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ALPHABET-ORIENTED AND USER-ORIENTED 
SOURCE CODING THEORIES 

IGOR VAJDA 

Dedicated to the Memory of Dr. Bedřich Váňa. 

The aim of this, and of the follow-up paper [16], is to present the mathematics used in the 
technical field of speech coding. This paper remains mostly within a ,,classical" source coding 
theory based on alphabetic distortion measures. We prove a new general joint source/channel 
coding theorem for these measures. By an example of two users we demonstrate that the "classical" 
theory, which is in the above stated sense alphabet-oriented, need not always be user-oriented. 
The first of these users is a statistician and the second one is a telephone owner. At the end 
we prove a statement which opens the possibility to build up a spectrum-oriented source coding 
theory, which is user-oriented for a special category of users, e.g. for the telephone owner. Such 
a theory is presented in [16]. 

1. INTRODUCTION 

In information theory, source coding means coding of signals (messages) subject 
to a fidelity — or distortion — criterion. This coding leads to codebooks attaining, 
at a given information rate R > 0, the smallest possible average distortion d„(R) 
of original source messages of length n = 1,2,... Since the distortion-rate functions 
Sa(R), or the limits 

d(R) = liminf<5„(R), 

are the basic operational characteristics of source coding theory, this theory is also 
known as distortion-rate theory or rate-distortion theory. The source coding theory 
is the important "half" of information theory which is complementary to the more 
traditional channel theory. The source coding theory had its origins already in 
Shannon [13], and was further developed mainly by Shanon [14], Berger [2], Gray 
and Davisson [8], and by some more recent papers which can be found in the review 
paper of Sujan [17]. 

Let us note that the mathematical importance of source coding theory exceeds 
the framework of information theory. A source coding method was used by Ornstein 
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[12] in his famous solution of the classical problem of H. Poincare, namely to find 
out a necessary and sufficient condition for isomorphy of two Bernoulli sequences 
(for details about this problem we refer to Billingsley [3]). In return, the Ornstein's 
solution led to more concise and strong formulation of source coding theorems 
in information theory (in this respect we refer again to Sujan [17]). 

We shall describe briefly the basic concepts of the source coding theory developed 
in the above cited papers, Let us consider an abstract alphabet (A, stf) where A 
is a closed nonempty subset of the real line U and s4 is the c-algebra of all Borel 
subsets of A. Put 

A" - x A(n times) for n = 1, 2 , . . . , oo 
and 

s4" = ® s£(n times) for n = 1, 2 , . . . , 

and let stf™ be the ex-algebra of subsets of A°° generated by the class of subsets 

{E x Ax\Ees^", n = 1, 2,...} . 

By an information source we mean a probability space (A°°, srfw, v). The probability 
spaces (A", si", v„), n = 1, 2 , . . . , defined by 

v„(E) = v(E x A00) , E e s4n, 

are called n-sources and elements x e A" n-messages. We distinguish two particular 
cases, the first with A = {1, 2 , . . . , r}, which is called the discrete source, and the 
second with A = U and with a measure v such that, for any finite n, v„ is absolutely 
continuous with respect to the n-dimensional Lebesgue measure. In the second case 
we speak about the continuous source. 

A fundamental concept of any source coding theory is a basic distortion measure. 
In the theory developed in the above cited papers this measure is simply an alphabet 
distortion measure d which is an si ® .{/-measurable function defined on A x A 
with values in [0, oo) such that d(x, x) = 0. The alphabet distortion measure is used 
to define an si" ® ^"-measurable distortion function dn: A" x A" -> [0, oo), 
n = 1, 2, . . . ,by 

(1) dn(x,y) = ljntd(xk,yk) 
k=l 

where x = ( x j , . . . , xn), y = (yu ..., yn). For example, in a discrete source with 
A = { 1 , . . . , r}, the Hamming alphabet distortion measure 

defines the Nedoma's distortion function (see (6.1) in [11]) 

(2) dn(x,y)=l!nt6Xk,yk 
k=l 

Analogically in a continuous source, the squared error alphabet distortion 

d(x,y) = (x-yy 
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defines the average squared error distortion function 

(3) dn(x,y) = llni(Xi-yi)\ 

It is apparent from Sujan [17] that the restriction to distortion functions of the 
form of average per-letter distortion as considered in (1), which is characteristic 
for the source coding theory developed in the above cited papers, opens the possibility 
to employ in this theory powerful methods of ergodic theory and to obtain very 
general and very strong source coding theorems. We afford ourselves to speak 
about alphabet-oriented source coding theory, in order to distinguish this theory 
from alternative source coding theories motivated by examples that follow later 
in this paper (one such theory is presented in [16]). But the concepts as well as the 
main result stated below make sense not only in the alphabet-oriented source 
coding theory, to which we restrict ourselves in the present paper, but also in any 
theory dealing with stf" <g> ^"-measurable distortion functions dn: A" x A" -> [0, oo). 
An example of such a theory is the classical discrete information theory which is 
based on the Hamming-distance distortion functions 

dn(x,y) = Sx,y = \" * X2y 
v ' ,y [1 if x + y. 

It is easy to prove by contradiction that this function is not satisfying (1) for any 
alphabet distortion measure d. On the other hand, some of the concepts that follow 
give up their sense e.g. when passing to the theory developed in [16]. 

For any finite n we consider a codebook C„ which is a collection of n-messages 
ys, s = 1, ..., ||C„||, drawn from the finite set 

A" = x A~(n times) c A" 

where A is a finite subset of A containing ||A"|| 2: 1 alphabet letters and called an 
available alphabet. It is assumed that every source n-message x e A" is encoded 
into a codeword from C„, symbolically denoted by y(x), which minimizes the function 
d„(x, •), x fixed, on the codebook. Hence the quantity 

d,,(x,Cn) = dn(x,y(x)) 

describes the minimum distortion of the n-message x by the codebook. The function 
dn(x, C„) of variable x e A", as a minimum of finitely many ^/"-measurable functions 
dn(x, y), yeCn (cf. the measurability assumption concerning d and (1)), is s4n-
measurable. The average distortion of the n-source (A", s£n, v„) by the codebook C„ 
is defined by 

dn,v(Cn) = $Andn(x,Cn)dvn(x). 

On the other hand, information rate of the codebook C„ is given by 

R(C„) = (l/n)log2||C„||. 

Clearly, the information rate takes on values between 0 and log2 ||A"||. 
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If 

C„(R) = { C , c l » | R(C„) < R} 0<R< log2 ||A~||, 

then it is clear that C„(R) is nonempty for every 0 < R ^ log2 |A | | . For every fixed 
0 3= R g log2 ||A*|| we are interested in the smallest average distortion of then-source 
(A", s4", v„) attainable by codebooks from C„(R), i.e. in the quantity 

<5„,V(R) = infi„,v(C„), 

where the infimum extends over all C„ e Cn(R), and in the limit of this quantity 

<5V(R) = liminf<5„,v(R). 
n-»oo 

We shall refer to this limit, considered as a function of 0 <, R g log2 | |A | , as to 
a distortion-rate function. The distortion-rate function <5V(R) is said regular if 
for every fixed 0 < R g log2 ||A"|| there exist codebooks C„ e C„(R), n = 1,2,..., and 
a constant y Si 0 such that 
(4) SV(R) = lim d„,v(C„) 

and 

(5) lAndn(x,<P(x))dv„(x)<y 

for every ^/"-measurable mapping <P: A" -» C„. 

From the point of view of a source (A00, srf™, v), the regularity of a distortion-rate 
function <5V(R) is a property depending solely on the available alphabet A <= A 
and on the alphabet distortion measure d, which are both assumed to be constants 
of our source coding model and, as such, they are not explicitly denoted. 

We shall formulate sufficient conditions for regularity of the distortion-rate 
function <5V(R). First we define some properties of the source (A00, sf", v). Let for 
every E e sf°° 

(6) E* = {(z2,z3,..)eA°>\(z1,z2,..)eE}. 

The set E* belongs to stf™ too - to this end it suffices to consider first the sets E 
of the form E„ x A°° where E„ e s4n and then to take into account the definition 
of sf°. The source (A°°, ^"K, v) is said stationary if for every Ess?00 it holds 
v(E*) = v(E). If we define on the probability space (A00, .s/00, v) a discrete-time random 
processes (X„ | n = 1, 2,.. .) as the ^"-measurable mappings 

(7) X„(zuz2,...) = z„, n = l,2,... 

(coordinate-projections; note that si was supposed to contain all singletons {x} c: A!) 
then it is not very difficult to prove that (A°°, stfx', v) is stationary iff the process 
(X„ \n = 1, 2, . . .) is stationary in the sense of Doob [6]. 

Proposition 1. If (A00, jaf00, v) is a stationary source such that, for every y e A, 

(8) $Ad(x,y)dvl(x)<<X> 

then the distortion-rate function <5V(R), 0 <, R ^ log2 |A"||, is regular. 
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Proof. (I) Let 
y = 11| | max \A d(x, y) dvx(x). 

ysX 

By assumptions, it holds 0 _ y < oo. It suffices to prove that for every natural n 
and every ^"-measurable function <P: A" i-> 1" it holds (5). But, by (1) and by the 
nonnegativity of d, 

$A„ dn(x, $(x)) dv„(x) = /_;(_/„) [ i d(xu (*(*)),)] dv„(x) ^ 
i = l 

= J_- (-/«) [ I I <*(**, J')] dv„(x) = £ L, <*(*> V) dv_(x) <. y • 
i = 1 ye._ ye^J 

(II) Now we shall prove (4). Let us fix 0 ^ R ^ log2 ||/-|. By definition, for every 
natural n there exists a codebook C„ e C„(R) such that 

(9) KAR) = <!-»,v(CB) < dn,y(R) + 1/n • 

If n = 2 and there exists 1 ^ r < n such that 

dB,v(Cr x CB_r) = min d„;V(Cs x C„_.) < dB)V(C„) 
s=l , . . . ,n-l 

then replace CB by Cr x C„_r e Cn(R). Applying this procedure for n = 3, 4 , . . . we 
obtain at the end a sequence of codebooks C„ 6 C„(R) satisfying in addition to (9) 
the condition 

(10) d„+m,v(CB+m) g d„+m,v(C„ x Cm) for all m, « = 1, 2 , . . . 

Now, in order to prove (4), take first into account that, by (9) and by the definition 
of<5v(R),itholds 

(11) _-(__) = lim inf d„,v(C„) . 

Further, by definition, it holds for every v e X" 

dn(x,C„)<.dn(x,y) 

so that, by definition of d„,v(C„) and (5), 

d»,v(cB) _. y • 

Finally it follows from the definition of dB;V(C„) and from the stationarity of v that 
it holds for every m, n = 1,2,... 

(n + m) d„+m,v(C„ x Cm)^n d„,v(C„) + m dm,v(Cm) 

so that, by Lemma on p. 113 of Gallager [7], the sequence (dn;V(C„) | n = 1, 2, . . .) is 
convergent. It follows from here and from (11) that (4) holds. • 

2. THE MAIN RESULTS 

We are now going to introduce the concepts figuring in the main result of this 
paper. Some of the examples are not necessary for the present paper but they are help
ful here and effectively used in the follow up paper [16]. 
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Let (Af, sif), (Af, sif) be defined in the same way as (A™, si™) — it is assumed 
neither that (Af, sif) and (A", si™) are mutually equal nor that either of them 
equals (A00, si™). By a communication channel we mean a triple 

(12) ((Af, sif), (P, | * e ' - f )» W r . -*?)) 

where P,, are probability measures on (Af, sif). Hereafter we assume that this 
channel is nonanticipating, i.e. that, for every natural n and every xeA\, and 
E e si\, the probability P,(E x Af) is constant for all extensions z e Af of the 
vector x. For brevity, this probability is denoted by P„,r(E). 

Let Alt„ <= A\ for n = 1, 2 , . . . be nonempty sets representing inpuf constraints 
of the channel (12): input n-messages (codewords) of the channel must be from 
Aln. If AlB = A\, for n = 1, 2 , . . . , then there are in fact no input constraints. 
The other extreme is when A1(„ are singletons for n = 1, 2 , . . . The channel capacity 
C ;_ 0 is then the supremum of all R _ 0 such that for every s > 0 there exists 
n0 with the property that if n > n0 then there exists a channel input codebook 
Bn •= Alt„ of 2[nJ° elements and an .a^-measurable mapping \]/: A\ -» B„, called 
B„-decoder, for which 

-VxOr*-^*)) > 1 - e for every xeBB. 

We see that our concept of channel capacity is close to the capacity C(0 + ) con
sidered in Section 7.7 of Wolfowitz [19]. 

Now we consider three examples — the last one presenting a practically very 
important channel with nontrivial input constraints. 

Example 1. Let us consider an information source (R00, si™, v) with alphabet 
A = U. Denote by (zj, z2 , . . . ) an element of R00 and suppose 

J R „ z 2 d v ( z 1 , z 2 , . . . ) < co, fc= 1,2,.... 

Then the expressions 

c(i,j) = \^ztzjAv(z1,z2,...) 

exist and are finite for every i,j = 1, 2 , . . . . If we consider the covariance function 
of the process (7), in the sense of Doob [6], then its values at i, j coincide with 
c(i,j). Thus the following terminology corresponds to that of Doob. The source 
(U™, si™, v) is called stationary in wide sense if 

jR„zfc dv(zu z2 , . . . ) = 0 for every fc = 1,2,.. . 

and if there exists a function r: {0, ± 1 , . . . } - * • R such that r_ t = rk and, for every 
U - 1 , 2 , . . . , 

c(U) = rt-j. 

The function r is then said the covariance function of the source. The covariance 
function of any source which is stationary in wide sense satisfies the condition 

(13) irt-jltXj£Q, n = l,2,... 
i , j = i 
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for any choice of complex numbers Xu ..., Xn (cf. § 3 in Chap. X of Doob [6]). It 
follows from the results of § 3 in Chap. II of Doob [6] that the converse is true as 
well: If r: {0, +1 , . . . } i-> R is a function satisfying (13) then there exists a source 
(R°°, stf™, v) stationary in wide sense, with the covariance function r. 
If 

£ K| < oo 
fc=-00 

then we define a spectral density of the source by 

<Kæ) = Ë Гk e~ — 7t < CO < % . 

It follows from IV, 3 in Andgl [1] that cp(co) takes on a.s. values from the interval 
[0, oo). Since for every n _ 1 and every complex numbers Xu ..., X„ 

i rk-jXkXj = J_„ | i Xk e " f cp(co) dco , 
j,k = l k = l 

it is clear that if <p(co) > 0 for every —it s£ co < n then all n x n matrices [ r t _ / ] , 
j , k = 1, . . . , n, are positively definite. 

Example 2. The source (R°°, s/QO, v) is called stationary Gaussian if it is stationary 
in wide sense, with a covariance function r, and if for every natural n the n-source 
(R", s4n, v„) has an n-dimensional normal distribution N(On, V„) where 

o„ = ( 0 , . . . , 0 ) 6 R B , 

and V„ is a Toeplitz-symmetric n x n matrix with rk on the fcth diagonal, i.e. 

V„ = 

r0 

rn-l 

Г„_, 

r„-г Ги-i 
rtt-г 

r0 

r0 J 

By (13), V„ is positively semidefinite. If all matrices V„, n - 1, 2,.. ., are regular 
then the stationary Gaussian process is said regular. A positively semidefinite 
matrix Vn is regular iff it is positively definite. 

Example 3. We shall say that (12) is a stationary Gaussian channel if A2 = R, 
in which case — by definition — s42 is the ff-algebra of all Borel sets on R, and if 
for every z e Af there is a covariance function r satisfying (13) such that P„t(Zi -n) = 
= N((zt,..., z„), V„) where V„ is as in Example 2. A stationary Gaussian channel 
is called memoryless if for every z e A? 

rk = 0 for all fe = l , 2 , . . . 

It is easy to see that the stationary Gaussian channel is nonanticipating. Let us denote 
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by si the cr-algebra of all Borel subsets of R and let us consider a stationary Gaussian 
memoryless channel 

((R00, si00), (Ps\ze R°°), (R*5, J^ 0 0 ) ) 

withr0 > 0 and with the input constraints 

Au„ = {* e R" | (1/n) £ x] ^ E} , e > 0 , n = 1,2,.... 
fc=i 

For this channel the capacity, first deduced by Shannon [14], is 

C= i l o g 2 ( / l + -

as rigorously proved in Chap. 9 of Wolfowitz [19]. There the above considered 
memoryless stationary Gaussian channel is studied with some other input constraints 
A1>Bas well, e.g. with 

f 1 3 2m - 1 
Au„ = 2m 2m 2m 

where m is a natural number (such "available channel input alphabets" are considered 
under the assumption r0 = 1). 

We shall now describe a coding and decoding scheme for a source (A00, si"0, v) 
and the channel (12). Let n be an arbitrary natural number and let C„ be a source 
codebook from C„(R) containing not more elements than the channel input set AUn. 
Obviously, there exists at least one 0 ^ R ^ log2 ||A||, namely R = 0, such that 
C„(R) contains at least one such codebook. Let q> be a C„-coder, i.e. a one-to-one 
mapping from C„ into Aln and define 

$(x) = <p(y(x)) , x e A", 

where JC -*• y(x) is the mapping figuring in the definition of d„(x, C„) above. The 
source message x e A", according to the block diagram 

is transmitted as an admissible input codeword $ ( * ) e A l H through the channel, 
received as b at the channel output and, finally, delivered to the user as y = q>~1 i//(b) 
from the source codebook C„ where ^ is a ep(A")-decoder defined above (since 
<{>(A") = q>(C„), we shall refer to ^ as to a <p(C„)-decoder). Now, if be A2 is the channel 
output n-message, then 

d^cp-'^b)) 

is the distortion of the source message x and 

W = U* dn(x, <p~' 4>(b)) <"W)(*) = I d„(x, y) P^U^1^)) 
J>eC„ 
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is the expected distortion of this message. Notice that on the right side there is a sum 
of ^"-measurable functions. Indeed, the ja/"-measurability of $(x) follows from the 
same argument as the ^/"-measurability of d„(x, C„) above and the rest is clear. 
The average expected distortion 

(14) S„ = JA„ S„(x) dv„(x) = £ (PnMv) 0 T 1 <p(y)) Sn*> dn(x, y) dv„(X)), 
v,ysCn 

where 
W(v) = {* e A": y(x) = v} , 

thus describes a source distortion at the channel output, briefly an output distortion, 
attained by the codebook C„, the C„-coder <p and the <p(C„)-decoder \j/. When con
venient, we write <5„(C„, q>, <A) instead of S„. 

Let us note that the output distortion (14) with an alphabet distortion measure 
was probably first studied by Nedoma [11] who considered a discrete model where 
the source alphabets A = A" as well as the channel input and output alphabets At 

and A 2 are finite and the distortion functions d„(x, y) are defined by (2) (the Hamming 
distances d„(x,y) = <5X), were also considered). The output distortion has been termed 
risk by him and the interest was concentrated on sources and channels for which 
S„(C„, <p, \ji) can be made arbitrarily close to 0 for sufficiently large n (cf. Theorem 1, 2 
in Sec. Ill there). 

Next follows the main result of this paper which is a general information trans
mission theorem (joint source/channel coding theorem). It generalizes many former 
theorems of this kind, e.g. Theorem 9.2.1. of Gallager [7] or Theorem 2.4 of Csiszar 
and Korner [5]. It is formulated for arbitrary nonanticipating channels (neither 
the channel stationarity nor even the ^/f-measurability of channel probabilities 
PZ(E), E e s/2, are assumed). (Of course, in practical applications, where source 
n-messages are transmitted through the channel subsequently, block after the block, 
the block-stationarity and block-independence of the channel simplify interpretation 
of the theorem.) Analogically the source need not in principle be stationary — but 
the sources for which we guarantee in this paper the assumed distortion-rate function 
regularity are stationary — see Proposition 1. Nevertheless there are trivial examples 
of nonstationary sources for which the regularity assumption holds too. 

Theorem. Let us consider an information source (A00, J^0 0 , v) with an available 
reproducing alphabet X <= A of size | | J | > 1 and with a regular distortion-rate 
function <5V(R), 0 — R — log2 ||A"|| and a nonanticipating communication channel 
(12) with a capacity 0 5£ C <; log2 ||A*|. Then for every e > 0 there exists a natural 
number n0 such that for all natural numbers n > n0 there exist a source codebook 
C„ <= A~", a Cn-coder <p and a <p(C„)-decoder i// such that the output distortion 
£i,(C„, <P, </0 defined by (14) satisfies the inequality 

£iC„, <p, ty) = 5SC-) + s where <5V(C-) = lim <5V(R). 
R T C 

Proof. Let us fix e > 0. 
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(I) It is clear from the definition of <5V(R) that the function <5V is nonincreasing on the 
domain [0, log2 |^|Q- Therefore, for given C and e, there exists 0 < JR0 < C such 
that for all R0 < R < C 

8V(C-) < 5V(R) < SV(C-) + is . 

Let R be an arbitrary fixed point from the interval (R0, C). 
(II) It follows from the regularity of <5V, in particular from the assumption (4), that 
there exists natural nt such that, for all n > nu thete exist C„ e Cn(R) with the pro
perty 

d„,v(Cn) < 5V(R) + ie 

or, by (I), with the property 

<MQ) < ^v(C-) + fe • 
(III) Let y >. 0 be a constant satisfying (5). It follows from the definition of channel 
capacity C and from the inequality 0 < R < C that there exists n0 > nt such that, 
for every n > n0, there exist a C„-coder q> and <jo(C„)-decoder i/r for which 

-V-wGT'foOO) > - - -^r^ for every yeC" 3(7 + 1) 
It follows from here 

YPnM»)(r1(<p(y))<-r^-- for every veCn. 
J>6C„ 3(7 + 1) 

(IV) Let n > n0 be fixed. It follows from (14) that 

§n(Cn, q>, i{>) < <?(l) + £(2) 
where 

' ( - ) - I Jn,> dJt*. y) dv.(x) = h- dn{x, C„) dv„(x) = dn>v(C„) < «5V(C-) + fe 

(cf.(II)) 
and 

*(-) = Z [P..-(.#-1W .v)))fn.)^. .v)dv1I(x)]g 
»,J>eC„ 

u*j> 

< E [ I IW-T W W> -.(*, .v.) dv„(x)] 
»eC„ j>eC„ 

J > * f 

where j>„ e Cn maximizes the integral 

Jvt» <*.(*> .v) dv„(x) 
on C„. Let us define an ^/"-measurable mapping $: A" -+ C„ by 

*(x) = yv for i e T - ( » ) , veCn. 

Then it follows from the last inequality and from (III) 

^ ) s l fe) f r-"> 4 ("- ) d v-W )-
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3(7 + 1) 3(7 + 1) 

This together with the above established upper bound to S(i) implies 

8n(Cn,<p,ij,) < <5v(C-) + e . • 

Remark. Theorem says that at least as small distortion as can be attained in the 
rate domain 0 ^ R < C = log2 ||A"|| by a codebook in available reproducing alpha
bet A can be attained at the output of any channel with capacity C by means of 
a "real time" block coding. 

The applicability of the distortion-rate function BV(R), which is clear from Theorem, 
would be of no practical importance if we were not able to evaluate this function 
explicitly, or at least to compute its values for preselected rates R. Fortunately, 
this is not the case. In the next part of our paper we present one proposition about 
evaluation of <5V(P) by means of convex optimization methods and some examples 
relevant in coding speech and image signals. 

Let us consider a source (A00, .-/*, v) and, for every natural n, n-sources (A"", 3f, 
P„iX), x e A", where X c A is a finite available alphabet and <s£ is the tr-algebra 
of all subsets of 1 and where, for every Be si", P„,X(S) as a function of xeA" 
is ^/"-measurable. Then we can define for the input n-source (A", s£n, v„) a double 
source (An x A", stf" ® stf", v„ ® P„) by 

( v „ ® P „ ) ( £ x £ ) = f£Pn>I(E0dvB(*) 

and by the standard extension argument. We can also define a marginal output 
source (1", si", Qn) by 

Qn(E) = (v„ ® P„) (An x E) for Ee sZ" 

and we can consider the Jrdivergence I^yn ® P„ || v„ x Q„) of the joint measure 
v„ ® PB and of the product v„ x Qn of its marginals on the double space (see Liese 
and Vajda [9]). Let us denote by 0>n(R), R = 0, the class of all families (PB>X \xeAn) 
of the above considered type with the property 

-"IO- ® P„ I v„ x S„) < R 

and let for some dn under consideration 

/ x f inf J^x^d„(x,>')d(vB®PB) if ^„ (P)*0 
D„fV(R) = I Pn^nm 

l oo otherwise 
and 
(15) £>v(P) = liminfDBjV(P), P = 0 . 

Let us remind that the source (A.00, sd™, v) is called ergodic if v(JE*) = 0 or 1 for 
all sets E e sf° identical with their "star sets" E* defined by (6). 
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Proposition 2. (Berger [2]). If the conditions of Proposition 1 hold then (15) hold 
with "lim inf" replaced by "lim". Inf, moreover, the source (A00, JJ/00, V) is ergodic 
then 

DV(R) = dv(R), 0 = R = log2 \X\\ . 

In the literature the distortion-rate function means the function (15) rather than 
(4). Analogically as (4), the distortion-rate function (15) is nonincreasing. The 
former was defined for 0 ^ R = log2 [_T||, the latter is defined for all R ^ 0, but 
it is a constant equal to Dv(log2 ||_T||) for R > log2 \\X\\ because the information 
Ii(vn ® Pn | v„ x £>„) is bounded above by log2 |_T|. The inverse function -t„(D) = 
= DV

_1(R) defined by 

RV(D) = inf {R: DV(R) = D} , D = 0, 

si called the rate-distortion function. 
Next follow two examples, both relevant in speech coding. In both these examples 

we consider available alphabets 

'-K-4 4}̂  
and we use the existence of the limit 

R*(D) = l im RV(D) 
N->oo 

which follows from Lemma (8-30) in Vajda [18]. It follows from the same lemma, 
that R*(D) is the rate-distortion function under no restriction on the available 
alphabet X, i.e. under X = A which is considered in the theorems of Berger [2], 
in the two examples. Thus, based on the cited results of Berger and Vajda, the two 
examples present an approximation R*V(D) of the function RV(D) which is tight 
for large sizes of alphabet X. 

Example 4 (4.5.3 in Berger [2]). Let us consider the square error distortion func
tion (3) and the stationary Gaussian source of Example 2 with covariance function 
r and zero mean. Assume that the spectral density 

(p(co)= £ rke~ikc°, coe[-Tc,7i], 
fc=-oo 

exists and has the essential infimum positive and the essential supremum finite. 
Then for every 9 between 0 and the essential supremum 

R*(D) = 1 j"_„ max JO, log2 ^ 1 da» 
4TC [ 9 J 

if D ^ 0 satisfies the equation 

D = — |_B m i n {9, <p(a>)} dco. 
2n 
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If the source is memoryless, i.e. rk = 0 for k = 1,2,... then cp(co) = r0 and we 
obtain from the above formulas 

RV(D) = max ío, i log2 ^ 1 ; 

i.e. 
Dv(R) = r02-2R. 

Autoregressive stationary sources are extraordinary important models of segment 
of speech signals (cf. e.g. Buzo et al. [4] or the follow-up paper [16]). We first present 
a definition and basic facts about autoregressive processes. Let us consider a prob
ability space (Q, y, P) and, on it, a discrete-time real valued independent process 
2 = (z„ | n = 0, +1,...) such that, for all n, 

(16) EZ„ = fflZ„dP = 0 

ff-« EZ2= f f l Z
2 dP>0 . 

Each Si is uniquely determined by a probability distribution function F on U — we 
shall use to write Sf(F) instead of Si. Thus Si(F) is considered for every p.d.f. F on U 
such that 
(17) fRxdF(x) = 0, <x2=fRx2dF(x)>0. 

For every natural m we define an A-subset Am of Rm by the condition that a = 
= («!,..., am) e Um belongs to Am iff the complex polynomial 

(18) a(X) = 1 + a.A-1 + ... + ajTm 

has all roots inside the unit circle. According to V, 6 in Andel [1], for every Sf(F) 
and a e Am there exists a unique wide-sense stationary process .2"(F, o) = 
= (Xn | n = 0, +1,...) on (Q,Sf, P) such that Xk and Z„ are independent for 
k < n and, for all natural k, 

(19) X t = -f>;X*_,- + Z t . 
i = l 

The process #"(F, a) is called an autoregressive (AR)-process of order m with para
meters F, a. If 

t-* = I«X<Adi> k = 0, ± 1 , . . . , 

is the covariance function of an AR-process S£(F, a), a e Am, then it is shown ibid 
that the spectral density 

<p(co) = J rk e-it0>, - H = co = 7t, 
* = - 0 0 

of J"(F, a) exists and satisfies the relation 

(20) *(») " j ^ c j p --« = «> = "• 
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It follows from here in particular that there is A > 0 for which 

(21) 0 < (p(a>) < A, - n g co £ n 

and that the covariance function of the AR-process S£(F, a) satisfies the relation 

m »-Zl dco, fc = 0, ± 1 , . . . . 
\a(j<°f 

Thus the second order properties are the same for all AR-processes X(F, a) with 
F satisfying (17) for some fixed a2 > 0. In view of this we prefer to speak about 
classes SC(a2, a) of AR-processes with parameters (ff2, a) e (0, oo) x Am. Speaking 
about one AR-process 9C(a2, a) we shall mean one arbitrary element of the class 
SC(a2, a). It follows from (22) that the parameters (a2, a) e (0, oo) x Am uniquely 
define all covariances rk of all processes from SC(a2, a). We shall prove that, con
versely, the covariances r0,..., rm of any AR-process SC of order m >. 1 uniquely 
determine the parameters (a2, a) e (0, oo) x Am with the property 

SC e SC(a2, a) . 

Indeed, by 5 in V, 13 of AndSl [1], if SC e 9C(a2, a) then 

(23) a2 = r0 + £ rjUj . 
y=i 

Further, by the definition of covariance function and by (19), SC e SC(a2, a) implies 

rk = \a [(zo - t ajXk^j) X 0] dP = - £ a, Jfl _.__, X0 dP 
i = i ; = i 

i.e. 

(24) rk + trk-jaj = 0, k=l,...,m. 
J=I 

Since, by the definition of spectral density, it holds for all complex Xu ..., Am 

t rk.jXklj - i - f | J „* e - i t o | 2 <p(a>) do), 
M=i 2TC J _„ „=1 

it follows from (21) that the m x m matrix [r t_/J occurring in (24) is positively 
definite. The positive definiteness of [rfc_y] implies that there is a unique solution 
a = (a i,..., am) of the equation (23) which, combined with (23), uniquely determines 
a2 as well. Thus there is a one-to-one relation between covariance vectors r = 
= (r0, ...,rm) of AR-processes of order m and parameters (a2, a)6(0, oo) x Am 

of these processes. 
Let us consider an arbitrary AR-process SC(F, a) = (X„ \ n = 0, + 1 , . . . ) , aeAm. 

The subprocess (X„\n = 1,2,...) is uniquelly determined by a subprocess 
(Z„ | n = 1, 2, . . .) of independent identically — b y F — distributed random variables, 
by the random ra-vector (Z_m+1, ...,X0) independent of (Z„ | n•— 1, 2, . . . ) and by 
the parameter a (i.e. by the relation (19)). The same is true for classes of AR-processes 
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when Fis replaced by a2 > 0. The vector (X-m+1,...,X0) is a random "initial state" 
of the subprocess. This observation serves as a basis for the definition that follows. 

Let (Xn | n = 1, 2, . . .) be a random process on (Q, ¥, P). This process is said 
AR-process of order m =• 1 if there exist F satisfying (17) and aeAm and a random 
vector (X-m+1,...,X0) such that (19) holds for k = 1, 2 , . . . , where (Z„ | n = 1, 2, . . .) 
is a sequence of mutually and on (X-m+1, ...,X0) independent random variables 
distributed by F. Analogically as above, we consider AR-processes with parameters 
(a2, a) e (0, oo) x Am. The "one-sided" AR-processes are wide-sense stationary 
and the above considered properties of "doubly-sided" AR-processes apply to these 
process with obvious modifications. 

Let us consider an information source (R00, s2m, v). If the process (Xn | n = 1, 2, . . .) 
defined by (7) is an AR-process of order m = \ then the source (R°°, s$™, v) is said 
an AR-source of order m. It is clear from Example 2 that the Gaussian AR-sources 
of arbitrary order are stationary in the ordinary sense (the same holds for Gaussian 
AR-processes). Now we are done to present the next example. 

Example 5. Let us consider a Gaussian AR-source (IR°°, .s/00, v) of order m = l 
with parameters (a2, a) e (0, oo) x Am and with the square error distortion function , 
(3) and let 

\l/(co) = — ll + £ a f c e - i t o | 2 , -TS S CO = n. 
a2 k=i 

Let 9 be between 0 and 1/J where A > 0 is the esssup of >A(a>) on [—%, n] . Then 
it follows from Example 4 and from (20) that it holds 

R*(D) = 1 J_„ log2 — L - do, _- i log2 £ 
47t D i/f(a)) D 

l f 0 ^ £ = A . 

For example, let us consider a first-order AR source with parameters (a2, ai)e 
e(0, oo) x Aj. Here A. = ( - 1 , 1) for - a x is the root of the polynomial a(X) = 
= 1 + a,!"1. We have 

, , , 1 + 2a. cos co + a2 

<K">) = —2
 L 

a 

so that A = (1 + laj])2/*?2. If this source is Gaussian then it follows from the general 

result above 
R(D) = | log2 — for every 0 = D = 

D ~ - ( 1 + KD2 

The alphabet-oriented source coding theory presented in this paper has applica
tions, e.g. in the compression of speech signals. For example, codebooks with 8-bit 
binary available reproducing alphabets and with information rates of order 10* bits 
per second are of great practical importance in digital transmission of speech — see 
e.g. Markel and Gray [10] or Sediv? [15]. 
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3. TWO NONSTANDARD USERS 

Distortion functions of the form of average per-letter distortions defined by (1), 
which are characteristic for the alphabet-oriented source coding theory, lead to 
codings (and in the case of joint source/channel model also to decodings) with the 
philosophy to approximate or reconstruct the message letter by letter as exactly 
as possible. This is why we speak about letter-riented coding. Letter-oriented means 
in many cases the same as user-oriented since an "average user" is probably satisfied 
by the uniform letter-by-letter proximity of the information he obtains. In order 
to motivate one source coding theory which is presented in the follow-up paper [16], 
we shall present examples of two users which are surely not "average" in the above 
considered sense. 

Example 6. Let us consider a stationary memoryless source (R°°, stf™, v) which is 
defined by a probability measure v0 on (R, s/) and by the condition 

v„ = v% for every n = 1, 2 , . . . . 

Let us further assume that v0 describes the uniform distribution on (a, b) <= R (so that 
the source is in our terminology continuous!). Let finally the user be a statistician who 
expects to be paid for telling the numbers a and b to an institution and who decided 
to pay half of the expected income to the Universal Source Coding Company for 
loading 72-bit data xt,..., x1 0 0 0 0 he borrowed from the institution to his 8-bit 
personal computer. This Active statistician will be deeply dissappointed when he 
learns that the first and the last order statistics x (1) and x (10000) have been loaded 
into his computer with approximately the same precision as the remaining 9998 
numbers which are nothing but a mere balast in the borrowed data packet. Next 
time he will prefer services of the Uniform Source Coding Company which is operating 
with the distortion measure 

d»(x, y) = |x(1) - v(1)| + |x(n) - y(n)| 

provided he learns that such a company exists. 

Example 7. Let us consider a source (R00, stf™, v) — the measure v is unimportant 
in this case, the emphasis will be on distortion measures d„(x, y) for n-messages 
x, yeW. Let us consider that x = (x 1 ; . . . , x„) is obtained by sampling a short 
segment (about 20 msec) of a speech signal. An experimentally verified fact is that 
the human ear hears spectra of segments of signals x = (xu ...,x„) rather than the 
coordinates x x , . . . , x„ — in this respect we refer to Markel and Gray Jr. [10]. The 
mere fact that, from the point of view of hearing, the distortion measures (l) are 
unsatisfactory can be demonstrated by two periodic signals x = (xu ...,xn) and 
y** (j'l, ••••>'„) where 

* « - ( - ! ) • . J V = ( - 1 ) 1 + 1 . 

The ear will hear in both cases the same tone — it is not able to distinguish whether 
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the signal starts with - 1 or +1 - while the distortion (1) in this case equals 

dn(x,y) = d(l,-l) 
which is typically far from zero. 

Now we explain what was meant by the "spectrum of the signal x" above. Let us 
consider a stationary ergodic information source (R00, s£x, v) with a covariance 
function r satisfying the condition 

(25) £ \rk\ < co 
_ = - o o 

and with a spectral density cp positive on [~n, TC] (cf. Example 1). As shown in 
Example 1, for every s ^ 0, the matrices [rfc_/J, j , k = 0, ..., s, are positively definite. 
Let us consider arbitrary n > m = 1 and x e R" and let r_: {..., —1,0,1, ...}•-»• U 
be defined by 

(26) 

0 if k > m 

l/(«-fc)ŠV.+* i f 0<k< 

r- _t if fc < 0 . 

The event B„ c_ R" defined by the condition that all matrices [ r - i t j ] , j,k = 0,..., s, 
s = 0,1,... are positively definite is a measurable set from __"*, for the condition is 
equivalent to the positivity of countably many determinants whose elements are 
-^"-measurable functions (26). Similar argument, combined with that, by the ergo-
dicity, rXik tend in v-probability to rk as n -> oo and with the fact that all functions 
(26) except of those for k = 0, ±1 , . . . , ±m are identically zero (m is fixed!) implies 

lim v-(B-) = 1 . 

Thus the complement Bn e sf" is an asymptotically negligible set of messages. Our 
neglection of this set is apparent from that, ignoring what is considered by spectra 
of signals x e Bc in the acoustics (cf. the above cited book of Markel and Gray Jr., 
or Buzo et al. [4]) we define these spectra by the spectral densities of Example 1 for 
r = rx defined by 

(27) rxJk=-o(fc)(l/«)tx? 
; = i 

instead of (26). For signals x from the "practically important" set B„ we also define 
spectra by the spectral densities of Example 1, but for r = rx defined by (26). We 
hope that on B„ we are in agreement with what is considered in the accoustics. 
In both cases, all matrices [r- j i W] , j , fc = 0,...,_, s = 0, 1, ..., are positively 
definite (for xe Bn these matrices are the unit matrices Is multiplied by the right-hand 
factor on the right-hand side of (27)). Thus the spectral densities q>x(co), — % ^ co <, re, 
under consideration are defined by 

(28) , » -L-> =""" f" "«• 
[r->0 for xe Bc. 
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We can summarize the results leading to our spectral representation of messages 
x e W, n >. 1, from ergodic information sources as follows. 

Proposition 3. Let (R", stf™, v) be a stationary ergodic source satisfying (25). Then 
for every m >, 1 and £ > 0 there exists nQ > m such that, for every n > nQ, there 
exists a set B„ e stf" such that 

v„(B„) > 1 - 6 

and that for every JC e R" there exists a wide-sense stationary information source 
(R00, s/, vx) with the covariance function defined by (26) or (27), depending on 
whether x e Bn or x e Bn respectively, and with the spectral density (28). 

Proof. The only point which was not made clear above is the existence of the source 
(R00, s/, vx) which is however clear from what has been said in Example 1. • 

By Proposition 3, it is meaningful to consider for ergodic sources (R°°, J / 0 0 , v) dis
tortion functions d„(*, y) defined as arbitrary distances of the corresponding spectral 
densities cpx, q>r e.g. 

(29) dn(x,y)= | f t , - ? , . . , x,yeU", 

where || • ||a is the norm of the Banach La-space on [—n, TC] with the Lebesgue measure, 
1 g a S °o- The more, one can consider codebooks C„ consisting of ||C„|| arbitrary 
wide-sense stationary information sources (R°°, «s/°°, fi) instead of |C„ | messages 
y e W, which is typical of the classical alphabet-oriented source coding theory, with 
(1) replaced e.g. by 

(30) d„(*, fi) = \<px - p j . , x £ R", n e m , 

where 9ft denotes the set of all wide-sense stationary measures n on (R", j</°°) with 
spectral densities (p^ e La. This opens new possibilities in the source coding theory, 
partly exploited in the forthcoming paper [16]. 

(Received November 7, 1986.) 
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