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CHARACTERISTIC POLYNOMIAL ASSIGNMENT 
FOR DELAY-DIFFERENTIAL SYSTEMS 
VTA 2-D POLYNOMIAL EQUATIONS 

MICHAEL SEBEK 

A new method of characteristic polynomial assignment for delay-differential systems, both 
retarded and neutral, is presented. The method consists in solving a 2-D polynomial equation. 
Solvability conditions well suited for practical testing are given and the class of all assignable 
polynomials is parametrized- The problems of minimality, causality, properness and stabilization 
are discussed. The method is used to stabilize even not formally stable plants. A finite spectrum 
assignment is investigated. All the design procedures proposed are based on classical 1-D techni
ques. 

1. INTRODUCTION 

Growing presence of algebraic methods can be observed in the control theory 
in the last decade. So among the methods of synthesis in classical linear systems, 
the reputation of those based on polynomials in one variable (1-D) stands now very 
high. In particular, both scalar and matrix linear polynomial equations has already 
been successfully introduced in control (see, e.g., Kucera [12]). That is why now 
plenty of researchers interest in developing similar methods for more complex systems. 
In the case of linear delay-differential systems, good foundations has been laid 
by Kamen [11] and Morse [16] who have employed polynomials in several variables. 
This way has further been developed by many authors. In systems with commensurate 
time delays one encounters two operators — differentiation and delay — so that 
polynomials in just two variables (2-D) appear to be an appropriate tool. 

Whenever one needs to change the dynamics of a plant by a dynamic output 
feedback, as in a characteristic polynomial assignment (CPA) problem, a simple 
linear polynomial equation can do the job. To solve such an equation in 2-D poly
nomials, two different methods has been derived till now by Emre [6] and Sebek 
[20, 21]. The first method is based on a realization technique while the second one 
employs knowledge of the minimum degree a solution may have. In the case of 
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a denominator which is monic in one variable, the first method transforms the 
original scalar 2-D polynomial equation into a 1-D matrix polynomial equation 
while the second method solves directly the original scalar equation but in the ring 
of 1-D polynomials with rational coefficients in the second variable. In a general 
case, the first method employs a matrix equation in 1-D polynomials with rational 
coefficients in the second variable while the second one uses a matrix equation 
in real 1-D polynomials. Needless to say that the first method can handle also matrix 
2-D polynomials and therefore, when used iteratively, it provides a way to solve 
general «-D polynomial equations. The same is true for the second method, in prin
ciple, but this is still a subject of a further research. In this paper, a refined second 
type method is employed which is tuned to cope with delay-differential systems. 

The CPA problem in delay-differential systems has already been solved by many 
authors via a current state feedback. Dynamic output of a restricted type has been 
considered by Paraskevopoulos and Kosmidou [18]. By the general dynamic output 
feedback has the problem been solved by Emre and Khargonekar [9] and Emre [7] 
for the class of "split" systems which, however, is not generic within scalar systems 
as shown by Lee and Olbrot [14]. The above restrictions has been overcome in Sebek 
[21] with a help of 2-D polynomial equations. This paper is, however, oriented 
more toward discrete-time 2-D systems and does not profit from the properties of 
delay-differential ones. Recently, the problem has been solved by Chiasson and Lee 
[4, 5] and Chiasson [3] using polynomial equations as well. However, they employ 
the Wolowich structure having let the desired characteristic polynomial divided into 
two factors. This is a little restrictive as not every 2-D polynomial can be factored 
such a way. Moreover, to assign the denominator of a transfer function arbitrarily, 
they force all the fixed poles to lay in the second factor. In addition, only plants 
having the numerator degree exactly one less then the denominator degree are 
considered in [4, 5]. On the other hand, the state feedback method has been improved 
by Manitius and Olbrot [15] and Watanabe, Ito and Kaneko [22] who employed 
more complex controllers including distributed delays. Such controllers appear 
to be more powerful but they are difficult to implement. 

It is the aim of this paper to present a new method for CPA by a general dynamic 
output feedback. The method consists in the solution of a linear 2-D polynomial 
equation. A general linear delay-differential plant with commensurate point delays is 
considered, both retarded and neutral, and a feedback controller is to be found 
within the same class. Two types of solvability conditions are given which provide 
two algorithms. The class of all polynomials, which can be assigned to a plant, 
is expressed in a parametric form. This is useful for a practical design. Besides, the 
class of all plants which an arbitrary characreristic polynomial can be assigned to is also 
parametrized. For retarded plants it is shown that there exists a minimal controller 
whenever the problem is solvable. Simple conditions are given under which this 
holds true for neutral plants. Furthermore, questions of causality, properness and 
stability are discussed. It is shown how this method can be used to stabilize neutral 
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plants which are not formally stable. Finally, a finite spectrum assignment is studied. 
Namely it is shown that one can always change an originally infinite number of poles 
to a finite one by means of a point delay controller. 

2. BACKGROUND 

As to the mathematics and notation, we employ real polynomials in two indetermi-
nates, d and s, which will be interpreted as delay and differentiation operators. So 
®[d], M(d), 0t\d, s] and ®[d] \s] (®(d) [s]) stand as usual for the ring of (real) 
polynomials in d, the field of rational functions in d, the ring of 2-D polynomials 
in d and s, and the ring of polynomials in s with coefficients from 0l\d] (&(d)), 
respectively. The greatest power of s occurring in a polynomial a will be called its 
s-degree and denoted by degs a. 

An ordered couple (d, s) of complex numbers is a zero of a e 0&\d, s] iff a(d, s) = 0. 
Polynomials a, b e 0t\_d, s] are zero coprime iff they have no common zero and 
factor coprime iff they have no nonconstant factor in common. Finally, a \ b means 
"a divides b" while (a, b) stands for their greatest common divisor. 

A single-input single-output linear delay-differential plant with point commensurate 
delays will be represented by its transfer function 

(2.1) b\a 

where 
a = a0(d) + at(d)s + ... + a„(d)s" 

b = b0(d) + bt(d)s + ... + bm(d)sm 

Here d = e~hs for a delay duration h ^ 0. a, be0t[d,s] so that ah bje0t[d], 
an # 0, bm =j= 0 and n — m. In addition, we assume that a and b are factor coprime. 
On the other hand, they generically have common zeros which are referred to as 
fixed poles of (21). 

The system (2.1) is said to be ([1]) causal or neutral iff a„(0) + 0, formally 
stable iff an(d) #= 0 for \d\ ^ 1, and retarded iff a„ eM. Of course, it is proper or 
strictly proper iff n >. m or n > m. 

To change the behaviour of a plant we apply a feedback controller with transfer 
function 

(2.2) yjx 

where x, y e 0l\d, s]. As we assume that both the plant (2.1) and the controller (2.2) 
are realized without hidden modes, the resultant interconnected system from Figure 1 
possesses the characteristic polynomial 

(2.3) ax + by = c 

On the other hand, facing a CPA problem, we are given a and b, the plant, and c, 
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a desired characteristic polynomial 

(2.4) c = c0(rf) + et{i) s + . . . + c2n-l{d) s2""1 

where cf e 0l\d\ and degs c = 2n — 1. To solve the problem we have to find x and y, 
a controller, to satisfy (2.3). That is why we need to solve a linear 2-D polynomial 
equation (2.3). 

Fig. 1. The résultant System. 

3. RETARDED SYSTEMS 

A retarded plant is characterized by a denominator which is monic in s, i.e. aa = 1 
in (2.1). In addition, to produce a retarded resultant system, we may well assume 
that also c2a-i = 1 in (2.4). 

At first, let us glance at (2.3) in 0t{£) [s]. This ring is Euclidean so that we may 
apply a standard 1-D theory [12] to get the following lemma (recall that a, b are 
assumed factor coprime): 

Lemma 3.1. There always unique x, y e &{d) [s] such that 

(3.1) ax + by = c and deg sy < n . 

What we need to find a controller, however, is a solution from 0l\d, s] rather than 
from M{d) \s\. Unfortunately, the ring 0l\d, s\ is no longer Euclidean so that we seem 
to be in a more difficult position. Nevertheless, a basic result still resembles the 
preceding lemma: 

Lemma 3.2. Let a„ = 1. Then the equation (2.3) possesses a unique solution 

x, y e M\d, s] satisfying 

(3.3) degs y < n 

whenever it is solvable. 

Proof. The original proof can be found in [20]. Suppose that x', y' e $[d, s\ 
is a solution of (2.3). The general solution then reads 

3.4) x = x' + bt 

y = y' - at 

for an arbitrary parameter t e M\d, s\. As a„ = 1, one can immediately divide y' 
by a to get y as a remainder. D 
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Putting Lemma 3.1 and Lemma 3.2 together and taking into account that M\d, s] c 
c 0t(d) [s], we can easy derive the main result of this section — necessary and 
sufficient solvability conditions: 

Theorem 3.3. Given a retarded plant (2.1) and a desired characteristic polynomial 
(2.4), the CPA problem has a solution if and only if x, y given by (3.1) satisfy 

(3.5) x, y e m\d, s] 

Moreover, then there exists a unique minimal controller, for which degs y < n, 
and this controller is given by 

(3.6) x = x and v = y 

Evidently, Theorem 3.3 provides a nice way to solve (2.3): we may simply solve 
it in 3&(d) [s] rather than in 0l\d, s\ This can be done by any Euclidean ring algorithm 
e.g. [10]. Once resulting x, y from (3.1) are indeed polynomials in both d and s, 
they immediately yield the desired solution (2.6). On the other hand, whenever 
they contain a fraction in d then (2.3) has no solution at all. 

Example 3.1. As an example, let us consider a plant having a = d + ds + s2 

and b = 1 + s along with the desired c = c0 + cts + c2s
2 + s3, c0, cu c2 e 0t[d\ 

Using any Euclidean ring method in 01(d) [s], we obtain the minimal solution (3.1) 

x = x = c0 — c t + c2 + s 

y = y = c0 - d(c2 - c t + c0) + (Cj - c0 - d) s. 

Notice that x and y are polynomials from 0t\d, s] for any c0, cu c2 6 0t[d\ It means 
that we can assign an arbitrary characteristic polynomial to its plant. 

Example 3.2. As another example, assign the characteristic polynomial c = c0 + s 
to the plant (b0 + s)j(a0 + s) where a0, b0, c0 e 0l\d\ and a0 + b0. Operating 
in 3&(d) [s] one gets 

x = l - ( c 0 - a0)j(b0 - a0), y = (c0 - a0)\(b0 - a0). 

It is immediately seen that the problem has a solution iff (b0 — a0) \ (c0 — a0). 
In particular, c0 can be arbitrary iff (b0 — a0) e M. Such a way, applying any 1-D 
method (in 01(d) [s]) for an undetermined c, can always derive solvability conditions 
for the given plant. The designer can then vary c, having these conditions satisfied, 
to meet additional requirements. 

It has been shown in the above examples that an arbitrary characteristic polynomial 
can be assigned to certain plants. In contrast to 1-D, such cases are no longer generic 
here: 

Theorem 3.4. One can assign an arbitrary characteristic polynomial (2.4) to a retard
ed plant (2.1) if and only if the following equivalent conditions hold: 
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(i) The matrix g is unimodular, where 

(3.7) = | a0,au ...,an 

a0,au ...,an 

b0, Ьu ..., bm 

b0, bu ..., b„ 

b0, bu ..., b„ 

are, respectively, m x (n + m) and n x (n + m). 

(ii) The plant has no fixed pole (i.e., a and b are zero coprime) 

(iii) There are u,ve 0t\d, s] satisfying the Bezout identity 

au + bv = 1 . 

Proof. See [21]. • 

In practice, one often looks for a proper controller. Now we show that the minimal 

controller is generically proper: 

Theorem 3.5. The minimal controller solving the CPA problem for a retarded 

plant (2.1) can be improper only if n = m and bm e 01. Otherwise it is always proper. 

Proof. This is easily seen when inspecting highest power in s coefficients in (2.3). • 

Example 3.3. While the Example 3.1 illustrates the situation when n > m, for the 

plant with a = 1 + ds + s2 and b = 1 + s2, the characteristic polynomial c = 1 -

- 2d + (1 + d) s + s2 + s 3 is assigned by the proper controller yjx = 

= ( — 2d — s)l(l + 2s) but the requirement c = (1 + d) s + s3 gives' rise to yjx = 

= (— 1 + s), the improper one. 

4. NEUTRAL SYSTEMS 

In a neutral plant (2.1), the leading denominator coefficient an e $[d~\ is a general 

polynomial but a„(0) = 1. As we want to produce a resultant neutral system as well, 

we may assume that also c 2 n-i(0) = 1. To simplify our notation, we denote by q 

the difference 

(4.1) q = n - m 

Let us start with the generic case of 

(4.2) (a„, bm) = 1 

Its not generic counterpart, (a„, bm) $ 01, will be sketched later on. 

At first, the analogue of Lemma 3.2 for neutral systems reads: 

Lemma 4.1. Let (an, bm) = 1. Then the equation (2.3) possesses (at least one) 

solution x, y e M[d, s] satisfying 

(4.3) degs v < n + q 

whenever it is solvable. 
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Proof. Let x', y' e M\d, s] be a solution of (2.3) and let degs x' = k and degs y' = 
= 1. Then all other solutions are again described by (3.4). To imitate the proof 
of Lemma 3.2, however, we must cope with the fact that a is no longer monic in s. 
Namely, to be able to divide y' by a, we wish to show that a„ divides y'u the leading 
coefficient of y'. To do this, we equate the coefficients at the highest powers of * 
in (2.3). This yields 

(4.4) a„x'k + bmy\ = 0 

whenever 1 >, n + q so that a„ \ bmy[. As (a„, bm) = 1 by assumption, a„ \ y[ 
results. Finally, iterating this procedure until degs y < n + q, the lemma is proved. • 

If n = m (q = 0), the inequalities (4.3) and (3.3) are identical: that is why there 
exists a unique minimal solution satisfying (4.3) in this case. 

For n > m, however, this is no longer true. AH the solutions satisfying (4.3) are 
called here low s-degree solutions and are parametrized via 

(4.5) x = x + bv 

y = y — av 

where x, y is any of them and v e 0t\d, s] is an arbitrary polynomial parameter up 
to s-degree q — 1. Generically, indeed degsy = n + q - 1. Only in particular 
cases (which will be treated later on) this set has a unique minimum satisfying (4.4) 
again. 

Analogously to the preceding section, Lemma 4.1 will serve us to derive solvability 
conditions. As now we have the whole set of low s-degree solutions rather than 
a unique one, we employ a different procedure. Form matrices 

(4.6) A = a0,au ...,a„ 
a0,au ...,a„ 

B = b0, bu . . .,bm 

b0, bu ...,bm 

b0, bu ..., b„ a0,au . . . , a - J 

C = [c0,cu ...,c2n-i~\ 

where A is n x 2n, B is (n + q) x 2n, C is 1 x 2n and all their entries are from 
3%\d\. For a low s-degree solution x and y form similarly 

(4.7) X = [x 0 , x 1 , . . . , x„_ 1 ] Y=[y0,yi,...,y„+,-i] 

Using the above matrices, the original 2-D scalar polynomial equation (2.3) can 
be transformed into a 1-D matrix polynomial equation 

(4.8) XA+ YB = C 

Now if (4.8) has a solution then clearly (2.3) has a solution as well. On the other 
hand, the converse is true to Lemma 4.L Thus, with a little help from 1-D polynomial 
matrix theory [12], we have derived the desired solvability conditions: 

Theorem 4.2. Given a neutral plant (2.1) with (a„, bm) = 1 and a desired charac-
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teristic polynomial (2.4), the CPA problem has a solution if and only if a greatest 

common right divisor of A and B is a right divisor of C. 

Moreover, then there exist low ^-degree solutions (4.3) which all can be obtained 

via the solution of (4.8). 

As a consequence of Theorem 4.2, one can solve 1-D polynomial matrix equation 

(4.8) by any 1-D method (see, e.g., [12]) and thereby gets a low s-degree solution 

of the CPA problem. In a particular case of n = m possesses (4.2) a unique solution 

which gives rise directly to the minimal solution of the CPA. In any case, other 

solutions can be obtained via (3.4). 

Example 4.1. As an example, let us consider a plant with a = d + (1 + d) s2 and 

b = d, and a desired c = c0 + c^s + c2s
2 + c3s

3, Cie0t\d\. For these data (4.8) 

takes the form 

~d, 0, 0, Ol = [c 0, cuc2, c 3] 

0, d, 0, 0 

0, 0, d, 0 

0, 0, 0, d 

Applying any 1-D method, we can find out that this equation is solvable iff d divides 

both c 0 and c t and then it has got a solution 

X - [c2,C3l + [tfi>tf2][-< 

[x0, x,] \d, 0, 1 + d, 0 ] + \y0, yu y2, y3~] 
[0, d, 0, 1 + d\ 

'[-i-Я 
Y = [-c2 + c0ld, -c3 + cx\d, - c 2 , - c 3 ] + \yx, v2] Yd, 0, 1 + d, 0 .1 

[o, d, 0, 1 + d\ 

which yields 

(4.9) 

x = c 2 + c3s — d(v i + v2s) 

y=-c2 + c0ld + (-c3 + Cljd)s - c2s
2 - c3s

3 + (d + (1 + rf)*2)^ + v2s) 

For an arbitrary o l f v2 e 3&\d\, this is the parametrization of all the low s-degree 

solutions. 

If we denote by G a greatest common right divisor of A and B, we can easily 

parametrize all the characteristic polynomials up to s-degree 2w — 1 which can be 

assigned to a given plant. 

Theorem 4.3. Let be given a plant (2.1) with (a„,bm) = 1. All the ce@[d, s] 

satisfying deg s c Si In — 1 for which the CPA problem is solvable are expressed 

by means of a matrix C given by 

(4.10) c = [ C o , t ? 1 , . . . , g 2 n _ 1 ] G 

with arbitrary parameters e( e i 
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Consequently, having computed G, the designer is free to choose e, for the resultant 
characteristic polynomial to meet additional requirements. 

Again, there are plants which an arbitrary characteristic polynomial can be 
assigned to. Unlike classical 1-D systems, such cases are not generic within delay-
differential systems at all. 

Theorem 4.4. One can assign an arbitrary characteristic polynomial (2.4) to 
a neutral plant (2.1) with (a„, bm) = 1 if and only if the following equivalent condi
tions hold: 

(i) A and B are right coprime (i.e., det G e ^ ) 
(ii) The plant has no fixed poles 

(iii) The matrix ~ given by (3.7) is unimodular. 

Proof, (i) is evident from Theorem 4.3. The equivalence of (i) and (iii) can be seen 
by inspection and the equivalence of (ii) and (iii) is a standard result [22]. • 

The reader might notice in the Example 4 1 that for most of c is the solution (4.3) 
improper. Only if (1 + d) divides both c2 and c3, one can take vt = c2/(l + d) 
and v2 = c3/(l + d), vuv2e £%[d~\ so that a proper solution results. We have shown 
that for retarded plants is the minimal solution generically proper. This holds true 
for neutral plants as well. There is, however, a basic difference here: minimal controller 
generically does not exist for neutral plants. Some authors [5, 19, 17] have already 
noticed that a derivative feedback is necessary to change the leading coefficient. 
This, however, is exactly true only if m = n — 1. We are going to prove here that 
the improper (derivative) feedback is not necessary for m = n and, on the other 
hand, the first derivative is even not sufficient when m < n — 1. 

To this analyse, define for q > 0 matrices 

(411) A„ = an 

an-ì 

B„ = K 
bm-uK 

bm-q+i> •••>b„ 

Cj = [C2n-«> •••' C2n-{\ 

Now the properness conditions are as follows: 

Theorem 4.5. Let the CPA problem with (a„, bm) = 1 be solvable. 
If n > m then there exists a unique proper solution (the minimal one) if and only 

if Aq is a right divisor of C„. 

If n = m then the minimal controller is proper whenever bm does not divide 

c2n-v 
Proof. The case of n = m can be proved simply by inspecting the highest s-degree 

coefficients in (2.3). 
For n > m, denote by x', y' a low .--degree solution. Comparing coefficients at 
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powers of s higher than n + m — 1 in (2.3) one gets 

[x'm,..., x'„_1'] Aq + [y'n,..., y;+,_i] Eq = Cq 

or, when postmultiplying it by A"1, 

(4.12) [x'm,..., x U ] + [y'n,..., y'n+i_{\ Bql~q
l = C&1 

As the first term is a polynomial, the second is so iff the right hand side is a poly
nomial. Now BqA~% = A~lBq and the both fractions are coprime so that Aq is a right 
divisor of Cq iff it is a right divisor of [y'n,..., y'n+q-\\. Just in such a case one can 
apply (4.5) to reduce the s-degree of y below n which yields the proper (and minimal) 
solution. D 

The reader should notice that, whenever n > m and a„ g 3%, then the requirements 
of Theorem 4.5 cannot be satisfied generically. By means of a proper controller, 
therefore, we cannot assign the coefficients at high powers of s freely: Aq must 
divide Cq. 

Example 4.2. As an illustration, consider a = 2 + (2 + d) sz, b = 1 and c = 
= 2 + 2s + 2s2 + (2 + d) s3. This results in yjx = (-ds2 - (2 + (2 + d) s2) v): 
: (1 + s + v). Although a2 = c3, the solution is improper for any v e (%[d, s]. 

The reason is that A2 = is not a right divisor of C2 = [d, 2 + «/]. 

To make our exposition complete, let us finally discuss the non-generic case 
of (a„, bm) 4 8i- The main difference this brings is that an upper bound of low s-degree 
solutions is now higher than (4.3). 

Lemma 4.6. Let r _ 0 be an integer such that the lower-triangular greatest common 
right divisor of matrices Ar+1 and Br+1 defined by (4.H) has its last column-last 
row entry from ^ . Then the equation (2.3) possesses (at least one) solution x, ye 
e 8t[d, s] satisfying 
(4.13) deqs y < n + q + r 
whenever it is solvable. 

Proof. Let x', y' e 0i[d, s] be a solution of (2.3) Let degsx' = k, deg, y' = 1 
and define j — 1 — r. As in the proof of Lemma 4.1 we wish to show that a„ \ y[ 
whenever 1 >. n + q + r. To do this, we compare the coefficients at powers of s 
higher than 1 — 2r + m in (2.3) and, as in the proof of Lemma 4.5, we get 

(4.14) [Xj-q,..., xk] + [y'p ..., j i ] Br+ tI;+\ = 0 

Now Br+1Ar+1 = A~+1Br+1 = F~*H, where F and H are some left coprime lower 
triangular matrices. By the definition of r, the last-column last-row entry of F is 
equal to a„. As (4.14) can hold only if this F is a right divisor of [y'p ..., yi], a„ \ y[ 
results immediately. D 
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If we define matrices Ar, Br and Cr of sizes (n + r) x (2n + r), (n + q + r) x 
x (2n + r) and 1 x (2n + r), respectively, analogously to (4.6), we can transform 

the original equation (2.3) into 
(4.15) XrAr + YrBr = Cr 

(Notice that for r = 1 we have A1 = A, Bt = B and Cx = C while (4.15) becomes 
(4.8).) From an analogy, the general solvability conditions are as follows: 

Theorem 4.7. Let r be the least integer satisfying the assumption of Lemma 4.6. 
Then the CPA problem has a solution if and only if a greatest common right divisor 
of Ar and Br is a right divisor of Cr. 

If (a„, bm) = 1, then simply r = 0 and this theorem is consistent with Theorem 
4.2. Let (a„, bm) = g £ @ so that a„ = ga„ and bm = gbm. Then r = 1 iff (g, a„_1b~m -
- bm-ta„) = 1 (see [20]). Otherwise r > 2. 

5. CAUSALITY AND PROPERNESS 

From a practical point of view, it is often desirable to produce a causal (neutral) 
controller for which the leading coefficient xt e ^ [ d ] satisfies xt(0) + 0. Of course, 
we assume that the plant itself is causal, a„(0) = 1, and also c2„_1(0) = 1. When 
comparing coefficients at highest powers of sin (2.3), we can easy derive the theorem: 

Theorem 5.1. If n > m then the minimal controller is always causal. If n = m 
then it may be non-causal only if bm(0) + 0. 

In most of practical cases we want to produce a proper resultant system. Naturally, 
we assume that the plant (2.1) itself is proper. On the other hand, the proper con-
trolers have already been discussed in the last section. However, in the light of recent 
studies, the properness of a controller is not the crucial point. When connecting 
systems, one should take care of the internal properness of the resultant system [13]. 
This means, roughly speaking, that no puis modes can occur in the system as a res
ponse to initial conditions even if the system may include some derivative parts. 
Adapting 1-D results of [13] to delay-differential systems, one can easily prove 
the theorem: 

Theorem 5.2. The interconnection of a plant (2.1) and the minimal controller 
results always in an internally proper system. On the other hand, using a higher 
order (nonminimal) controller (assigning c with degs c = 2n — 1), the overall 
system is never internally proper. 

So using a minimal controller we need not take care of the properness. When 
this minimal controller fails to exist, however, knowledge of an improper low 5-degree 
solution may still be useful: For example, the designer can use it to look for additional 
measurable signals (derivatives of the output) in the real plant. Feeding them back 
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one eliminates the need of an improper controller. As another way out, one can 
simply increase the degree of a desired c. Taking degs c = 2n — 1 + k, k > 0, 
all the solutions (4.5) with degs v > k give rise to an internally proper resultant 
system. 

6. STABILITY 

In most practical cases we want to produce a stable system. That is why we interest 
whether there exists a stable c (2.4) for which the problem has a solution. For the basic 
studies of stability of delay-differential systems, the reader is referred to [1]. Emre 
and Knowles [8] recently developed stabilizability results for retarded and formally 
stable neutral plants. In our context, their results read as follows: 

Theorem 6.1. For a retarded plant (2.1), there exists a stabilizing controller (2.2) 
if and only if every complex number s such that a(e~hs, s) = b(e~hs, s) = 0 satisfies 
Re s < 0. 

For a formally stable neutral plant (2.1) there exists a stabilizing controller (2.2) 
if (and practically only if) there is a real y > 0 such that for every s for which 
a(e~hs, s) = b(e~hs, s) = 0 is Re s < -y. 

Proof. See [8]. For the frequency domain interpretation see also [5, 3]. • 

Hence a retarded (formally stable neutral) plant can be stabilized if and (practically) 
only if every its fixed pole (d, s) such that d = e~hs satisfies Re s < 0 (—y). The 

stabilizability can therefore be checked via det - as it yields the fixed poles. If all 

of them such that d = e~hs lay in the stability region, one can find in the class of all 
assignable polynomials (4.10) a stable one. This, however, can still be a difficult 
task. Moreover, nothing is known about the degree of this polynomial thus far. 

For systems which are not formally stable no stabilizability results are known 
up to now. A method to change the leading coefficient by a derivative state feedback 
was proposed in [17, 19] which is applicable for n = m + 1. Using polynomial 
techniques, however, one can simply change the leading denominator coefficient 
for general m <. n. As a result, a formally stable or even retarded system is produced 
for which the stabilizability conditions are known. We now illustrate the procedure 
on simple examples. 

Example 6.1. For a not formally stable plant with a = 1 + (I + d)s and b = s 
the controller yjx = — d yields the c = 1 + s and thereby a retarded resultant 
system, which is directly stable. 

Such a way, one can always produce a formally stable system. This can be a proper 
controller whenever n = m. If m < n, however, proper controllers cannot help 
(Theorem 4.5). Still, an improper one will do the job. 
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Example 6.2. For the plant having a = l + ( l + d)sbutft = itf one should use 
1 improper controller to produce a retarded system, for example, y\x = - s yields 
_ 1 i _ » 

an improper 
c = 1 + s. 

7. FINITE SPECTRUM ASSIGNMENT 

In practical applications one may find convenient to produce a closed-loop system 
having only finite number of poles. In such a case, c e 0t\s] must be taken as in Exam
ple 6.L This problem was first considered by Manitius and Olbrot [15] who employed 
distributed delay controllers. We will show here that it is always solvable even within 
the class of point delay controllers. 

Theorem 7.1. For any plant (2.1) there is a controller (2.2) such that 

ax + by = c e M\s] 

Proof. Denote by (dh s,) common zeros of a and b. They are finite in number 
as far as a and b are factor coprime. The Hilbert Nullstellensatz [21] then implies 
that there always exist integers Z; such that 

(7.1) ax + by = rl(* - -.)'« 

has a solution x, ye ${d, s] • 

To form a suitable c, sf can be computed as the solutions of equations a(dt, s;) = 0 

where dt are zeros of det I g . Alternatively, expressing a and b as polynomials 

from ^ [ s ] 

-_[£ 
d], one can use matrices A' and B' analogues to (3.7) and then c = 

e 0t\s] will do the job. 

The degree of c depends on the number of fixed poles (counted with their multi
plicities in s). Moreover, by a controller (2.3), the poles can no longer be shifted 
at will when they are to be finite in number. This is clear from (7.1). Simply c must 
vanish for all s = s;. As a consequence, a stable finite spectrum assignment is not 
possible if Re s; _• 0 for some i although the plant can be well stabilizable by assigning 
an infinite number of stable poles. 

8. CONCLUSION 

A 2-D polynomial method of characteristic polynomial assignment for linear 
delay-differential systems has been described in the paper. Although this approach 
resembles the classical 1-D one for the first sight, and although the design procedures 
has been transformed into classical (1-D) Euclidean ring algorithms, we have en
countered here phenomena witnessing that these systems differ intrinsically from 
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the classical continuous-time systems without delays. First of all, only such characteris

tic polynomials can be assigned which possess all the fixed poles of the plant (Theo

rems 3.3 and 4.2). In other words, an arbitrary polynomial assignment is possible 

only if the plant is lacking of fixed poles (Theorems 3.4 and 4.4). In addition, if one 

is limited to apply proper controllers, the class of available characteristic polynomials 

is even more reduced (Theorem 5.5). To assign a polynomial outside this class, 

the use of an improper controller is a must. As expected, also stabilizability problem 

is more difficult. Nevertheless, the 2-D polynomial technique can be employed to 

stabilize even not formally stable plants. Finally, it has been shown that one can 

always change an originally infinite number of poles to a finite one. 

(Received January 7, 1987.) 
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