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ON THE DECENTRALIZED STABDLIZATION 
OF INTERCONNECTED DISCRETE TIME SYSTEMS 

GOSHAIDAS RAY 

This paper presents a computationally simpler algorithm for stability analysis of large-scale 
time invariant discrete time systems described in the state-space model. An attempt is made 
to develop a decentralized stabilization algorithm based on decentralized observer utilizing 
the canonical model of Anderson and Luenberger [1]. The results of this paper are illustrated 
by considering a power system model as an example. 

1. INTRODUCTION 

The problem of decentralized stabilization of linear interconnected systems has 
been investigated by a number of workers in recent years. Most of these studies 
have been concerned with continuous time systems for which conditions for decentra
lized stabilizability have been obtained. In addition, methods have been proposed 
for computing the decentralized controllers. The first notable result in these directions 
seems to be that of Davison [2] who has shown that if the interconnected system have 
the phase variable canonical models then it is always possible to stabilize the com
posite system using decentralized state feedback. Ozgiiner and Perkins [3] have 
established the decentralized stabilizability of a slightly broader class of composite 
systems corresponds to lower-block triangular state matrix. Sezer and Huseyin 
[4] —[5], have further extended these results by establishing the decentralized 
stabilizability of a general composite system whose subsystems are all completely 
controllable and observable. Also notable are the results of Siljak and Vukcevic [6] 
and Mahalanabis and Singh [7] who have used Liapunov function based aggregation 
and decomposition techniques for solving the decentralized stabilization problem. 
More recently, Ikeda and Siljak [8] have utilized the same approach for establishing 
decentralized stabilizability of system with a broader class of state matrices. 

The aim of the present study has been to examine the utility of the canonical 
transformation of Anderson and Luenberger [1] in order to obtain a convenient 
solution of the decentralized stabilization problem of completely controllable and 
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observable interconnected systems. It may be noted that this problem has been 
earlier studied by Sezer and Huseyin [4], but their solution requires several trial 
and error runs before the desired decentralized state-feedback controller can be 
obtained. In this respect, the method of Sezer and Huseyin seems to have no advantage 
over the method of Wang and Davison [9]. On the other hand, the solutions proposed 
by Siljak and Vukcevic [6] and Mahalanabis and Singh [7] appear to be somewhat 
conservative since these are based on approximation of the interaction effects. 

The utility of canonical transformation is first established in Section 2 by con
sidering the problem of decentralized stability analysis of the interconnections of 
observable discrete time subsystems. This is followed in Section 3 by a study of the 
decentralized stabilization problem of the interconnections of completely controllable 
and observable discrete-time systems. The results are illustrated by considering the 
discretized version of a power system control problem. 

2. DECENTRALIZED STABILITY ANALYSIS 

Consider a linear time invariant discrete time system which is obtained by inter
connecting N subsystems each modelled by the following pair of equations: 

(1) Xt(k + 1) = Aн Xt(k) + £ Лџ Xj(k) + bн ut(k) + £ Ъц uj(k) 
;=i y=i 

j * i j * i 
N 

(2) Yt(k) = CŢЃ Xt(k) + £ CT. Xj(k) = CŢ X(k) for i = 1, 2,..., ІV 

where Xt(k) is the n t vector state of the z'th subsystem and Uj(k) and Y;(fc) are respect
ively the scalar input and output variables. The system described by equations (1) 
and (2) will act as input decentralized form when the sampling period is very small 
compared to the system time constant. In other words, the effect of input interaction 
term 

ibijuj(k) 
j=i 
j*i 

can be neglected under such situation. It is assumed that the eigenvalues of AH are 
inside the unit circle and (AH, bt, CT) constitutes a completely controllable and 
observable triple. 

The problem is to determine the effects of interaction terms in equation (1) on the 
stability of each subsystem. A straightforward method for doing this is a consider 
the matrix A, having AtJ, i,j = 1, 2,.... AT, as its submatrices and to find the eigen
values of this matrix. Unfortunately, this may involve large computations for cases 
where N is large. The question is whether there exists an alternative, computationally 
simpler, procedure for ascertaining the stability of the composite system. It appears 
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that the observability properties of the subsystems assumed earlier permits one 
to resolve this question in a relatively straight forward manner. 

To check this, consider the set of subsystems (1)—(2) with Ut(k) = 0 for all i = 
= 1,2,..., At. The resultant autonomous system can be described by the equations: 

(3) X(k + 1) = AX(k) 

(4) Y(k) = CX(k) 

where X(k) is the N 

n = X>; 
dimensional state vector of the composite system and Y(k) is the At dimensional 

output vector of the same system. The matrices A and C have the following partitioned 

forms: r A _ _, -
A l \ ^ 1 2 • • • ^1JV 

Ay | ^4->9 . . . Ay A = a n d C = 

_ îVl AN2 • • • ^JVJVJ \PN. 

In view of the observability assumption of the subsystems, it follows that the follow
ing n x n matrix P will be nonsingular. 

p = [C_ATC_... (A7)—1 C_, C2... (A7--1 cNy 

As shown by Mayne [10], the matrix P can be used to obtain a transformed system 
having the state X(k) = PX(k) for which the system matrices have certain canonical 
forms. More specifically one gets the transformed state variable model [11] 

(5) X(k+l) = AX(k) 

(6) Y(k) = C X(k) 

with the matrices A and C given by 

"An 0 0 ... 0 
A„ A„ 0 ... 0 

A = 

and 
AЛП AN ... Aл 

C = 

CI 0 ... 0 
0 Cî . . . 0 

0 0 . . . CTj 

Further, the blocks of the transformed matrices have the following explicit forms. 

A; L x ; x x ... xJ„ ( X B i 

Äll .\-SL-] ,>j 
Ix x ... xJ„iXny 
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and 
C] = [O O . . . 0 1 0 . . . 0] 

where the 1 in CJ in columns (1 + nt + n2 + ... nt — 1) and x's indicate possible 
non-zero elements. 

Once the given system (3)-(4) is transformed to the canonical form (5) —(6) it is 
easy to see that the stability of the composite system depends on the eigenvalues 
of the diagonal blocks AH only. Thus, a necessary and sufficient condition for the 
composite system to be stable is that the eigenvalues of the N matrices A11; A22 • • • ANN 

are all located inside the unit circle. It is thus only necessary to find out the eigen
values of the transformed subsystems, in order to determine the stability of the 
composite system. 

3. DECENTRALIZED STABILIZATION 

Consider now the set of subsystems (1) —(2) and introduce the composite system 
model 

(7) X(k + 1) = A X(k) + B U(k) 

(8) Y(k) = CX(k) 

where A and C have the same forms as in the preceding section and B is an (n x N)-
dimensional input matrix. The problem is to obtain a decentralized feedback control 
law that would place all the poles of the closed loop system inside the unit circle. 

The transformation used in the last section, while convenient for stability analysis 
does not help to obtain the desired solution of the control problem. One can, however, 
utilize the reorder form of transformation matrix of Anderson and Luenberger [1] 
in order to obtain the following transformed state-variable model. 

(9) X(k+\) = Al(k) + BU(k) 

(10) Y(k) =CX(k) 

where A = S~1AS, B = S_1B, C = CS and S is the transformation matrix with 
X(k) = S X(k). The matrices A, B and C have the following structures: 

A = 

and 

Ã,, 
Лj.ц 

A-71Я 

0 0 

c = 

S. o 
o S, 

c i l cl2 • • • ČliV 

^ 2 1 C22 • • • C2N 

(-"1V1 cV5 • • • CUM 

o o ... БN 

Cl 

492 



Further, the blocks of A" and B have the following explicit forms: 

4,_n»_|i 1 
La i i ,0 ! «i i , l . aii,2 • •• au,n,-Un,Xn, 

A,, = 

"•7,1 j 
a i j ,2 j (for i < j) and B, = 

The advantage of this canonical form lies in the obvious solution of the decentralized 
state feedback control problem starting from the specified closed loop locations. 
This proceeds by assuming Ut(k) = = — m,X,(/c) with the result that the closed 
loop system matrix Ac = A — BM has its diagonal block only affected by the 
feedback. Once the n closed loop poles are properly assigned to the N-diagonal 
blocks of A~c the required elements of the vectors m; can be easily calculated. 

Note, however, that is not truly a decentralized control since X„ i = 1, 2, ..., N, 
are not available for physical implementation. This difficulty can be circumvented 
by constructing a decentralized estimator for Xt(k). 

Let Xi(k) be the estimate of %t(k) and the dynamics of the estimator (based 
on one-step delay measurement) be given by the following equation; Willems [12] 
and Singh [13] 

(11) i{k + 1) = A//i/(fe) + Si Ut(k) + li[Yi(k) - cT/l/(/c)] 

where /; is the observer gain vector of dimensional n ; x 1 and cT is the ith partition 
of cT. The pair (A,;, cT.) is assumed to be observable. It follows from equations 
(9) —(11), that the error et(k) of the state estimation satisfies the following equations: 

(12) ei(k + 1) = (A„ - //CT;) elk) + £ (A~, - /;cX) ej(k) -
j = i + j 

- I ' A ej(k) + £ (Au - liCJj) Xj(k) - ^liCl Xj(k) 
j= l J=i+1 j = l 

Because of the upper block triangular structure of A it follows that equation (12) 
represents a stable system with /; selected to have the eigenvalues of (A~ ,• - /,-cT) 
inside the unit circle while the contribution of the term 

(-ThCJje/k)) 
i = i 

involve in equation (12) is neglected compared to the total effect of all other terms. 
Equation (11) would then represent an asymptotically stable decentralized estimator 
for ^i(k). This leads to the following decentralized controller 

(13) Ulk) = -miijk) 

From equations (9) —(13), the following representation is obtained for the controlled 
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system 

(14) 2{k + 1) = An Ilk) + £ Au Xj(k) - Btmt X,(k) 

(15) l,(fc + 1) = (Au - /,C7; - Simi) l;(/c) + /, Yt(k) 

Equation (15) indicates the decentralized estimation scheme for the composite 
system, for i = 1, 2 , . . . , N. 

4. NUMERICAL EXAMPLE 

In order to illustrate the techniques discussed earlier in the paper, consider the 
first the equation of decentralized stability analysis of the following system: 

X(k + 1) = A X(k) + B U(k) ; Y(k) = C X(k) 

where, 

A = 
00015 

' 0-9993 0-0589 00009 -00599 
-•0008 0-9672 0-0308 0-0 
-•0489 - 0 0 0 1 5 0-8825 
00054 00002 0 0 
00002 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

00002 0 0 0 0 " 
0 0 0 0 0 0 
0 0 0 0 0 0 

0-9997 - 0 0 0 5 4 - 0 0 0 0 2 0 0 
00599 0-9993 00589 00009 
00 -0-0008 0-9672 0-0308 

-0-0015 -0-0489 - 0 0 0 1 5 0-8825 

B = 

"00 0 0 1 
0-0019 0-0 
0-1175 0 0 
0 0 0-0 
0 0 0 0 
0 0 00019 
0 0 0-1175 

and C 
["10 0 0 0 0 10 0 0 0-0 00"] 
[0-0 0 0 0 0 -1 -0 1-0 0 0 00J 

These represent the discrete version (using a uniform sampling period of 001 sec.) 
of the model for the two-area load-frequency control problem studied by Elgerd 
[14]. For the decentralized stability analysis, set U(k) = 0 and use the transformation 
matrix P (in Section 2) in order to obtain the following transformed model: 

X(k + 1) = 

' 0 0 1 0 0 0 0 0 0 0 0 0 0 0 " 
0 0 0 0 1-0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 10 0-0 0 0 0 0 

-0-8531 3-555 -5-550 3-8485 0 0 0 0 0-0 

0 0 0 0 0 0 ~~0-0~ ~~ 0 0 10 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 10 

. 0-8531 -2-702 2-849 - 1 0 0-8531 -2-702 2-849. 

It may be noted that in this particular example, the two transformed subsystems have 
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dimensions 4 and 3 respectively. The eigenvalues of the diagonal blocks are found 
to be as follows: 
For An: 0-9942 ± j 003504; 0-9839; 0-87577 

A22: 0-98681 ± j 00248; 0-87555 

Consider now the eigenvalues of the blocks An and A22 of the original matrix A 
which are indicative of the system stability in the absence of the interaction terms 

For An: 0-99188 ± j 002951; 0-98926 0-87569 

A22: 0-98672 ± j 0-02484; 0-87557 

It is apparent that 0-99188 ± j 002951; 0-87569; 0-98672 ± j 002484 of the eigen
values have shifted towards the unit circle which implies for this particular example, 
a destabilizing action of the interaction terms. This result agrees with the recent 
result of Mahalanabis and Singh [7] who have utilized a Liapunov function based 
aggregation technique for analysing the effects of interaction on stability. 

Consider now the problem of finding a decentralized feedback. Control for improv
ing the system stability by shifting the closed loop eigenvalues to the following 
locations: 

_" , . : 0-94 ± j 0-01, 0-9, 0-86 

A~c22: 0-9 ± j 004, 0-8 

The required transformed model (see Section 3) is first obtained as given below: 

Җk + 1) = 

Assuming, 

" 0 0 1-0 00 0 0 | -0-998 o-o o o • 
0 0 0 0 10 0 0 -1-004 0 0 0 0 
0 0 0 0 O-O 1-0 -1-01 0 0 0 0 

-0-8531 3-555 - 5-55 3-848 -1-015 0-0 0 0 

0 0 0 0 ÓÕ Õ:Õ" "~Õ~Õ ~ _ _ _ _ _ _ 
0 0 0 0 00 0 0 0 0 00 10 

_ 0 0 0 0 0-0 0 0 i 0-85314 -2-702 2-849. 

Ю-0 00~ 
0 0 0 0 
0 0 0 0 

+ 10 0-0 

oõ~oo 
0 0 0 0 

-00 1-0-

U(k) 

fc)-Г°-° -00002 0-0002 0 0 0 0 0-0 __Л ш\ 
; Loo 0 0 0~-0~ Ö-0~ Õ :Ö"Õ :ÕÕÖ2"Ö-ÓJ"VV 

Гfcì = - г mn m12 
m13 m 1 4 | 0-0 0-0 0 0 1 џ(lЛ 

Җk) 
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The following constant controller gains are obtained from the specified closed loop 
poles. 

M = [0-20915 -0-5445 0-5835 -0-208 j 0 0 0 0 0 0 ~] 

6:6 ¥6" 0:6 CK) r-T20T9~6:45T""-0:249j 
The observer for system under consideration can be designed using the decentralized 
approach proposed in the last section. For calculating the observer gains, the desired 
pole locations have been chosen as: 

0-94 ± j 0 1 , 0-9, 0-86: Sub-observer 1. 

0-9 ± j 0-4, 0-8, : Sub-observer 2. 

The gain vectors lt and l2 are then found to be 

lt = [-1167 -338-2 5701 1575]T 

l2 = [1009 1052 1094]T 

5. CONCLUSIONS 

It has been shown that the composite system stability can be found out with 
minimum effort by simple calculating the eigenvalues of each diagonal blocks of the 
transformed model (observable canonical model). It has been noticed that the state 
interaction has an effect on the stability of the composite system. It can be noted 
that the Anderson and Luenberger canonical model helps to reduce the computational 
burden in order to implement decentralized stabilization algorithm based on decentra
lized observer. 
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