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HIERARCHICAL CONTROL 
VIA AUGMENTED LAGRANGIANS 

JAROSLAVA MIKULECKÁ 

Hierarchical control structures are composed of local decision making units and a supremal 
unit (coordinator). The present work deals with a well known hierarchical algorithm based on 
linearized augmented Lagrangian. An extension of the algorithm for the case of global constraints 
is given. The algorithm has been applied to several problems and the execution time of the 
hierarchical algorithm has been compared to that of the global solution. 

1. INTRODUCTION 

The basic idea of hierarchical system theory is to decompose a large system into 
several smaller subsystems which can be analysed and optimized more easily. The 
optimizations of the subsystems are then coordinated in such a way that the overall 
system optimization is solved. The problem considered will be static optimization. 
There are various two-level optimization algorithms having different areas of applica
bility. They require different properties of the mappings and the constraint sets that 
describe the system and its optimization problem. In spite of their practical im
portance (the optimization of the steady-state is current practice of many industrial 
processes), only little attention has been paid to their implementation aspects and 
to their time complexity. In some systems, the following question can arise: Is a hier
archical method better than a global optimization from the point of view of time 
complexity? The answer to the last question obviously depends to a great extent 
on the coordination algorithm used. Some work in this field has been undertaken 
by Irwing, Nicholson and Sterling [3] where a comparison of the different techniques 
from the point of view of accuracy and computer requirements are given. 

We shall be concerned with a well known hierarchical algorithm based on linearized 
augmented Lagrangian [2]. The local problems were optimized using the LPNLP 
code [4] in order to have the same theoretical background for both levels. 

There had been several other reasons for using the LPNLP code: 
— it solves the general constrained problem of the form: maximize a function of n 
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variables subject to the equality constraints, inequality constraints, and bounds 
on each variable; 

— it can be tailored to meet particular problem needs by the selection of various 
algorithm parameters; 

— it is relatively effective in comparison with other nonlinear programming codes 

M; 
— it is convenient and versatile for the user; some subroutines of the LPNLP can 

be used in the implementation of the coordination algorithm (involving the case 
of global inequality constraints). 

We have applied the LPNLP code to several problems and the execution time 
of the hierarchical algorithm has been compared to that of a global solution (obtained 
by the same LPNLP code). 

2. PROBLEM DESCRIPTION 

Consider a system split into N subsystems (Fig. 1) with the following notation: 
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Fig. 1. Hierarchical structure for steady-state control. 

u, = vector of interaction inputs from other subsystems to the ith subsystem, 
ct - vector of manipulated variables (controls) for subsystem i, 
yt = vector of output variables for subsystem i, 
Hi = ith interconnection matrix composed of zeroes and ones, 
F; = ith subsystem input-output mapping, 

y ={yi,yi,--^yN)-
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Then the controlled system will be described as follows 

(2.1) y, = Ft(ct, M,), Ui = Hiy, i=l,2,...,N 

The couplings are separable: N 

When we denote 

"-• = E I I . 7 ^ 
J ' = l 

C = (c l5 C2, ,...,CN) 

u = (uu u2, ...,UN) 
then 

(2.2) y = F(c, u) and w = Hy 

where 
/ ^ ( C l . U l A / V 
E2(c2,M2) tf2 

E(c, u) = i and if = V 
\FN(cN, uN)l \HNj 

Next we assume that the problem constraints have the following form: 
— local constraints 

py(c„«,) = 0 , j = 1,2,..., Du 

(2.3) cjj/c,, «,) g 0 , J = I,2,. . . ,Z>2 I 

flfs = c i t = °ik J fc = 1, •••, dim c ; 
aik = uik = bik , k = dim c; + 1 , ..., dim c; + dim w, 

— global resource constraints 

(2.4) ^ r , / ^ Ui) - r0J £ 0 , y = 1, 2, ..., D 
i = l 

where the a;/i, fc1/k and r0J are real constants. The functions ptj, q-^ and rtJ can be 
linear or nonlinear. 

We shall assume that with each subsystem a known local objective function Qt(ch «;) 
is associated and the local decision maker will tend to maximize it with regard 
to local constraints only. The overall objective function is additively separable and 
given by 

(2.5) Q(c, u) = Z 6,(c„ u,) 
; = i 

In the above description the overall system is considered in the decomposed way, 
interactions are unbalanced, and in general 

N 

u * Hy, ^ rlci, u) % r0 
; = l 

The task of the coordinator will be to influence the local decision making in such 
a way as to maximize Q and simultaneously to force the interactions into balance 
and to satisfy the global resource constraints. 
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3. THE LINEARIZED AUGMENTED LAGRANGIAN METHOD 

As stated above, the optimization problem is 
N 

(3.1) max £ Q/a, u,) 
(C»)Ef i = l 

subject to 

— interconnection constraints 

(3.2) u - Hy = 0 

- global resource constraints 
(3.3) X r / c „ u ; ) - r 0 < ; 0 

i 
where 

VODI 

and "V is the set of ( c , u;) satisfying the local constraints. T/ie augmented Lagrangian 
of the above problem is given by 

(3.4) La = L- wtPt - w2P2 - w3P3 

where w = (wl5 w2, w3) is a set of three penalty weights with each w; > 0, a and j8 
are Lagrange multiplier vectors and 

(3.5) L = Q ~ <«,« - IIy> - <P\ I r,(ct, 11.) - r0> 
i = l 

(3.6) Px = ||u - Hy\\2 

(3-7) P2 = Z ( i rtJ% u.) - r0 , )2 ; Ca = {;: /?, > 0} 
j sc„ r = i 

(3.8) P 3 = I ( E ' - , / c i , U i ) - r o y ) 2 ; Cd - {;: jS, = 0 and £ -,, = r0;} 
J E C „ i = l i = l 

With the augmented Lagrangian defined in (3.4) there is a direct relationship 
between the constrained local maxima of the original problem and the unconstrained 
local maxima of La. This relationship is clarified by the following theorem. 

Theorem 3.1. Given (c*, u*, a*, fi*) that satisfy Kuhn-Tucker relations, and given 
sufficiently large but finite w, La[c, u, a.*, fi*, w) satisfies second-order sufficient 
conditions for an unconstrained local maximum at (c*, w*), if and only if the non
linear problem satisfies second-order sufficient conditions for a constrained local 
maximum at c*, u*, a*, /?*. 

The p roof is given in [4]. 

The augmented Lagrangian suffers from a serious drawback, namely the separa-
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bility of ordinary Lagrangian has been destroyed due to the crossproduct terms in 
jv 

the penalty terms Pu P2, and P3. The terms <u, HF(c, u)> and [ £ r;,(c;, u;)]
2 

; = i 

cannot be directly transformed into a summation of "local" terms, each of which 
dependent only on (ct^i) for some i = 1, 2, ...,iV. To overcome this difficulty, 
Stephanopoulos and Westerberg [7] proposed the following expansion of the cross 
term <u, HF(c, u)> into a Taylor series around some point (c°, u°): 

(3.9) <u, HF(c, u)> = -<u°, HE(c°, u°)> + <u, HE(c°, u°)> + <u°, HF(c, u)> 

Analogically, 

(3.10) drlJ(cl,ut)Y±[irtJ(clum2 + 
i = 1 i = 1 

+ Z2(>:r i,(c°,«°).[r ;,(c ;,u ;)-r i,(c°,«°)] 
i = 1 i = 1 

Denote: 
r% = ^(cl u?) , r;, = r„(C(, u ;), E° = E;(c°, «?), 

E; = E;(c,,M;), G?-=G,<-?.«?). Q I - G I M 
Let us substitute now (3.9) and (3.10) into (3.4). Then the linearized augmented 
Lagrangian can be written as follows 

Ljc, u, a, P, w, c°, u°) = 

= £ Qt - <a, u - HE> - </?,» ; , - r0> - w.{||«l2 + ||/fE||2 + 
i = l I 

+ 2w,{- <u°, HF°> + <a, HE°> + <u°, HE> - w2 £ {[r2, - , 

- ( I 4 ) 2 + 2 ( I ^ - r 0 , ) > : r ; , -

- ^ E { [ ^ - ( I 4 ) 2 + 2(Zr°-r0 , )>:r ; ,} 
jsft, i i i 

The last expression can be separated into JV "local" augmented Lagrangians: 

Lat(ch uh a, p, w, c°, u°) = 

= Qi ~ <«,-, «i> + I <<*,, * W - Wilju.-Jl2 - wJE,-!2 -
J = I 

(3.11) - 2W.[<MJ, H,E°> - <u;, #;E°> - £ <«°, tf,;E;> -
J = I 

- Z [ft + 2w2(»?, - ro,)] ,,, - 2w3 Z [ (Z^) - r0J] ru - K 
jeCa i j s C b i 

where K does not depend on (c;, u;). 
At this stage we can use the LPNLP-code (see [4]) which has the same theoretical 

background. The algorithm encoded uses augmented Lagrangian to solve a nonlinear 
optimization problem. The algorithm consists of alternating unconstrained maximiza
tion phases and update phases. During the mth maximization phase, the multipliers 
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a, p and penalty weights wu w2, w3 are held fixed, and a quadratically convergent 
search is employed to find the maximum of La. At the completion of the mth maximiza
tion, phase, the multipliers and weights are updated. The LPNLP-code involves 
a general subroutine UPDATE for updating the multipliers and weights and there
fore it is possible to use this subroutine in the upper (coordination) level to adjust 
the multipliers (i.e., the coordination variables). 

4. THE ALGORITHM 

The hierarchical (two-level) algorithm for solving problem (3.1) with the con
straints (3.2) and (3.3) is given below. 

1. Set the initial values k = 0, c \ u \ ak, pk, w\, w\, w\ 

2. On the local level find the maximal values (c\+1, u\+1), i = 1, 2 , . . . , N of "local" 
augmented Lagrangians La(ch ut, ak, j3\ wk, ck, uk) given by (3.11) 

3. On the upper (coordination) level test the stop condition 

(4.1) \\ck+1 - ck\\ < e. A \\uk+1 - uk\\ <e2A \\uk+1 - HF(ck+1, uk+1)\\ < e3 

If the condition is not satisfied, calculate 

(4.2) ak+1 = ak + 2w\uk - HF(ck, ufc)] 

If j eCa = {j: P) > 0} then 

[0 if # - 2 w * [ r 0 , . - £ r ' / j _ 0 
(4.3) Pk+1=\ N «-* 

[p) - 2wk
2\r0j - £ r\j] otherwise 

Ifj 6 C6 = {j: j8$ = 0, i x . _ r 0 , . } then 

(0 if ro-ir\J = 0 
(4.4) P)+1 = \ '-1 

[ -2w| [ r 0 i - %r\j] otherwise 

The w\ values used in (4.2), (4.3) and (4.4) are those values which were used during 
the preceding maximization phase. After the new /J/s are generated, the indices belong
ing to the sets Cb and Ca are updated, and are held fixed for the next maximization 
phase. The w;'s are updated after the multipliers are updated, by a factor y _ 1. 
This procedure continues until given upper bounds wimax's are reached. The penalty 
weight update rule then is 

*:+i _ Jw;ma* , if w; _ wimax , i = 1, 2, 3 
' \ywt, otherwise 

It is important to note that the initial w.'s must be large enough to prevent a con
straint breakthrough from occurring. 
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5. COMPUTATIONAL EXPERIENCE 

We have applied the algorithm given in the previous part to the following examples. 

Programs were written in FORTRAN IV and implemented on an M 4030 computer. 

All local-level problems were solved by means of the LPNLP-code [4] with the 

precision 

||(c*+i _ c * ) - ( u * + 1 -uk)\\ < 0 0 5 

and 

||VLfl|| < 0-03 (The gradient with respect to (c, u).) 

The coordinator problem was solved with the precision 0-1. 

Example 1 ([1]). 

Let us consider the steady-state system shown in Figure 2. The subsystem models 

are as follows. 

Subsystem 
1 Уi u 

JSubsystem 

2 У2

 u з 

(Subsystem 

3 

TTTT TTTT T J 1 
CHC12C13CK C21C22C23C24 S i °32 C 

Fig. 2. System structure used in Example 1, 

Subsystem 1: 

,-j _ 8 - C l l - c 1 2 - c 1 3 - c 1 4 

Qi(cu «i) = - ( 1 - d - ) 2 - (2 - c 1 2 ) 2 - (3 - c 1 3 ) 2 

0 g c u g 1 A 0 g c12 g 2 A 0 g c 1 3 g 3 A 0 g c 1 4 g 8 

Subsystem 2: 
j ; 2 _ 4 + U2 - C21 - C22 - C23 - C24 

g 2 (c 2 , u 2) - - ( 2 - c 2 1 ) 2 - (2-5 - c 2 2 ) 2 - (3-5 - c 2 3 ) 2 

0 ^ c 2 1 < 2 A 0 < c 2 2 < 2-5 A 0 ^ c 2 3 < 3-5 A 0 < c 2 4 g 4 

Subsystem 3: 

Q3(c3, u3) = - (1 - c 3 1 ) 2 - (1-5 - c 3 2 ) 2 - (2-5 - c 3 3 ) 2 

2 + u 3 - c 3 1 - c 3 2 - c 3 3 ^ 0 

0 g c 3 1 ^ 1 A 0 g c32 g 1-5 A 0 g c 3 3 g 2-5 

The overall objective function is given by 

e(c u) _ £ e,(c(J u,) 
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The system structure is given by /O 0 0 
# = 1 0 0 

\ 0 1 0 

The algorithm stops after 6 upper-level calls. 

Example 2 ([2]). 

We consider the steady-state system shown in Figure 3. The subsystem models 
are as follows: 

î r Q, c c 

ггг 
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Subsystem 
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Subsystem 
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Subsystem 
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U1 
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У22 
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"22 У22 
uз 

Fig. 3. System structure usec 

Subsystem 1: 

in Example 2. 

yt = cu - cl2 + 2ul 

Qi{cx, «i) = - ( « i - 4)* - 5(cn + c 1 2 - 2)2 

c n + c 1 2 = 1 A 0 g «i g 0-5 
Subsystem 2: 

>21 = c 2 i - c 2 2 + M21 - 3w 2 2 

y 2 2 = 2c 2 2 - c 2 3 - « 2i + u22 

Qz(c2, u2) = - 2 ( c 2 1 - 2)2 - c 2

2 - 3c 2

3 - 4M 2 , - « 2

2 

0-5cu + c 2 2 + 2c 2 3 = 1 A 4c 2 1 + 2c 2 1 + 0-4w21 + e 2 1 c 2 3 + 0-5c23 + u\x S 4 

Subsystem 3: 

>'3 = c 3 i + 2-5c32 - 4w3 

6 3 (c 3 , u 3) = -(-31 + I) 2 - ("3 ~ I ) 2 - 2-5c2

2 

c 3 1 + u 3 + 0-5 ^ 0 A 0 g c 3 2 ^ 1 

The overal objective function is given by 

Q(c, u) =- f e ;(C i, ut) 
i = l 

The system structure is given by 
/0 1 0 0\ 
l O O o ' 
0 0 0 1 

\o 0 1 0/ 

The algorithm stops after 7 upper-level calls. 

We have found by the global solution of the above examples by means of the 

H = 
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LPNLP-code with the precision 

\\(ck+1 -ck)-(uk+1 - O f < 0 1 
and 

|VLa | | < OT (the gradient with respect to (c, u)) 

The comparison of the execution time of the hierarchical algorithm with the global 
optimization is given in Table 1. 

Table 1. The Execution Time for Getting Optimal Solution. N — number of variables, k — num
ber of upper-level calls, T — average execution tirn^ in 1 local-level optimization. 

Example 1 Example 2 

N k T N k т 

Subsystem 1 
Subsystem 2 
Subsystem 3 

4 
5 
4 

6 
6 
6 

1-3 
1-7 
1-8 

3 
5 

з 

7 1-4 
7 1-7 
7 1-4 

Global solution 11 - 3-4 11 - 5-5 

6. CONCLUSION 

If the computation speed of the hierarchical algorithm is judged from the point 
of view of the execution time in the slowest subsystem, then the hierarchical solution 
in the Example 1 will be 3 times slower, and the hierarchical solution in the Example 2 
will be twice slower than the global solution. 

Let us assume that the execution time of the same type problems solution (using 
the LPNLP-code) is approximately the linear function of the number of variables N 
(for greater TV). The above assumption is confirmed by the test problems analysis 
given in [4]. If the execution time of the global solution with N variables is T, then 
the executive time of the problem with N/k variables will be approximately Tjk. 
If we use the hierarchical algorithm which stops after k upper-level calls, then one 
local-level should not have more than Njk variables. 

(Received June 5, 1986.) 
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