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APPROXIMATION OF A RANDOM SOLUTION 
IN EXTREMUM PROBLEMS* 

EBU TAMM 

An optimization problem depending on a random parameter is considered. If the goal function 
is not determined exactly, another problem is investigated. The results are applied to a discrete 
time optimization problem. 

1. INTRODUCTION 

In the present paper the following problem will be considered: find a point xeR" 
where the function H(x, £) depending on a random parameter £eR" attains its 
minimum. It is evident that a minimum-point of such function depends also on the 
value of i, and the first question that arises is: under which conditions the minimum-
point x(£) is measurable? Basing on Theorem 14 by H. E. Engl [1] it is immediately 
obtained that if 1) for almost every f the function H(x, £) has a minimum-point 
x(£), 2) H(x, £) is continuous in x for almost every { and measurable for every 
x e R", then x(£) is measurable. 

In what follows we shall not consider x(£) as a function but will study the question 
how to find it approximately for an arbitrary value of £. If H(x, £) and its derivatives 
for every x and for almost every £ can be evaluated, then, in principle, for almost 
every value of £ the corresponding minimum-point x(£) can be found using some 
suitable minimization procedure. However, there may occur such cases when H(x, £) 
cannot be evaluated exactly. For example, if H(x, £) = Enli)f(x, £, tj) and the con
ditional distribution of f; is not known, then we cannot find exactly neither the values 
of the conditional expectation Eniif(x, £, rj), nor the values of its derivatives. 

In this paper minimization of functions H(x, £) and h(x, £, rj), where r\ is another 
random parameter, are simultaneously considered under the assumption that 
E,,|{ h(x, £, rj) = H(x, £) for every x e R" and for almost all £. Hereby we shall use 
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the framework and results of [3] — [4] where analogous relations between the pair 
of functions H(x, {) = <P(x) and h(x, <*, rj) = <p(x, ti) were studied. The results will 
be applied to a discrete time optimization problem introduced by V. Kafikova 
in [2]. 

2. APPROXIMATION OF THE PROBLEM 

Let us have a probability space (Q, I, P) and consider the problem 

(1) min H(x, £) 
xeR" 

where £ is an m-dimensional random parameter, i.e. c,: Q -*• Rm, and the function 
H: R" x Rm -> R1 is continuous in x for almost every £,, and measurable for every 
x e R". Let (Rm, 38, P«) be the probability space induced in Rm by the random vector 
£. Assume that for some B e i t , P«B > 0 and for every £ e J5 the problem (1) has 
a solution x(£). 

Let us consider another problem 

(2) min h(x, £, t}) 
xeR" 

where h: R" x Rm x Rl -» R1, { is the same parameter as that in the problem (1) 
and r\: Q -> R' is another, /-dimensional random parameter. Our aim is to determine 
for every £ e B a Borel set D(£) c R' such that for every (£, ?/) e B x £)({) the 
problem (2) has a solution x(£, ij) and to estimate the Euclidean distance |x({) — 
- * ( £ # 

Suppose that the following conditions hold: 

1. H(x, £) = E„. /i(x, 5, IJ) for every { e B. 

2. For every { e B and some M > 0 

uTHxx(x, {) « ^ M||M[|2 for all w e R". 

3. ^ ( x , &i?) satisfies the Lipschitz condition 

\\Kx(x, t, n) - Kx(y, t, l)l ^ C(rj) \\x - y\\ for every x, v e R", 

£ e B , >jeR' . 

4. C(?;) is a random variable with finite expectation EC(f/) and finite variance o2C(ti). 

5. The conditional expectation 

E,„ | |^(x(c) , 5 , 1 0 - E*tfjx®, ^ ) | | 2 ^ K2 

and conditional variances 

«yj|4ft;((
x(0> 4» l ) = D? ' ' = 1, 2 , . . . , n , for every { e B . 

Theorem 1. Assume that the conditions 1-5 are satisfied. If for some constants 
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<51; <52, 0 < Si < M, S2 > 0, the expression 

16[EC(^) + ^ ] 2 S D ; 

p(Su S2) = 1 - í ^ — 
py 2) si (M - s,y 

<ЃC{П) 

s\ 
is positive, then for every £, e B there exists a Borel set D(£, SUS2) such that 

1) the problem (2) has a solution x(£„ tf) for every (£, rf)eB x D(£. <51; <52), 

2) 
P ^ B x D(£, Sx, <52)] £ P.B . p fo , <52) 

and 

3) 
P(s,n)lB x {{». I !*(£> f) - *(*)i < e} n D«,. <5t, <52)}] >= 

ID. 
^ P-B p(*i, ía) for arbitrary £ > 0 . 

£2(M - <5.)2J 

Proof. If <!; 6 P. then, as assumed, the problem (l) has a solution x(£). For every 
fixed £ the problem (2) depends only on the random parameter t\ and E„|. /i(x, £, tf) = 
= H(x, £) for every xeR" (condition 1). Relations between such kind of problems 
were studied in [3]. According to Theorem 1 of [3] the conditions 1 — 5 assure the 
existence of a Borel set D(£„ <5., <52) c Rl such that for every t, e D(£„ Su S2) the 
problem (2) has a solution x(£, rj) where 

P^[D(£, Su <52)] >= p fo , *a) 
and 

P«\1{V I K*. *) - *(£)! < «} n D(£, 5., <52)] ^ 

I D . 
>:P(<5l,<52)-

e2(M - «502 

An estimate for the probability P^A)\B x D(£, <51; <52)] is easily obtained: Since 

B x D(£, 8U S2) = {(£, rj) | £ e B, r, e D(£_, Su S2)} , 
we have 

PlM)[B x D(i, Su S2y\ >= P,B PnHD(£, Su S2) ^ P,B . p(Su S2) . 

Analogously we get 

->«.-)[* x U l I W««") - *®ll < 4 n D(«, «5i, **)}] = 
= P,B . P„|{[{i, | ||x(£, q) - x(£)|| < E} n Dtf, *i, *2)] = 

D 
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3. APPLICATION TO A DISCRETE TIME OPTIMIZATION PROBLEM 

V. Kankova [2] has studied the following problem 

(3) max E[fll(x_, £.)+ £>.(*., <_._!, ..)] 
i = 2 

where .,-, i = 1, 2, ...,7V, are m-dimensional random vectors and the functions gs, 
i = 1, 2,..., TV, satisfy certain conditions. A solution of the problem (3) is a vector 
(-I, x*(.i),..., :*;_.(<__.__)) depending on a random parameter (._, {2,..., .7,-1) and 
it is supposed that Xj eKt, x 2 ei\_(__),..., x,, eKN(£N-1) where 7_._ is a compact 
convex nonempty set in R" and so are 7__(.__ j) for every value of .._ t, i = 2, 3,. . . , TV. 

Approximate solution of the problem (3) is treated in [2] in the case when the 
distributions of the vectors £,, i = 1,2,...,TV, are not known. The problem (3) 
is substituted by the problem 

(4) max ( I £ _7.(xi, {„) + y __ _] _.(*., £.-_, ._)} 
( f c . = l fci = 2 j = l j 

where _., £y, j = 1, 2,..., fc, are i.i.d. random vectors for every i. A solution of (4) 
is a random vector 

(x?(-i_... . . -1*). *-(«!. «21« ••- «»»). - ' ^ N - l , . « , - , - « ) ) 6 l - t x 
X ___(.,) X ... X ___,(£_,__}. 

In [2] it is proved that if k -* oo the maximum-value of (4) converges almost surely to 
the maximum-value of (3). For convergence in probability an estimate is presented. 

In the present paper we consider the relations between the problems analogous 
to (3) and (4) under slightly modified assumptions as those in [2] paying attention 
to relations between their solutions. Let us have to solve the problem 

(5) min E|>_(xi, £_) + £ 9l(Xi, £,_._, _.)] . 
„ieR»,„_(.i)eR»,. . . ,„N(.N-i)£i.n i = 2 

Suppose that the problem 
(6) min Egt(x, __) 

xeR» 

has a solution x* and each of the problems 
(6i) min E^,^., g,(x, .,__) 

X6i.» 

has a solution x*(.,-i) if .,_! 6_?__i where 5,_i, i = 2, 3, ...,7V, are some Borel 
sets in Rm. Analogously to Lemma 1 [2] it can be shown that in this case the vector 
(x*, x*(<_i),..., xN(^N-x)) is a solution of the problem (5). If the distribution of __ 
is not known then replace (6) by the problem 

1 k 

0) min - £ 9i(x, Sij) 
xsR" k j=l 
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where £__•, j = 1, 2,..., k, are independent realizations of f_. Analogously, in the 
case of unknown distribution of £, instead of (6i) solve the problem 

(7i) riajlgfaZi-utu) 
-.j?" k j = i 

when the value of <_;__ is already observed and _y, j = 1, 2,..., fe, are independent 
realizations of {,, i.e. they are i.i.d. with respect to the conditional probability mea
sure P{,|_,__. So a solution of (7i) x*(<_,-__, <!;,_, ..., <_,.), if it exists, depends on k + 1 
random parameters. 

To reduce the number of conditions denote 

9i(x, _i) = g(x, <.0, £t) and E_. _(x, £_) = Ew&grx(x, <_0, <__). 

Suppose now that for every i = 1,2,..., JV, the following conditions hold. 
li. M

TEf(K)_.0^(x*(£,__), <.,__,£,)« 5: Aii||«||2 for every ueR". 

2i. \g"ixx{x, <_.__, *,) - ^ ( y , £.__, f,)| 5_ C,(${) |x - y\\ for every x, y e R», 
£,__e_.,__, 5,e/T. 

3i. ECf(£f) and S2C.(£,) are finite. 

4i. There exist constants K, and Dy, j = 1, 2,..., n, such that 

W.|-_-(*?(€.-i), Ci-i.«.) - -e.ic-.flU^i-i). Ci-i» ^)I2 __ 
g K ; and 4,e,..1ffJ,J(x*(«l-1).{,-1,«f)_sDfii „i - 1,2, . . . ,n , 

forevery £;£_.;__. 

Theorem 2. Under the conditions l i -4i for arbitrary constants <5_, <52, 0 < <5_ < 
< M„ i = 1, 2, ...,_V, <5_ > 0 and for 

k > max 
1 = 1,2 N 

к 1б[Еад + д_?1Р,, ^ ^ 

. < 5 _ + (/И,-^)4 + 51 

there exist sets _)_(,., <5_, <52), £>,•(/., £,-3., <5_, <52), i = 2, 3,.. . , JV, in Rmk such that 

1) if .16B,, i = 1,2,...,JV- 1, and (.u, . i 2 , . . , . t t)eJ) l(_,{ i . i>-5 l ) .2) , i = 
= 1, 2,..., JV - 1, then the problem 

(8) nmi \\ £ g_(x_, <__.) + \ £ £ <. .(x,, «,-„ «,)} 
_i-i.",_2(.i)-R" - N ( . K - I ) - R " . K . = l K . = 2_==l ) 

has a solution 

(*?*(&_,..., «*). *-*(.l, -21, -.., .2-), .... *£„(../-_, {«, .». «»)) 

with probability not less than 

nPt,-A-i-p&)dl,$2) 
i=i 
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where 

and 

Pi{k, ðu ð2) = 1 - i 
k *; (м, - ^r + 

p[|(-«?..fci. -,««), xifo, e,i,.... u , -, 4^-r, u, -, U) -

"Ed, 
- (xf, x*(£.),.... 4(^-t))|| < «] ̂  n -Vx-».-i *.(*, *» «52) - '-1 -., 

/c£z(/V.i - d . )* . 
for arbitrary a > 0, where P denotes the probability measure induced by ((^n , . . . , <^u) 

^ , f e i , - , ^ ) , ^ , - , ( ^ i , - , W ) -

To prove this theorem one has to apply Theorem 1 of [3] to the pair of problems 

(6), (7) and Theorem 1 above to the pairs (6i), (7i). • 

(Received December 16, 1986.) 
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