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APPROXIMATE SOLUTION 
OF STOCHASTIC PROGRAMMING PROBLEMS 
WITH RECOURSE* 

RIHO LEPP 

We present a method for solving approximately the linear stochastic programming problem 
with complete recourse. The problem is set in Banach space of (Riemann integrable) functions 
and we deduce conditions that guarantee stability of approximations of a sequence of finite-
dimensional problems. 

1. INTRODUCTION 

In this paper we present an approximation scheme for linear stochastic program
ming problems (LSP) with recourse. The problem which we shall deal with may be 
formulated by introducing a Banach space B(S) of bounded and (Riemann) integrable 
functions. 

Let (S, I, m), S <= Rl be a probability space. Consider the sets A from the (7-algebra 
I with m-measure zero of their boundary. These sets constitute an algebra I0 cz S 
(cf. [13]). Let m0 be the restriction of the probability measure m to algebra I 0 . 
The space B(S) = B(S, E0, m0) denotes now the class of bounded Immeasurable 
functions. This is a Banach space with sup-norm topology [13]. For example if 
S = [0,1] and m is the Lebesgue measure on [0,1] then B(S) is simply the space 
of Riemann integrable functions. Let us formulate now the problem of interest: 
minimize 

(1-1) cTx + | sa
T(s)y(s)m0(ds) 

over \x, y(-)~\ e Rr x B(S, I0, m0; R") satisfying 

(1.2) xeX = {x | Dx ^ d) , XczRr, 

and almost surely (a.s.) 

(1-3) y(s)eS = {y\Gy^g}, y c R", 
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and 

(1.4) Ax + Wy(s) = b(s). 

Here c e Rr, q(s) e R", se S, k x r- and k x u-matrices A and W are fixed and let 
the sets X and Y be convex bounded polyhedras. 

Several authors have examined approximation and stability problems in stochastic 
programming with recourse (see e.g. [1], [3] —[10]). In general they use probability-
theoretic approach (except [7], [8]). For instance in [6] partition of initial space 
of elementary events is fulfilled by a finite sub-cr-algebra, on elements of which the 
desired function is regarded to be constant. 

In this paper we use a functional-analytical approach. Assuming the existence 
of a sequence of discrete measures that converges weakly to the probability measure 
m we deduce conditions that guarantee stability of our approximation. In [7] we 
used this approach to present discrete stability conditions in Lp-spaces. For discreti
zation in this paper we restrict the class of integrable functions to the more con
venient class of £0-measurable functions B(S). 

In the next section we present some necessary auxiliary results and notions con
cerning the discrete convergence of mappings. In Section 3 we present conditions 
that guarantee stability of discrete approximation. 

2. DISCRETIZATION OF THE PROBLEM 

Let us introduce some notions from the discrete convergence of mappings [11], 
[12]. 

Let E and En (neN = {1, 2, 3,...}) be Banach spaces with norms | - | | and |- | |„, 
respectively and let & = (/£„) be a system of linear connection operators ft.„: E -> 
-> En(n e N) such that for every y e E 

(2-1) iM»-»W (neN). 

Deflnition 2.1. A sequence (yn) (n e N) with y„ e En ^-converges (or converges 
discretely) to yeE if \\yn — fe„y\„ -> 0 (neN). We denote this convergence by 

yn-+ y-

Remark 2.1. Denote by | • | the Euclidean norm of a vector xeRr and by \xn — x\ -* 
-> 0 (n e N) the sense of convergence in Euclidean norm. 

Let us define now discrete convergence in space B(S). 

Let b„ be an nu-dimensional space of vectors y„ -» (yln,..., ynn)
T, yineR", i = 1, ... 

..., n, with max-norm 

Win = m a * |.Vi»| • 
l S i S n 

Let the support S of the measure m be bounded. 
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Let some /-dimensional quadrature process be given: 

(2.2) lim £ h(sin) min = J s h(s) m(ds) 
n-oo i = l 

for every continuous function h(s). Here min > 0, i = 1, ..., n, 

£ m,.„ = m(S) and (-.„,..., s„„)T = s„ 

i = l 

are some fixed different points in S. 

In this paper we have to restrict our initial probability measure m: 

A 1) m[s| \s — s0| = const} = 0 ^s0eS. For example the restriction A l) is 
fulfilled if the probability measure m has a density. 

Define for spaces B(S) and bn(n e N) the system of connection operators SP = (A.)' 
/£„: J5(S) -* b„, in the following way: 
(2-3) AuV-CK-*.), * = 1 , •••>») 

where s„ = (sln, ..., s„„)T is a point taken from the quadrature formula (2.2). 

Remark 2.2. The convergence \\/iny\\n ~> |}>|| (neJV) Vy e B(S) is a direct conse
quence from the convergence of quadrature process (2.2) [13]. 

Lemma 2.1. For the convergence of quadrature process (2.2) it is necessary and 
sufficient that there exists a collection of sets {Ai„}"=i (neN), m(Ain) > 0, from 
algebra I0 such that 

1) (J Ain = S ; 2) Ain n AJn = 0 , i + ; ; 
i = i 

3) diam A,„ —> 0 as n —> oo ; 4) sin e Ain ; 

5) max |m,„ m0(A in)_1 — l | -> 0 as n -» oo 
I S i S n 

(here diam A = sup js — t\). 
s,lsA 

Lemma 2.L is proved and formulated in a somewhat different form in [13]. 

3. CONDITIONS FOR CONVERGENCE OF DISCRETE 
APPROXIMATION 

Let the fixed recourse be relatively complete in the following sense: 

A 2) for all x e X and a.a. s s S there exists an y e S such that 

Ax + Wy ^ b(s). 
A3) q(-),b(-)eB(S). 

Instead of the problem (1.1) —(1.4) consider the following problem (3.1n) — (3.2n) 
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in the finite-dimensional space Rr x bn: minimize 

(3.1n) c ^ + E ^ i , , ) ^ , 
; = i 

over [x, y„] e Rr x ft„ where x e l , j f , e S , i = l , . . . , n , and 

(3.2n) Ax + PFyin = 6(s to), i > l , . . . , n . 

Let us introduce the following notations: 

Q = {[x, >>(s)] | x eX, y(s) eS,Ax+ Wy(s) = b(s) for a.a. s e S} , 

Qn = {[*, J',,] \xeX, yin eS,Ax+ Wyin = &(s;„), i = 1, • • -, n} . 

Proposition 3.1. Let 1) the function b(s) be locally Lipschitzian with constant L; 
2) the condition A 2) be fulfilled; 3) the setsX = {x | Dx = d) and Y = {>> [ Gy fc A} 
be bounded polyhedra; 4) the support 5 of the measure m be bounded; 5) the quadra
ture process converge. Then the sequence of solutions of problems ((3.1 n) —(3.2n)) 
(n e N) is dicretely compact and its limit points are admissible for the problem 
(1.1)-(1.4). 

Proof. Since we deal with a linear problem (3.1n)-(3.2n) in finite-dimensional 
space with convex bounded polyhedra X and Y then the minimum is attained on the 
boundary of the constraint set Qn. It is easy to see that in all cases 

(3-3) hUhn - hn)\ = HW*,-) - bm(skn)\ 
where wJ(n) is the j(n)th row of the (constant) recourse matrix W, bJ(n) is the j'(n)th 
component of the vector-valued function b(s) and y„ is the solution of (3.In) — (3.2n). 

Define now the following function y„(s) in B(S): 

yn(s) — yin as s e Ain . 

Here the sets A,„ are taken from the convergence criterion of the quadrature process 
(Lemma 2.1). Since yin e S, i = 1, . . . ,n , the sequence (y„(')) n eN) is bounded 
in B(S) and 

SUP \wJ(«->(y«(si«) ~ y»(s))\ ^ sup |^w(s i„) - bm(s)\ = Lsup |s,„ - s\ = 
seAin seAin SEAin 

^ Ldiam Ain. 

Due to condition 5) diam Ain -» 0 as n -> oo and hence, the compactness criterion 
in space 5(5) (see [2] IV. 5.6) is fulfilled for the sequence (y„(-)) (n e N). Due to the 
supplementarity property ([12] p. 648) the sequence (yn) (n e N) of solutions of pro
blems (3.in) — (3.2n) is ^"-compact (or discretely compact). 

Prove the second part of the proposition. Let us introduce the set G c f f x 
x B(S) x 5(5), 

G = {[x, y(s), b(s)] | Ax + Wy(s) - b(s) = 0 for a.a. s e S} 

and define the function b„(s): 

bn(s) = b(sin) as se Ain. 
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Then [x„, yn(s), bn(s)] e G for n = 1,2,.... Since the sequence ([xn, yn(s), bn(s)]) 
(neN' <= N) converges to [3c, y(s), b(s)] in the sense of sup-norm topology, it 
converges for almost all seS and therefore the set G is closed. Consequently, 
[x, y(sj] 6 Q i.e. the limit point of the sequence ([x„, yn]) (n e N') is admissible. • 

Relying on the Proposition 3.1 we can now formulate and prove the main result 
of this paper on discrete stability of the sequence of problems (3.1n)-(3.2n). To 
make our presentation short let us introduce some notations: 

/ * — the optimal value of the problem (1.1) —(1.4), 
/ * - the optimal value of the problem (3.1n)-(3.2n), 
- = [x, y(sj], z„ = [x„, y„] , 
f(z) = c1'x + $q*(s)y(s)m(ds), 

n 

f«(zn) = cTx + £ qT(sin) yinmin. 
i = i 

Theorem 3.1. Let the following assumptions be satisfied: 

a) quadrature process (2.2) converges; 
2) conditions A 1) —A 3) are fulfilled; 
3) the sets X = {x \ Dx J> d} and Y= {y \ Gy = g) are bounded polyhedra; 
4) the support S of the measure m is bounded; 
5) the function b(s) is locally Lipschitzian with constant L. 
Then 

/ * - > / * as n -• oo . 

Proof. Since the limit points of the sequence of solutions [xn, yn] of problems 
(3.In) — (3.2n) (neN) are admissible then 

/ * = liminf/n(z f l). 

Let us show that 
limsup/n(zn) = / * . 

Since [x„, /iny] e Qn, xn e X, finy e Y, then 

hm/„(zn) - f(z) < l imL( /nz) - / (z) 

(here /„z = [x, fcny]). From the convergence of quadrature process (2.2) we can 
conclude that for a small s > 0 there exists an index n t such that for n _ nt we 
have 

\fJM - m\ = 1 1 €T(s.-») Ks.n) ".,-» - j€T(s) P(s) m(ds)\ < s . 
1 = 1 

Hence, for n = nt / * = / * + e. • 

Corollary 3.1. The limit point [x, y(s)] of discretely converging subsequence 
([*»> 3"J) (n eN') is optimal to the problem (1.1)—(1.4). 
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Example. Let us explain the idea of the discrete approximation method. Let 
s e [0 ,1] , c - i , q = 1, A =* W~ 1, X = Y=> R1, m(ds) = ds, b(s) = s. Then the 
problem (1.1) —(1.4) becomes: 

mm{$x + $0y(s)ds} = / * = * . 

(3.3) x + y(s) = s 

s E [0, 1] 

y e B[0,1] 

Clearly x = 0, y(s) = s,se [0, 1]. 

Let us discretize the problem (3.3): let neN be fixed, sin = ijn, i = 1,2,... , n. 
Consider now the following minimization problem: 

(3.3n) min {|x + ljn £ yin} =/„* = + ! + 1/(2..) . 

i = i 

* + Jin ^ i/« , i = 1, ..., n , 

y ,„e[0, 1 ] , i = l,...,n. 
Clearly x„ = 0, yin = ijn , i = 1, ..., n . 

Hence /„* ~* /* , x„ = x and yn-+ y discretely as « -> co. 

Remark. If y e IF [0, 1], 1 ^ p g co, then we must use instead of / „ the piecewise 
integral connection operator /^ in the form [7]: 

(Any)in = n-1^1/„y(s)ds, i-l,...,n. 
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