langle T_{h} g, T_{h}^{*} f\right\rangle=\left\langle g, T_{h}^{* *} T_{h}^{*} f\right\rangle=\left\langle g, \bar{T}_{h} T_{h}^{*} f\right\rangle$ that means that $T_{h}^{*} f \in \mathscr{D}\left(\bar{T}_{h}\right)$. We have proved that $\mathscr{D}\left(T_{h}^{*} \bar{T}_{h}\right) \subset \mathscr{D}\left(\bar{T}_{h} T_{h}^{*}\right)$. Quite analogously we can prove the opposite inclusion. We see that for every operator T_{h} there exists a normal enlargement $\bar{T}_{h}, T_{h}=\bar{T}_{h}$ on L / N_{0} and $\left\{\bar{T}_{h}\right\}, h \in \mathbb{R}_{1}$, forms a group on the linear set L / N_{0}. For every \bar{T}_{h} there exists a resolution of the identity in $H\left\{P_{z}^{h}\right\}, z \in \mathbb{C}$ such that

$$
\bar{T}_{h}=\iint_{-\infty}^{+\infty} z \mathrm{~d} P_{z}^{h} .
$$

Let $\delta(\cdot, \cdot)$ be the element in L / N_{0} defined as $\delta(0,0)=1, \delta(u, v)=0$ otherwise. Let us calculate $\left\langle T_{h_{1}} \delta(\cdot, \cdot), T_{h_{2}} \delta(\cdot, \cdot)\right\rangle$. Thus

$$
\begin{gathered}
\left\langle\left\langle T_{h_{1}} \delta(\cdot, \cdot), T_{h_{2}} \delta(\cdot, \cdot)\right\rangle=\right. \\
=\sum_{n, v} \sum_{x, y} T_{h_{1}} \delta(u, v) \overline{T_{h_{2}} \delta(x, y)} S(u+x, v-y)= \\
=\sum_{u, v} \sum_{x, v} \delta\left(u-h_{1}, v-h_{1}\right) \delta\left(x-h_{2}, y-h_{2}\right) S(u+x, v-y)= \\
=\sum_{u, v} \sum_{x, y} \delta(u, v) \delta(x, y) S\left(h_{1}+h_{2}, h_{1}-h_{2}\right)=R\left(h_{1}, h_{2}\right) .
\end{gathered}
$$

By use of the polar coordinates every operator \vec{T}_{h} can be expressed as

$$
\bar{T}_{h}=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{\lambda} \mathrm{e}^{\mathrm{i} \mu \mathrm{~d} E^{h}(\lambda, \mu)}
$$

where $\left\{E^{h}(\cdot, \cdot)\right\}$ is another resolution of the identity in H. At this moment we put $h=1 / n$ and the group property $T_{h_{1}}\left(T_{h_{2}}\right)=T_{h_{2}}\left(T_{h_{1}}\right)=T_{h_{1}+h_{2}}$ enables that for every integer $j \in \mathbb{Z}$

$$
T_{1 / n}^{j}=T_{j / n} .
$$

Then we can write

$$
R(j / n, k / n)=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{(J+k) \alpha} \mathrm{e}^{\mathrm{i} \beta(j-k)} \mathrm{d}\left\langle E_{(\alpha, \beta)}^{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle
$$

using properties of the resolution of identity in H. We can continue and express

$$
R(j / n, k / n)=\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{[(j+k) / n] \alpha} \mathrm{e}^{\mathrm{i} \beta[(j-k) / n]} \mathrm{d}\left\langle E_{(\alpha / n, \beta / n)}^{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle
$$

Under the choice of suitable j, k such that $j / n \rightarrow s, k / n \rightarrow t$ if n tends to $+\infty$ the continuity of $R(\cdot, \cdot)$ gives that

$$
R(s, t)=\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{[(j+k) / n] x} \mathrm{e}^{\mathrm{i} \beta[(j-k) / n]} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}
$$

if we denoted $\left\langle E_{(\alpha / n / \beta / n)}^{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle=F_{(\alpha / n, \beta / n)}^{1 / n}$. Let

$$
R_{n}(s, t)=\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{(s+t) x} \mathrm{e}^{\mathrm{i} \beta(s-t)} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n} ;
$$

we see that $R_{n}(\cdot, \cdot)$ is a normal covariance and we shall prove that $R_{n}(s, t) \rightarrow R(s, t)$ as $n \rightarrow+\infty$. First, we estimate

$$
\begin{aligned}
&\left|\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}-\int_{-\infty}^{+\infty} \iint_{-n \pi}^{+n \pi} \mathrm{e}^{\mathrm{x}[(j+k) / n]} \mathrm{e}^{\mathrm{i} \beta[(j-k) / n]} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right| \leqq \\
& \leqq\left|\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\alpha[(j+k) / n]}\left(\mathrm{e}^{\mathrm{i} \beta(s-t)}-\mathrm{e}^{\mathrm{i} \beta[(j-k) / n]}\right) \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right|+ \\
&+\left|\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\mathrm{i} \beta(s-t)}\left(\mathrm{e}^{\alpha(s+t)}-\mathrm{e}^{\alpha[(j+k) / n]}\right) \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right| \leqq \\
& \leqq \int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\alpha[(j+k) / n]}\left|\mathrm{e}^{\mathrm{i} \beta(s-t-(j-k) / n)}-1\right| \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}+ \\
&+\left|\int_{-\infty}^{+\infty} \int_{-n k}^{+n \pi} \mathrm{e}^{\alpha[(j+k) / n]}\left(\mathrm{e}^{\alpha(s+t-(j+k) / n)}-1\right) \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right| .
\end{aligned}
$$

We can choose $j, k \in \mathbb{Z}$ that $j / n \rightarrow s, k / n \rightarrow t$ when $n \rightarrow+\infty$ and $0 \leqq s-j / n<1 / n$, $0 \leqq t-k / n<1 / n$. Then, the first term can be estimated as

$$
\begin{gathered}
\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\alpha[(j+k) / n]}\left|\mathrm{e}^{\mathrm{i} \theta_{n} \beta}-1\right| \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n} \leqq\left(\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{2 \alpha[(j+k) / n]} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right)^{1 / 2} \\
\left(\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi}\left|\mathrm{e}^{\mathrm{i} \theta_{n} \beta}-1\right|^{2} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}\right)^{1 / 2}= \\
=R^{1 / 2}((j+k) / n,(j+k) / n)\left(\int_{-n \pi}^{+n \pi} 2\left(1-\cos \left(\theta_{n} \beta\right)\right) \mathrm{d} F_{2(\beta / n)}^{1 / n}\right)^{1 / 2}
\end{gathered}
$$

where $\theta_{n}=s-t-j / n+k / n$ and $F_{2(\beta / n)}^{1 / n}=\int_{-\infty}^{+\infty} \mathrm{d} F_{(\alpha / n, \beta / n)}^{1 / n}$. Thanks to the continuity of $R(\cdot, \cdot), R((j+k) / n,(j+k) / n) \rightarrow R(s+t, s+t)$ as $n \rightarrow+\infty$. Since $-1 / n<\theta_{n}<1 / n \cos \left(\theta_{n} n \beta\right) \geqq \cos (\beta)$ for every natural n and hence

$$
\begin{aligned}
\int_{-n \pi}^{+n \pi}(1 & \left.-\cos \left(O_{n} \beta\right)\right) \mathrm{d} F_{2(\beta / n)}^{1 / n}=\int_{-\pi}^{+\pi}\left(1-\cos \left(O_{n} n \beta\right)\right) \mathrm{d} F_{2(\beta)}^{1 / n} \leqq \\
& \leqq \int_{-\pi}^{+\pi}(1-\cos (\beta)) \mathrm{d} F_{2(\beta)}^{1 / n}=1-\operatorname{Re} \varphi_{1 / n}(1),
\end{aligned}
$$

where

$$
\varphi_{1 / n}(u)=\int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} \beta u} \mathrm{~d} F_{2(\beta)}^{\mathrm{i} / n}=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} \beta u} \mathrm{dd} F_{(\alpha, \beta)}^{1 / n}=R_{n}(u / 2 n,-u / 2 n)
$$

It means we must prove that $\lim R_{n}(1 / 2 n,-1 / 2 n)=1$. Every operator $T_{1 / n}$ can be expressed as $T_{1 / n}=A_{1 / n} . U_{1 / n}$, where $A_{1 / n}$ is a positive self-adjoint operator and $U_{1 / n}$ is unitary. In our case

$$
A_{1 / n}=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{\lambda} \mathrm{d} E_{(\lambda, \mu)}^{1 / n}, \quad U_{1 / n}=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} \mu} \mathrm{~d} E_{(\lambda, \mu)}^{1 / n}
$$

Then we can write that $U_{1 / n} f(u, v)=f(u, v-1 / n)$ and $\left\langle U_{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle=$ $=S(0,1 / n)=R(1 / 2 n,-1 / 2 n)$. On the other hand,
$\left\langle U_{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle=\int_{-\infty}^{+\infty} \int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} \mu} \mathrm{d}\left\langle E_{(\lambda, \mu)}^{1 / n} \delta(\cdot, \cdot), \delta(\cdot, \cdot)\right\rangle=\int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} \mu \mathrm{d}} \mathrm{F}_{2(\mu)}^{1 / n}=\varphi_{1 / n}(\mathrm{t})$.
As we suppose the continuity of $R(\cdot, \cdot)$ we obtain $\lim _{n \rightarrow \infty} \varphi_{1 / n}(1)=1$. The second term

$$
\int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\alpha[(j+k) / n]}\left(\mathrm{e}^{\alpha[s+t-(j+k) / n]}-1\right) \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}
$$

can be estimated in the following way:

$$
\begin{gathered}
\left|\int_{-\infty}^{+\infty} \mathrm{e}^{\alpha[(j+k) / n]}\left(\mathrm{e}^{\alpha[s+t-(j+k) / n]}-1\right) \mathrm{d} F_{1(\alpha / n)}^{1 / n}\right| \leqq \\
\leqq\left(\int_{-\infty}^{+\infty} \mathrm{e}^{2 \alpha[(j+k) / n]} \mathrm{d} F_{1(\alpha / n)}^{1 / n}\right)^{1 / 2}\left(\int_{-\infty}^{+\infty}\left(\mathrm{e}^{\alpha \varrho_{n}}-1\right)^{2} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}\right)^{1 / 2}= \\
=\left(R\left(\frac{j+k}{n}, \frac{j+k}{n}\right)\right)^{1 / 2}\left(\int_{-\infty}^{+\infty}\left(\mathrm{e}^{\alpha \rho_{n}}-1\right)^{2} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}\right)^{1 / 2}, 0 \leqq \varrho_{n}=s+t-\frac{j+k}{n}<\frac{2}{n} .
\end{gathered}
$$

The last inequality implies that

$$
\left(\mathrm{e}^{2 \alpha / n}-1\right)^{2} \geqq\left(1-\mathrm{e}^{\alpha \varepsilon_{n}}\right)^{2}
$$

for every α and hence

$$
\begin{gathered}
\int_{-\infty}^{+\infty}\left(\mathrm{e}^{\alpha \varrho_{n}}-1\right)^{2} \mathrm{~d} F_{1(\alpha / n)}^{1 / n} \leqq \int_{-\infty}^{+\infty}\left(\mathrm{e}^{2(\alpha / n)}-1\right)^{2} \mathrm{~d} F_{(\alpha / n)}^{1 / n}= \\
=\int_{-\infty}^{+\infty}\left(\mathrm{e}^{4(\alpha / n)}-2 \mathrm{e}^{2(\alpha / n)}+1\right) \mathrm{d} F_{1(\alpha / n)}^{1 / n}=\int_{-\infty}^{+\infty}\left(\mathrm{e}^{4 \alpha}-2 \mathrm{e}^{2 \alpha}+1\right) \mathrm{d} F_{(\alpha)}^{1 / n}= \\
=R(2 / n, 2 / n)-2 R(1 / n, 1 / n)+1
\end{gathered}
$$

and thanks to the continuity of $R(\cdot, \cdot)$ we can state that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty}\left(\mathrm{e}^{\alpha Q_{n}}-1\right)^{2} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}=0
$$

We have proved that

$$
\left|R_{n}(j|n, k| n)-R_{n}(s, t)\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \quad \text { where } \quad j|n \rightarrow s, \quad k| n \rightarrow t .
$$

As $R_{n}(j / n, k / n)=R(j / n, k / n)$ and $R(\cdot, \cdot)$ is continuous we obtained that

$$
\lim _{n \rightarrow \infty} R_{n}(s, t)=R(s, t) \text { for every }(s, t) \in \mathbb{R}_{2} .
$$

Further, we shall prove that the sequence of the first marginals $\left\{F_{1(\cdot)}^{1 / n}\right\}_{n=1}^{\infty}$ is compact in the sense that there exists a subsequence converging to a probability distribution function. We know that for every $j \in \mathbb{Z}$

$$
R_{n}(j, j)=S_{n}(2 j, 0)=R(j, j)=\int_{-\infty}^{+\infty} \mathrm{e}^{2 j x} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}
$$

is not depending on $n \in \mathbb{N}$. Thus, for every $j>0$

$$
R(j, j) \geqq \int_{-\infty}^{\alpha_{1}} \mathrm{e}^{2 j \alpha} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}+\left(1-F_{1\left(\alpha_{1} / n\right)}^{1 / n}\right)
$$

that means

$$
F_{1\left(\alpha_{1} / n\right)}^{1 / n} \geqq 1-R(j, j) \mathrm{e}^{-2 \alpha_{1} j} .
$$

When ε is chosen quite arbitrarily we can find $\alpha_{1}=\alpha_{1}(\varepsilon)$ such that for every $n \in \mathbb{N}$

$$
F_{1\left(\alpha_{1 / n}\right)}^{1 / n}>1-\varepsilon
$$

Similarly, one can prove that there exists a suitable $\alpha_{0}=\alpha_{0}(\varepsilon)$ such that for every $n \in \mathbb{N}$

$$
F_{1\left(\alpha_{0} / n\right)}^{1 / n}<\varepsilon
$$

because $R(j, j)=\int_{-\infty}^{+\infty} \mathrm{e}^{2 \alpha j} \mathrm{~d} F_{1(\alpha / n)}^{1 / n}$ holds for negative $j \in \mathbb{Z}$ too. This fact shows that the sequence $\left\{F_{1(\cdot)}^{1 / n}\right\}_{n=1}^{\infty}$ is compact, i.e. there exists a subsequence $\left\{F_{1(\cdot)}^{\left.1 / n_{k}\right)}\right\}_{k=1}^{\infty}$ converging to $F_{1}(\cdot)$ at all points of continuity. Without loss of generality we can assume that $\left\{F_{1(\cdot)}^{1 / n}\right\}$ is just convergent to $F_{1}(\cdot)$.

In the case of the sequence $\left\{F_{2(\cdot)\}}^{1 / n}\right\}_{n=1}^{\infty}$ we shall consider the sequence of the corresponding characteristic functions $\left.\left\{\varphi_{1 / n(\cdot)}\right\}\right\}_{n=1}^{\infty}$ where

$$
\varphi_{1 / n}(t)=\int_{-n \pi}^{+n \pi} \mathrm{e}^{\mathrm{i} t \beta} \mathrm{~d} F_{2(\beta / n)}^{1 / n}
$$

We know that

$$
\varphi_{1 / n}(2 k / n)=\int_{-n \pi}^{+n \pi} \mathrm{e}^{2 \mathrm{i}(k / n) \beta} \mathrm{d} F_{2(\beta / n)}^{1 / n}=R(k / n,-k / n)=S_{n}(0,2 k / n)
$$

We can choose $k \in \mathbb{Z}$ in such a way that $k / n \rightarrow t$ as $n \rightarrow+\infty$ and $0<t-k / n<1 / n$ for every $n \in \mathbb{N}$. First, we shall prove that

$$
\begin{aligned}
& \varphi_{1 / n}(k / n)-\varphi_{1 / n}(t) \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty \\
& \text { As } \varphi_{1 / n}(t)=\int_{-n \pi}^{+n \pi} \mathrm{e}^{\mathrm{i} t \beta} \mathrm{~d} F_{2(\beta / n)}^{1 / n} \text { then } \\
& \left|\varphi_{1 / n}(k / n)-\varphi_{1 / n}(t)\right|=\left|\int_{-n \pi}^{+n \pi}\left(\mathrm{e}^{\mathrm{i} t \beta}-\mathrm{e}^{\mathrm{i}(k / n) \beta}\right) \mathrm{d} F_{2(\beta / n)}^{1 / n}\right|= \\
& =\left|\int_{-n \pi}^{+n \pi} \mathrm{e}^{\mathrm{i}(k / n) \beta}\left(\mathrm{e}^{\mathrm{i}(t-(k / n)) \beta}-1\right) \mathrm{d} F_{2(\beta / n)}^{1 / n}\right| \leqq\left(\int_{-n \pi}^{+n \pi}\left|\mathrm{e}^{\mathrm{i}(t-(k / n))}-1\right|^{2} \mathrm{~d} F_{2(\beta / n)}^{1 / n}\right)^{1 / 2}= \\
& =\sqrt{ } 2\left(\int_{-n \pi}^{+n \pi}(1-\cos (t-k / n) \beta) \mathrm{d} F_{2(\beta / n)}^{1 / n}\right)^{1 / 2} \leqq \\
& \leqq \sqrt{ } 2\left(\int_{-\pi}^{+\pi}(1-\cos (\beta)) \mathrm{d} F_{2(\beta)}^{1 / n}\right)^{1 / 2}=\sqrt{ }(2)\left(1-\operatorname{Re} \varphi_{1 / n}(1)\right)^{1 / 2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

as was shown sooner. The assumptions of the theorem yield immediately that the function $R(t / 2,-t / 2)=S(0, t)$ is a characteristic function, i.e.

$$
S(0, t)=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} t \beta} \mathrm{~d} F_{2}(\beta)
$$

As
$\varphi_{1 / n}(2 k / n)=S(0,2 k / n)=\int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i}(2 k / n) \beta} \mathrm{d} F_{2}(\beta)$ then $\varphi_{1 / n}(2 t) \rightarrow S(0,2 t)$ as $n \rightarrow \infty ;$
we have proved that

$$
F_{2(\beta / n)}^{1 / n} \rightarrow F_{2}(\beta)
$$

at all points of continuity.
Now, we can estimate the measure of $K=\left[\alpha_{0}, \alpha_{1}\right) \times\left[\beta_{0}, \beta_{1}\right)$ in the plane $\iint_{K} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}$.
As

$$
\begin{gathered}
\iint_{K} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}=\iint_{-\infty}^{+\infty} \psi_{\left[\alpha_{0}, \alpha_{1}\right.}(\alpha) \psi_{\left[\beta_{0}, \beta_{1}\right)}(\beta) \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}= \\
=\int_{\alpha_{0}}^{\alpha_{1}} \int_{-\infty}^{+\infty} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}-\int_{\alpha_{0}}^{\alpha_{1}} \int_{-\infty}^{\beta_{0}} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}-\int_{\alpha_{0}}^{\alpha_{1}} \int_{\beta_{1}}^{+\infty} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}
\end{gathered}
$$

then

$$
\begin{gathered}
\iint_{K} \mathrm{ddF}_{(\alpha / n, \beta / n)}^{1 / n} \geqq\left(F_{1\left(\alpha_{1} / n\right)}^{1 / n}-F_{1\left(\alpha_{0} / n\right)}^{1 / n}\right)-\int_{-\infty}^{+\infty} \int_{-\infty}^{\beta_{0}} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}- \\
-\int_{-\infty}^{+\infty} \int_{\beta_{1}}^{\infty} \mathrm{dd} F_{(\alpha / n, \beta / n)}^{1 / n}=\left(F_{1(\alpha / / n)}^{1 / n}-F_{1\left(\alpha \alpha_{0} / n\right)}^{1 / n}\right)-\left(F_{2\left(\beta_{0} / n\right)}^{1 / n}+1-F_{2\left(\beta_{1} / n\right)}^{1 / n}\right)>1-2 \varepsilon .
\end{gathered}
$$

because $F_{1(\cdot)}^{1 / n} \rightarrow F_{1}(\cdot)$ and $F_{2(\cdot)}^{1 / n} \rightarrow F_{2}(\cdot)$ as $n \rightarrow \infty$ and $F_{1}(\cdot), F_{2}(\cdot)$ are probability distribution functions. This inequality proves that the sequence $\left\{F_{(\cdot \mid n, \bullet / n)}^{1 / n}\right\}_{n=1}^{\infty}$ is compact. Hence, there exists a subsequence $\left\{F_{\left(0, n_{k}, \cdot / n_{k}\right)}^{1, n_{k}}\right\}_{k=1}^{\infty}$ that is convergent to a probability distribution function $F(\cdot, \cdot)$. It remains to prove that

$$
R(s, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\lambda(s+t)} \mathrm{e}^{\mathrm{j} \mu(s-t)} \mathrm{dd} F(\lambda, \mu) .
$$

We proved that

$$
R(s, t)=\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty} \int_{-n \pi}^{+n \pi} \mathrm{e}^{\chi(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)} \mathrm{dd} F_{(\alpha(n, \beta / n)}^{1 / n} .
$$

At this moment we need possibility to change the order between integration and convergence. This change is possible under uniform integration of $\left|\mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)}\right|=$ $=\mathrm{e}^{\alpha(s+t)}$ with respect to the sequence $\left\{F_{\left(\cdot / n_{k}, \cdot / n_{k}\right)}^{1 / n_{k}=1}\right\}_{k=1}^{\infty}$. We know that

$$
R((s+t) / 2,(s+t) / 2)=S(s+t, 0)=\lim _{n \rightarrow \infty} \int_{-\infty}^{+\infty} e^{\alpha(s+t)} \mathrm{d} F_{1(\alpha / n)}^{1 / n}
$$

is a continuous covariance function because the function $S(\cdot, 0)$ forms a nonnegative definite kernel with respect to the sum. Every function of these properties can be expressed as a bilateral Laplace transform

$$
S(s+t, 0)=\int_{-\infty}^{+\infty} e^{\alpha(s+t)} \mathrm{d} G_{1}(\alpha)
$$

where $G_{1}(\cdot)$ is a probability distribution function because $S(0,0)=1$. Sooner we proved that $F_{1(\cdot / n)}^{1 / n} \rightarrow F_{1}(\cdot)$ as $n \rightarrow \infty$, and on the basis of the convergence of moments we state that $G_{1}(\cdot)=F_{1}(\cdot)$. We have proved

$$
\lim _{k \rightarrow \infty} \iint_{-\infty}^{+\infty}\left|\mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)}\right| \mathrm{dd} F_{\left(\alpha, n_{k}, \beta / n_{k}\right)}^{1 / n}=\iint_{-\infty}^{+\infty}\left|\mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)}\right| \mathrm{dd} F_{(\alpha, \beta)}
$$

i.e. the function $e^{\alpha(s+t)}$ is uniformly integrable with respect to the sequence $\left\{F_{\left.\left(\cdot / n_{k}, \cdot / n_{k}\right\}^{1 / n}\right\}_{k=1}^{\infty}}^{\infty}\right.$. Further, the convergence $F_{\left(\cdot / n_{k}, \cdot / n_{k}\right)}^{1 / n_{k}} \rightarrow F(\cdot, \cdot)$ as $k \rightarrow \infty$ implies the existence of $\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)} \operatorname{ddF}(\alpha, \beta)$. Together, we can change order between integration and convergence and we can write

$$
R(s, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta\left(s^{-t}\right)} \mathrm{dd} F(\alpha, \beta)
$$

On the contrary, let $R(\cdot, \cdot)$ be normal. Let

$$
S(u, v)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha u} \mathrm{e}^{\mathrm{i} \beta v} \mathrm{dd} F(\alpha, \beta)
$$

Then for arbitrary $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{C}$ and arbitrary $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n} \in$ $\in \mathbb{R}_{1}$ surely

$$
\sum_{j} \sum_{k} \alpha_{j} \bar{\alpha}_{k} S\left(u_{j}+u_{k}, v_{j}-v_{k}\right) \geqq 0
$$

because

$$
\sum_{j} \sum_{k} \alpha_{j} \bar{\alpha}_{k} \mathrm{e}^{\alpha\left(u_{J}+u_{k}\right)} \mathrm{e}^{\mathrm{i} \beta\left(v_{j}-v_{k}\right)}=\left|\sum_{j} \alpha_{j} \mathrm{e}^{\alpha u_{j}} \mathrm{e}^{\mathrm{i} \beta v}\right|^{2} \geqq 0 .
$$

The class of normal covariances can be also described by use of the corresponding reproducing kernel Hilbert space (RKHS).

Theorem 3. Let $R(\cdot, \cdot)$ be a continuous covariance function defined in the whole plane $\mathbb{R}_{2} \cdot R(\cdot, \cdot)$ is normal if and only if

$$
R(s+h, t)=\langle R(s, u) ; R(t, u+h)\rangle
$$

holds for every real $h,\langle\cdot, \cdot\rangle$ is the scalar product in RKHS due to the covariance function $R(\cdot, \cdot)$.

Proof. Let $R(\cdot, \cdot)$ be normal. Then

$$
R(s, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)} \mathrm{dd} F(\alpha, \beta), \quad(s, t) \in \mathbb{R}_{2} .
$$

Let h be any real number, thus

$$
\begin{gathered}
R(s+h, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(s+h+t)} \mathrm{e}^{\mathrm{i} \beta(s+h-t)} \mathrm{dd} F(\alpha, \beta)= \\
\quad=\iint_{-+}^{+\infty} \mathrm{e}^{\alpha s} \mathrm{e}^{\mathrm{i} \beta s} \mathrm{e}^{\alpha(t+h)} \mathrm{e}^{\mathrm{i} \beta(1-h)} \mathrm{dd} F(\alpha, \beta) .
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& R(t, u+h)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(t+u+h)} \mathrm{e}^{\mathrm{i} \beta(t-u-h)} \mathrm{dd} F(\alpha, \beta)= \\
& \quad=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(t+h)} \mathrm{e}^{\mathrm{i} \beta(t-h)} \mathrm{e}^{\alpha u} \mathrm{e}^{\mathrm{i} \beta \bar{u} u} \mathrm{dd} F(\alpha, \beta)
\end{aligned}
$$

and

$$
R(s, u)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha s} \mathrm{e}^{\mathrm{i} \beta s} \mathrm{e}^{\alpha u} \overline{\mathrm{e}^{\mathrm{i} \beta u}} \mathrm{dd} F F(\alpha, \beta)
$$

Now, by use of the "reproducing property" $m(s)=\langle m(\cdot) ; R(s, \cdot)\rangle$ holding for every $m(\cdot) \in$ RKHS we obtain immediately

$$
R(s+h, t)=\langle R(s, u) ; R(t, u+h)\rangle
$$

On the contrary, let for every $h \in \mathbb{R}_{1}$ the covariance function $R(\cdot, \cdot)$ satisfy

$$
R(s+h, t)=\langle R(s, u) ; R(t, u+h)\rangle
$$

in the corresponding RKHS. Let us define the shift-operator T_{h} in the RKHS by the relation

$$
T_{h} R(s, \cdot)=R(s+h, \cdot) .
$$

The definition domain of every T_{h} is formed by all linear combinations $\sum_{i=1}^{n} \alpha_{i} R\left(s_{i}, \cdot\right)$, where $\alpha_{i}, i=1, \ldots, n$, are complex numbers. The construction of the RKHS gives that the definition domain $\mathscr{D}\left(T_{h}\right)$ of T_{h} is everywhere dense linear subset in the RKHS. Let T_{h}^{*} be the adjoint operator to T_{h} in the RKHS. Let us prove that $\mathscr{D}\left(T_{h}\right) \subset \mathscr{D}\left(T_{h}^{*}\right)$. Let $m(\cdot) \in \mathscr{D}\left(T_{h}\right)$. By definition of $T_{h} y(\cdot) \in$ RKHS belongs to $\mathscr{D}\left(T_{h}^{*}\right)$ if and only if for every $x(\cdot) \in \mathscr{D}\left(T_{h}\right)$

$$
\left\langle T_{h} x(\cdot) ; y(\cdot)\right\rangle=\left\langle x(\cdot) ; T_{h} y(\cdot)\right\rangle
$$

When $x(\cdot)=\sum_{i} \alpha_{i} R\left(s_{i}, \cdot\right), m(\cdot)=\sum_{j} \beta_{j} R\left(t_{j}, \cdot\right)$, then $T_{h} x(\cdot)=\sum_{i} \alpha_{i} R\left(s_{i}+h, \cdot\right)$ and

$$
\left\langle T_{h} x(\cdot) ; m(\cdot)\right\rangle=\sum_{i} \sum_{j} \alpha_{i} \vec{p}_{j}\left\langle R\left(s_{i}+h, u\right) ; R\left(t_{j}, u\right)\right\rangle=
$$

$$
=\sum_{i} \sum_{j} \alpha_{i} \bar{\beta}_{j} R\left(s_{i}+h, t_{j}\right)=\sum_{i} \sum_{j} \alpha_{i} \bar{\beta}_{j}\left\langle R\left(s_{i}, u\right) ; R\left(t_{j}, u+h\right)\right\rangle=\left\langle x(\cdot) ; m^{*}(\cdot)\right\rangle
$$

where $m^{*}(\cdot)=\sum_{j} \beta_{j} R\left(t_{j},(\cdot)+h\right)=T_{h}^{*} m(\cdot)$. In other words, the adjoint operator T_{n}^{*} is represented by the shift operator in the argument in the RKHS, i.e.

$$
T_{h}^{*} R(s, \cdot)=R(s,(\cdot)+h) .
$$

It implies that T_{h}^{*} is everywhere densily defined and hence the operator T_{h} possesses a closed enlargement \bar{T}_{h} in the RKHS. There is no problem to show that for every $m_{1}(\cdot), m_{2}(\cdot) \in \mathscr{D}\left(T_{h}\right)$

$$
\left\langle T_{h} m_{1}(\cdot) ; T_{h} m_{2}(\cdot)\right\rangle=\left\langle T_{h}^{*} m_{1}(\cdot) ; T_{h}^{*} m_{2}(\cdot)\right\rangle
$$

and since this moment we can follow the proof of Theorem 2 . We shall prove that every operator T_{h} in the RKHS is normal and by means of their spectral resolutions one can show in the same way as was used in the proof of Theorem 2 that the covariance function $R(\cdot, \cdot)$ is normal.

Remark. In this part we shall consider two covariances. The first one

$$
R_{1}(s, t)=\mathrm{e}^{c(s+t)^{2} / D} \mathrm{e}^{-a(s-t)^{2} / D} \mathrm{e}^{-\mathrm{i} b\left(s^{2}-t^{2}\right) / D}, \quad D=4 a c-b^{2}>0,
$$

is normal, the other one

$$
R_{2}(s, t)=\mathrm{e}^{-\gamma\left(s^{2}+t^{2}\right)}, \quad \gamma>0,
$$

is not normal. The covariance $R_{1}(s, t)$ is normal because

$$
R_{1}(s, t)=\iint_{-\infty}^{+\infty} \mathrm{e}^{\alpha(s+t)} \mathrm{e}^{\mathrm{i} \beta(s-t)} \mathrm{e}^{-\left(a x^{2}+b \alpha \beta+c \beta^{2}\right)} \mathrm{d} \alpha \mathrm{~d} \beta
$$

In case when $b=0$ we obtain a locally stationary covariance because then $R_{1}(s, t)=$ $=S_{1}[(s+t) / 2] S_{2}(s-t)$ where $S_{1}(u)=\mathrm{e}^{(4 c / D) u^{2}}>0, S_{2}(v)=\mathrm{e}^{-a v^{2} / D}$ is a characteristic function. Further, this case is interesting also because the correlation function corresponding to $R_{1}(s, t)$ for $b=0$

$$
\varrho(s, t)=\frac{R_{1}(s, t)}{R_{1}^{1 / 2}(s, s) R_{1}^{1 / 2}(t, t)}=\mathrm{e}^{-[(a+c) / D](s-t)^{2}}
$$

is depending on $s-t$ only.
On the other hand, the covariance $R_{2}(s, t)$ is locally stationary also because

$$
R_{2}(s, t)=\mathrm{e}^{-2 \gamma[(s+t) / 2]^{2}} \mathrm{e}^{\gamma(s-t)^{2} / 2}
$$

although the first term $\mathrm{e}^{-2 \gamma[(s+t) / 2]^{2}}$ is not covariance. When we put, in the case of $R_{1}(\cdot, \cdot) a=c=\sqrt{ } 2 / 2$ we have

$$
R_{1}(s, t)=\mathrm{e}^{2 s t}=\mathrm{e}^{(s+t)^{2} / 2} \mathrm{e}^{-(s-t)^{2} / 2},
$$

and $\gamma=1$ for the case of $R_{2}(\cdot, \cdot)$, then

$$
R_{2}(s, t)=\mathrm{e}^{-\left(s^{2}+t^{2}\right)}=\mathrm{e}^{-[(s+t) / 2]^{2}} \mathrm{e}^{-(s-t)^{2} / 2} .
$$

The function $\mathrm{e}^{[(s+t) / 2]^{2}}$ is a covariance but $\mathrm{e}^{-[(s+t) / 2]^{2}}$ is not covariance. If we consider the shift-operator T_{h} in the RKHS due to the covariance $\mathrm{e}^{2 s t}$ then

$$
R_{1}(s+h, t)=\mathrm{e}^{2(s+k) t}=\mathrm{e}^{2 s t} \cdot \mathrm{e}^{2 k t}=R_{1}(s, t) \cdot R_{1}(h, t) .
$$

This fact yields that for every $m(\cdot) \in \mathscr{D}\left(T_{h}\right)$

$$
T_{h}(m \cdot)=m(\cdot) R_{\mathbf{l}}(h, \cdot),
$$

that shows $\left\langle T_{h} m(\cdot) ; x(\cdot)\right\rangle$ is a continuous linear functional on $\mathscr{D}\left(T_{h}\right)$ and hence $\mathscr{D}\left(T_{h}^{*}\right) \supset \mathscr{D}\left(T_{h}\right)$. On the other hand, a similar resolution in the case of $R_{2}(\cdot, \cdot)$ is not possible because

$$
\begin{gathered}
R_{2}(s+h, t)=\mathrm{e}^{-(s+h)^{2}} \mathrm{e}^{-t^{2}}=\mathrm{e}^{-\left(s^{2}+t^{2}\right)} \mathrm{e}^{-2 h s} . \mathrm{e}^{-h^{2}}= \\
=R_{2}(s, t) R_{2}\left(\frac{h \sqrt{ } 2}{2}, \frac{h \sqrt{ } 2}{2}\right) \mathrm{e}^{-2 h s} .
\end{gathered}
$$

Thus

$$
T_{h} m(\cdot)=R_{2}\left(\frac{h \sqrt{ } 2}{2}, \frac{h \sqrt{ } 2}{2}\right) \sum_{i=1}^{n} \alpha_{i} R_{2}\left(s_{i}, \cdot\right) \mathrm{e}^{-2 h s_{i}}
$$

when $m(\cdot)=\sum_{i=1}^{n} \alpha_{i} R\left(s_{i}, \cdot\right)$ and the assumption $m_{n}(\cdot) \rightarrow 0$ in $\mathscr{D}\left(T_{h}\right)$ need not imply, in general, that $\left\langle T_{h} m_{n}(\cdot) ; x(\cdot)\right\rangle \rightarrow 0$. This fact causes that the adjoint operator T_{h}^{*} is not well defined $\left(\left(\mathscr{D}\left(T_{h}^{*}\right) \nRightarrow \mathscr{D}\left(T_{h}\right)\right)\right.$ and T_{h} cannot be normal in the RKHS.
(Received April 17, 1987.)

REFERENCES

[1] J. Michálek: Locally stationary covariances. In: Trans. Tenth Prague Conf. on Inform. Theory, Statist. Dec. Funct. Random Processes, Academia, Prague 1987.
[2] J. Michálek: Random sequences with normal covariances. Kybernetika 23 (1986), 6, 443-457.
[3] R. A. Silverman: Locally stationary random processes. IRE Trans. Inform. Theory IT-3 (1957), 3, 182-187.

RNDr. Jiři Michálek, CSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou vĕži 4, 18208 Praha 8. Czechoslovakia.

