
Kybernetika
CONTROL OF UNCERTAIN PROCESSES:

APPLIED THEORY AND ALGORITHMS

VACLAV PETERKA

ACADEMIA

PRAHA

Some advances in digital control of continuous linear stochastic processes with unknown
parameters are reported. The theory is developed with emphasis on algorithmic and numerical
aspects. Stochastic input-output models of AR.MA form, contingently multivariate and with
time delay, are used to represent the process to be controlled but, for numerical reasons in cases
of fast sampling rates, also the theoretically equivalent Delta models are considered in parallel.
PASCAL procedures, suitable for real time computation and microprocessor implementation,
are given for the main resulting algorithms.

1. INTRODUCTION

Most processes met in practice are uncertain in the sense that it is not possible
to determine what the future output of the process precisely will be. When modelling
such process for control-design purposes two kinds of uncertainties are encountered.
The first one is due to stochastic nature of real processes. This uncertainty cannot
be removed but it can be described by suitable stochastic models and thus taken
into account. The second kind of uncertainty arises when it is a priori not known
which stochastic model in the set of possible models is the "true" one. This second
kind of uncertainty can be removed, at least partially, by identification of the stochastic
model on the basis of the input-output data observed during its operation. The follow
ing text deals with direct digital control of processes subject to the both above
uncertainties.

The paper is a report on some recent advances in the research of industrial process
control carried out at the Institute of Information Theory and Automation of the
Czechoslovak Academy of Sciences. It can be considered as a selfcontained continua
tion of the survey of former results presented by the author's colleagues in [3],
(For references see end of each section.)

1.1. Motivation and layout of the paper

The LQG control theory appears to be a suitable basis for designing of control
algorithms. However, when trying to apply practically the available theoretical
results to industrial control problems difficulties of several kinds arise. The stochastic
state space models in their general form, as considered in the standard theory, are
often not available and cannot be identified solely from input-output data. The
problem formulation often has to be nontrivially modified to meet the practical
needs. Theoretical results (e.g. the matrix differential or difference equations of
Riccati type) are not suitable for numerical calculation with limited precision of
algebraic operations.

Most but not all of these difficulties can be removed by considering the input-
output models of regression type as described in [3] and [7]. The regression models
can be easily identified even when their parameters vary in time [4, 5], and all
successful industrial applications we have been involved in are based on these models.

However, the choice of a suitable sampling rate still remains to be a problem. Simple
self-tuning controllers reported in [1] have been designed for relatively long sampling
period which must be chosen by the user and is important for proper functioning.
Faster sampling gives, in general, better quality of control but then a higher order
of the employed regression model is required in order to cover a sufficiently long
past history of the process. This, of course, leads to higher computational burden
both for process identification and control law synthesis. In case of very fast sampling
rates, approaching the continuous control, also numerical difficulties can be expected.

In order to cope with fast sampling rates attempts have been made to approach
the problem from the side of optimal continuous control. Unfortunately, the conti
nuous stochastic control theory based on state space models leads to feasibility
problems and seems to be rather an interesting academical topic than a useful tool
for practicing engineers. Until now only asymptotically optimal synthesis based
on polynomial algebra has been found practicable in real-time computation when
limited to simple low order cases [6]. It also turns out that a proper discretization
of the continuous solution, as required for digital implementation, is not a simple
task as it might seem.

These unsuccessful, or only partially successful attempts led the author back to
discrete-time standpoint but with different form of the input-output models. It has
been found that the input-output relation, when expressed through difference oper
ators rather than as weighted sum of neighboring samples, is less sensitive with
respect to rounding errors, especially in case of fast sampling. Independently, the
same observation has been made by Goodwin [2] who introduced the name "Delta
models" for such representation of sampled continuous processes and also gives
some analyses supporting this observation. In case of fast sampling Delta models
can be considered as a suitable approximation of stochastic differential equations
while for slower sampling rates they are just an alternative form of standard ARM A
models with no approximation involved.

In the present paper the LQG control and estimation theory is revised with emphasis
on algorithmic and numerical aspects. Both ARM A and Delta models are considered
in parallel. Numerically robust (insensitive with respect to rounding errors) and
efficient algorithms for real-time identification and optimum control synthesis,
suitable for self-tuning control, are developed. The presentation is arranged in the
following manner.

In the rest of this Introduction the considered control loop with continuous
stochastic process and digital controller is described, practical objectives are stated,,
and the main notational conventions are introduced.

Section 2 is devoted to basic tools which will be repeatedly applied throughout
the paper. They are: quantitative description of uncertainties by probability distribu
tions in Bayesian interpretation, the elementary algorithm of "dyadic reduction",
and the application of the latter to decomposition and minimization of quadratic
forms and to operations with multivariate normal probability distribution.

In Section 3 linear stochastic input-output models of positional and incremental
types and of ARMA and Delta forms are introduced and transformed into a uniform
canonical state-space form suitable for numerical solutions. Simple procedures for
digital simulation of continuous stochastic processes and for transformation
of models between ARMA and Delta forms are included.

The special state form of the stochastic input-output models makes it possible
to derive the filter for real time estimation of the model state which is simpler and
numerically more robust than the standard Kalman filter. This is shown in Section 4.

Optimum control synthesis is the topic of Section 5. After general discussion
of the problem suitable quadratic criteria are introduced and minimized for the above
stochastic models with known parameters. The special canonical form of the state-
space model is exploited to obtain effective numerical algorithms yielding the optimum
control law operating on the estimate of the state (more precisely, on the expected
value of the model state conditioned on the known past data).

The case of unknown parameters is considered in Section 6, where the problem
of simultaneous parameter estimation and state estimation (and prediction in case
of time delay) is solved. It is shown that, for given or suitably chosen c-parameters
of the ARMA model or its Delta form, the problem can be solved exactly within
normal distributions. Algorithms are derived which update the statistic which is
sufficient both for parameter and state estimation and defines the corre3ponding
joint probability distribution.

In Section 7 the problem of dual control is discussed and a well feasible numerical
solution of the LQG self-tuning control is suggested.

To support proper understanding of what the algorithms really do and what is
the meaning of each number entering the numerical computation each section starts
with the conceptual solution of the given problem in terms of conditional probability
distributions. Then this general solution is specialized for the considered linear
stochastic models, the corresponding algorithms are derived, and finally if appro
priate, the PASCAL procedures for immediate use are listed.

If it will aid to simplify the exposition or to make the main ideas more plain the
single-input single-output case will be considered first. However, care will be exercised
so that the extension to multivariate case outlined afterwards may be straightforward.

1.2. Notational conventions

The control loop considered in the sequel is schematically sketched in Fig. 1.
The process P is controlled by a digital controller C generating a sequence of numbers
u[t); t = 1, 2, 3, ..., vectors in multivariate case, which govern the actuator(s) used
to manipulate the process. The controlled output yc of the process is assumed to be
measured and sampled with the same period as the inputs u[t) are generated. The task
of the controller is to generate the inputs in such a way that the controlled output
within a given control horizon be as close as possible to its prescribed values w,

the command signal. To perform this task the controller can make use of an auxiliary
output ya which is not subject to control but carries an additional piece of information
about the state of the process. If available for measurement, also the sampled external
disturbance v can be introduced as a feedforward to improve the performance
of the controller.

Fig. 1. Control loop with continuous stochastic process P and digital controller C

The total process output will be denoted as y = {yc, ya}. All digital signals in the
control loop can be, in general, multivariate. Of course, the dimension of the con
trolled output yc is the same as of the command signal w.

Time indexing. The signal samples to which the same discrete time t is assigned
are related to the sampling period in which the input u(t) is generated. However,
within one sampling period it is assumed that u(t) is determined first and then the
samples v(t) and y(t) follow. This means that when the input u(t) is being decided
only the signal samples observed on the process up to and including the sampling
period (t — 1) are available, the samples v(t) and y(t) are not known yet.

According to the way how the command signal is made available for the controller
the following operating modes will be considered.

Regulation. The command signal is a given constant, a fixed setpoint, which can
be set to zero if the controlled output is measured relatively to this fixed reference
value.

Program control. The command signal is preprogrammed in advance for the
entire control horizon and this prior information is available for the controller.
This means that the controller when generating u(t) can operate also on w(t + k),
k>0.

Positional servo. When u(t) is being generated the future course of the command
signal w(t + k), k > 0, is uncertain. A suitable model for this case will be introduced
in Section 5.

Some abbreviations
p.f. . . . probability function
p.d.f. . . . probability density function

c.p.d.f,
LT-matrix
UT-matrix
monic LT-matrix
LD-factorization

Main symbols

(3)
(5.3)
M'
tr(M)
det (M)
\D;Mx\

õx
t

m

Ay(t)
y(j ---k)

conditional p.d.f.
lower triangular matrix
upper triangular matrix
LT-matrix with l's on the main diagonal
factorization of a nonnegative definite matrix M = LDL'
where L is a monic LT-matrix and D is a diagonal matrix
with nonnegative diagonal elements

equation (3) in the current section
equation (3) in Section 5
transposed matrix M
trace of a square matrix M, the sum of diagonal elements
determinant of a square matrix M
nonnegative definite quadratic form x'M'DMx where M
is a rectangular matrix, D is a diagonal matrix with non-
negative elements, and x is a column vector
dimension of the vector x
discrete time, time index of a sampling period; the observation
of the process (gathering of data, not necessarily control)
starts at the sampling period indexed by t = 1
continuous time
sample of a signal (here output) related to the sampling
period with time index t; in general a set, in algebraic ex
pressions assumed to be ordered into a column vector
backwards difference, Ay(t) = y(t) — y(t — 1)
set of all signal samples in the given time span, j fS t fg k;
for j > k the set is empty

Model-related variables and parameters

s(t) . . . state of the process model in canonical form
x(t) ... model state extended by the process output, x(t) = {y(t), s(t)}
ah bh cu di . . . coefficients of the input-output stochastic model, matrices

in multivariate case
A,b,c,d . . . matrix coefficients of the canonical state model
n . . . order of the input-output model
6 . . . set of uncertain model parameters

Probability distributions

p(a\b) . . . p.d.f. or p.f., according to the type of the argument a,
conditioned on b

p(y(t) | - — 1; «(*)) . • • abbreviation for

p(y(t)\u{l ... t), y(l ... t - l),v{l ... t - l));

t — 1 in the condition alone means conditioning on all
data observed on the given process up to and including the
sampling period t — 1, e.g.

p(* | t ~ 1) . . . abbreviation for

p(. | a (l . . f - l),y(l-t- i),v(\ . . * • - 1))

E[a] . . . expected (mean) value of a random variable a
j>(* j t — 1; u(t)) ... abbreviation for the expected value

E[y(t)\u(l - t), y(l •• t - l),v(l •• t - 1)];
similarly for s(t | t — 1) and x(t | t — 1)

Cov [a, b] . . . covariance E[(a - E[a]) (/J - E[/3])']
Var [a] . . . Cov [a, a]
Rx(t \t — I; u(t)) ... covariance matrix Var [x[t) | t — I; u(t)]

R E F E R E N C E S

[1] J. Bohm, A. Halouskova, M. Karny and V. Peterka: Simple LQ self-tuning controllers.
9th World Congress of IFAC, 1984, Budapest, Hungary, Preprints Vol. VII, 171-176.

[2] G. G. Goodwin: Some observations on robust estimation and control. 7th IFAC/IFORS
Symposium on Identification and System Parameter Estimation, 1985, York, UK, Preprints
Vol. 1, 851-859.

[3] M. Karny, A. Halouskova, J. Bohm, R. Kulhavy and P. Nedoma; Design of linear quadratic
adaptive control: theory and algorithms for practice. Supplement to the journal Kybernetika,
Vol. 27 (1985), No. 3, 4, 5, 6.

[4] R. Kulhavy and M. Karny: Tracking of slowly varying parameters by directional forgetting.
9th World Congress of IFAC, 1984, Budapest, Hungary, Preprints Vol. X, 78-83.

[5] R. Kulhavy: Restricted exponential forgetting in real-time identification. 7th IFAC/IFORS
Symposium on Identification and System Parameter Estimation, 1985, York, UK, Preprints
Vol. 2, 1143-1148.

[6] I. Nagy and V. Peterka: A hybrid LQ self-tuning controller. 7th IFAC/IFORS Symposium
on Identification and System Parameter Estimation, 1985, York, UK, Preprints Vol. 1,
1025-1030.

[7] V. Peterka: Predictor-based self-tuning control. Automatica 11 (1981), 39—50.

2. BASIC TOOLS

In this section the tools are introduced which will be repeatedly applied in the
following sections.

First the Bayesian methodology for dealing with uncertainties and for solving
statistical problems will be expounded. This will be the main tool in conceptual
solutions of particular problems each section will start with.

The elementary algorithm of dyadic reduction, derived and coded in the second
paragraph, forms the basis for numerical solution of optimum control synthesis as
well as of state and parameter estimation. To make its later applications straight
forward it is shown in the third and fourth paragraphs how the dyadic reduction

can be used to decomposition and minimization of quadratic forms and to operations
with normal multivariate probability distributions.

The last of basic operations introduced in this section is the linear composition
of normal probability distributions.

2.1. Uncertainty and probability, Bayesian methodology

Only the main features of the Bayesian philosophy can be briefly surveyed here,
A more detailed explanation with applications to system identification is given in [10]
where also further references can be found.

The Bayesian methodology as applied here rests on the fact that uncertainty has
the probability structure. The meaning of this statement is that the mathematical
discipline called probability theory, in which the concept of probability is defined
axiomatically without any relation to reality, can be employed to operate with
subjective probability distributions which are used to describe quantitatively the
uncertain relation between a rationally and consistently reasoning person (e.g. a
control system designer) and the external world (the process to be controlled).
This can be proved on the basis of a few simple and sound principles.

In Bayesian view random means uncertain. Not only data but also uncertain
constants like model parameters are random. Similarly, a hypothesis which is not
known to be true is a random event and probability can be assigned to it.

Bayesian standpoint is that a random variable can take on just one true value.
Act of observation changes the status of the quantity from a random variable to
a number, a random event is changed, when observed, into a fact,

It should be stressed that the Bayesian interpretation of probability as a rational
measure of belief is in no contradiction with initutive conception of probability as
the limit of relative frequences the stationarity of which may appear to an outer
observer, with a given observation ability, as an objective property of the external
world. On the contrary, the idea of such limits can be very helpful when constructing
stochastic models (see Section 3). Bayesian statistics can serve as a means for finding
out what these, so-called 'objective', probabilities are. However, its applicability, as
exploited in this paper, is much wider.

Basic operations on probability distributions

It can be said that the following two relations determine the structure of the Baye
sian system of consistent reasoning.

(1) p(b | c) = p(a, b | c) da

(2) p(a, b\c)= p(a \ b, c) p(b | c)

The first relation determines the marginal distribution for b from the joint probability
distribution of a and b where a is an auxiliary uncertain quantity which is to be

9

eliminated. The integration in (1) is taken over the entire set of possible values of a.
If a is of discrete type the integration in (l) has to be replaced by the appropriate
summation. The relation (2) gives the rule how a joint probability distribution can
be decomposed. When read from right to left it shows how a joint probability distribu
tion can be constructed if required. When rewritten in the following way

(3) P(a | b, c) = fc^ = P (" ' » I C)
p (* l c) \p(a,b\c)dc

it describes the operation of conditioning. If in (3) the decomposition (2) with inter
changed roles of a and b is applied the famous Bayes formula is obtained

(4) P(a | b, c) = P(» I «. ") K - I c)

p(b | a, c) p(a | c) da

which can be understood as a rule how a prior probability distribution p(a | c) can
be corrected by incorporating a newly observed quantity b. Note that p(/3 J a, c)
must be given in order to be able to perform this task. Note also that the integral
in the denominator is just a normalizing factor which does not depend on a.

It is true that all practicable probability distributions are conditioned, at least
on the prior information on the basis of which they have been constructed. However,
it is a good usage not to state explicitly and repeatedly the conditions which are
permanent during the solution of a given problem.

Actually, all conceptual solutions of particular problems we shall deal with in
the following sections are nothing else than a systematic applications of the relations
(1) and (2). However, to be able to apply them consistently in a closed control loop
with an adaptive controller it is necessary to define conditions under which the
controller operates.

Natural conditions of control

Suppose that q is a quantity on the process which is uncertain but its c.p.d.f.
p(q | t — 1) conditioned on all data given a priori and observed on the process up
to and including the sampling period (t — 1) is available. The question is how this
probability distribution has to be modified when a new input u(t) has been generated
and incorporated into the condition.

In adaptive control the controller when generating the new input u(t) can make
use only of that information about the uncertain quantity q which is given a priori
and which is contained in the observed data. If this information is already reflected
in the condition of the probability distribution for q then the mere generation
of u(t) cannot bring any new piece of information and it must hold

(5) p(q\t-l;u(t)) = p(q\t-i)

10

The relation (5) cannot be derived mathematically, it must be introduced exogeneously
as an assumption defining the "natural conditions of control" [10].

To throw more light on these conditions let us consider the joint probability
distribution p(q, u(t) \t — i) and let us decompose it in the following two ways.

p(q\t- 1; u(t)) p(u(t) | t - 1) = p(u(t) \t-l;q)p(q\t - 1)

From this relation it is clear that if (5) holds then also the equality

(6) p(u(t)\t-l;q) = p(u(t)\t-l)

must hold, and vice versa. The equality (6) reflects the fact that a realizable control
law cannot operate on the quantity q which is not known.

Transformation of random variables

When operating with probabilistic models it is often suitable to transform random
variables in order to obtain the probability distribution of interest. For our purposes
it is sufficient to consider only linear regular transformations.

Suppose that the c.p.d.f. for a multivariate random variable e is given as a function
f of e and of the condition c.

p(e | c) = f(e, c)

The question is how the c.p.d.f. of a random variable x can be determined if the
following relation holds

(7) e = T(c) x + q(c)

where T{c) is a nonsingular square matrix possibly dependent on the condition c,
and q(c) is a vector. The answer follows from the theory of multiple integrals and is

p(x\c) = f(e,c)\dQt(T(c))\

where e is to be substituted from (7).

2.2. Algorithm of dyadic reduction

The elementary algorithm which will be introduced now is due to the author's
colleague K. Smuk. It makes it possible to construct elegant and numerically save
procedures for decompositions and minimizations of nonnegative definite quadratic
forms and therefore has been chosen as the algorithmic basis for optimum control
synthesis as well as for numerical operations with normal probability distributions
in real-time estimation.

Consider a symmetric nonnegative definite matrix M of rank at most 2 expressed
as a weighted sum of two symmetric dyads

(8) M - f'Dff + r'Drr

11

where / and r are row-vectors

/ = [l , / i , / a , . . - , / J

r = [r0,ri,r2i..„rn]

while Df and Dr are nonnegative scalar weights. Note that the element f0 is 1. Of
course, such a representation of the matrix M is not unique and can be modified.

(9) M = f'Djf + r'Drr = f'DJ + r'Drr

Let us consider the modification by which the element/0 remains to be equal to 1,
but the element in the same position in r is zeroed.

/o = 1 ; r0 = 0

It will be proved that the following simple algorithm performs this modification and
reduces the dimension of the nonzero part of the row-vector r by one.

Algorithm of dyadic reduction

(10) Df = Df + Drr
2

0

(11) 3r=(DfJDf)Dr

(12) kr = (Dr\Df) r0

(13) j = 1,2, ...,n:fj = rj - r0fj

(14) fj=fj + Krj

It is easily seen that in all cases when the reduction has sense Df > 0 and the divisions
in (11) and (12) can be performed. For Df = 0 the reduction can be simply skipped
as in such a case, besides Df = 0, either r0 is already zero or the entire dyad r'Drr
has a zero weight Dr and can be omitted.

Proof. From (9) it is seen that the following relation must hold for any i and j .

(15) fflffj + rtDrr} = ffij) + fflf,

By setting i - j - 0 and r0 = 0 the formula (10) is obtained. For i = 0 and j > 0
it follows that

06) J) = (Dffj + r0Drrj)\Df

After substitution for/- and for/,- from (16) the relation (15) for i > 0 and j > 0
can be rearranged in the following way.

ffirfj = r ;Dr(l - Drr
2
0jDf) rj+ftD%(\ - Df\Df)fj -

- ft(Drr0DfIDj) rj - rt(Drr0DfJDf) j) =

= (rt-r0ft)(DrDfIDf)(rj-r0fj)

12

r of type row
f of type row
Dr, Df of type REAL
jr of type INTEGER
jl, jh of type INTEGER

This proves (13) and (11). The proof is completed by substituting r,- from (13) into
(16) which then gets the simplified form (14) with the coefficient kr determined
according to (12).

Remark(a). It is apparent from the derivation that instead of (14) it would be
possible to use (16). 7 , , , , „ ,-.

{ J Jj= tyj + Krj ; kf = Df\Df

However this would mean n multiplications more for one dyadic reduction.

Procedure DYDR

The PASCAL procedure DYDR listed below performs one dyadic reduction.
Type introduced:
TYPE row = ARRAY [jmin .. jmax] OF REAL;
where jmin and jmax are suitable integer constants.
Parameters:

reduced row
reducing row
weights of corresponding dyads
index of the element r\jr\ which is to be zeroed
lower and upper bounds of the range within which
the both rows are modified

PROCEDURE DYDR (VAR r,f: row; VAR Dr, Df: REAL; jrjljh: INTEGER);
CONST mzro = 1E-20; {see Remark (b)}
VAR j : INTEGER; kr, kD, rO: REAL;
BEGIN
IF Dr < mzro THEN Dr := 0;
rO : = r[jir];
kD : = Df;
kr := rO * Dr;
Df:=kD + rO* kr;
IF Df > mzro

THEN BEGIN kD := kDJDf; kr := /cr/D/END
ELSE BEGIN kD : = 1; kr : = 0 END;

Dr := kD * Dr;
FORj :=jl TO jh DO

BEGIN
*] : = r [j] - r O * / [/] ;
/[1] ; = / M + kr*r[7]
END

END;
Remark (b). The constant mzro ("machine zero"), which is used to check very

small numbers, has to be chosen with respect to the accuracy of the computing device.
The value 1E-20 has been found suitable for 4 bytes floating point arithmetic.

see Remark (c)}

[see Remark (d)}

13

Remark (c). In applications in which the procedure DYDR will be used it may well
happen that the weight Dr converges to zero and the possible underflow must be
checked. If it is done automatically by the compiler then the marked statement
can be omitted.

Remark (d). As mentioned before, in all cases when the updated weight Df is zero
the dyadic reduction could theoretically be skipped. However, for numerical reasons
it is advantageous to process the rows using the same algorithm with kD = 1 and
kr = 0. Then the row r is normalized so that r_jr] be zero even when the row has
zero or very small weight Dr.

2,3. Decomposition and minimization of nonnegative definite quadratic forms

A classical problem which is, in various modifications, repeatedly met in both LQ
optimum control synthesis and estimation is decomposition of a nonnegative definite
quadratic form in the following sense. Consider the quadratic form

(17) q(x) = x'Qx =
x b и

where x is a vector-valued variable, xa and xb are its components, x' = [x'a, x£]
and Q is a numerically given matrix. It is assumed that the quadratic form (17), and
thus also the matrix Q, are nonnegative definite, i.e. it holds q(x) ^ 0 for any x.
The problem is to decompose the quadratic form into two quadratic terms in such
a way that one of these terms depends only on the second component xb of the
vector x.
(18) q(x) = (ya + Fxb)' Qx(xa + Fxb) + x'bQ2xb

If we succeed to perform this decomposition then, at the same time, also the problem
of minimization of the quadratic form with respect to the first component xfl is
solved.

If the original quadratic form (17) is nonnegative definite then, according to
Sylvester's law of inertia (see e.g. [9]), the both quadratic forms on the right-hand
side of (18) must be also nonnegative definite. The second one does not depend
on the variable component xa while the first one can be zeroed by its choice. Since
zero is the minimum value which a nonnegative definite quadratic form can achieve
it holds for any xb

min q(x) = x'bQ2xb
Xa

and the minimizing argument (not necessarily unique since F and Qt are not necess
arily unique) is

arg min q(x) = x* — — Fxb
Xa

Standard procedures of matrix algebra commonly used to determine the matrices

14

Qu Q2 and F are not suitable for numerical computation. They require an inversion
(or some generalized inversion) of a certain submatrix and, namely, do not guarantee
the nonnegative definiteness of the matrices Qx and Q2.

From the physical nature of the problems we are going to solve it follows that all
quadratic forms we shall deal with are nonnegative definite. Quadratic criteria as
well as exponents in normal probability distributions cannot be negative. When
calculating numerically it is necessary to design the algorithms in such a way that
this important property be maintained also when the rounding errors are present,
otherwise the sense of the solved problem could be lost and the computation could
collapse. For instance, when the rounding errors cause that a quadratic criterion
becomes indefinite then its minimum is minus infinity and the minimizing procedure
diverges accordingly if the nonnegative definiteness is not rectified. This is of extreme
importance when the matrices of quadratic forms are singular or almost singular,
which is often the case, and particularly when the computation is performed on
microprocessors with a short word length.

Even with reduced precision of arithmetic operations the nonnegatige definiteness
of quadratic forms can be quaranteed when their matrices are systematically con
sidered in factorized forms

(19) Q - M'DM

and when all numerical calculations are performed only on the factors D and M.
The matrix D is diagonal and can be stored as a vector of dimension dD, while M is,
in general, a rectangular matrix of dimensions dD x dx.

If Mt is a row-vector introduced as the ith row of the matrix M then (19) can be
expressed as a sum of weighted dyads

dD

(20) Q = YjM'iDiMi

i=i

and the quadratic form (17) can be expressed as a sum of squares
eD dD dx

(21) q(x) = I DjMfiY = TH1 MijXj)2

< = i j = i j = i

If all weights Dt are nonnegative then also the quadratic form is nonnegative. The
algorithms we shall use cannot produce negative weights and therefore the non-
negativity even does not need to be checked.

Note that D has been introduced as a diagonal matrix only because of the compat
ibility of the matrix product on the right-hand side of (19). Equally well D could be
interpreted as a column-vector the element Dt of which gives the weight to the
square produced by the row of M with the same index. To emphasize this inter
pretation and to shorten the writing the following notation will be often used for
quadratic forms.

q(x) = |D; Mx\

The factorization (19) is not unique and can be modified in various ways leaving

15

the value of the quadratic form unchanged for any variable vector x. This opens

the possibility for direct and elegant numerical solutions of our problems. As the

full matrix of any nonnegative quadratic form can be expressed as a weighted sum

of dyads (20) the above described algorithm of dyadic reduction is an excellent tool

foi this purpose.

Consider, for instance, the quadratic form

*••»•>- ICSG- t - i i r l M
and let us perform its decomposition (18). The algorithm of dyadic reduction, as

described in the foregoing paragraph, assumes that the reducing row, called f,

has the element f0 — 1 in the proper place. In later applications we shall organize

the computations so that this condition will airways be fulfilled. Here, when consider

ing a general situation, we have to apply the following trick. The quadratic form

does not change if it is extended by a term with zero weight.

q(xa,
 xb) = <l(xa, xb) + |0; Ixa\ =

0 / 0

Da ? м a м a b

Dь мbaмb

и
Now it is possible to use the dyadic reduction so that the first row of the extended

matrix is used to reduce to zero the first columns of submatrices Ma und Mba. Using

the second row the second columns of these submatrices are zeroed, and so on until

the both submatrices Ma and Mba are zeroed. After this repeated application of the

procedure DYDR the quadratic form is modified as follows.

«(*«. *») =

ßo
Ђ.
Ђ„

?

~U G

o м a b

0 мb

ы
= \D0;Uxa + Gxb\ + [*]• [Sri xb

In this way the quadratic form is decomposed as required. The second term deter

mines the minimum with respect to xa and the minimizing argument can be deter

mined from the equation

(22) Ux* + Gxb = 0

which, if required, can be easily solved without using the operation of division since U

is a monic UT-matrix (upper triangular with unit diagonal elements).

Note that the solution of (22) is unique even when the problem is singular and more

than one minimizing arguments exist. However, in such a case one or more weights

in Do a r e zeros and the corresponding equations in the system of linear equations

(22) do not need to be satisfied since their residua do not influence the quadratic

16

form. Practically it means that when the zero weighted equation is met during the
solution of (22) then the component of xa which is being determined by this equation
can be chosen arbitrarily.

2.4. Integration and conditioning in normal probability distributions

Integration and conditioning in multivariate normal probability distributions are
standard steps in real-time estimation, filtering, and prediction. Again, it can be
stated that the classical solutions of these steps, as given e.g. in [8] and as implicitly
contained in the Riccati equation of the Kalman filter or in standard recursive least
squares estimation, are not suitable for practical computation as they do not guarantee
numerically the positive definiteness of computed covariance matrices. For these
numerical reasons all covariance matrices will be propagated in factorized forms.

The present paragraph will be devoted to the proof of the following

Result (2A): Conditional and marginal distributions for given normal joint prob
ability distributions.

Consider a normal p.d.f. p(x) of a random vector x with an expected (mean)
value x and with a covariance matrix Var [x] = R given as the matrix product

(23) R = MDM'

where D is a diagonal matrix with nonnegative diagonal elements Dh i = 1, 2, ..., dD,
and M is a rectangular matrix of dimensions (dx x dD), dD _ dx. Suppose that D
and M are given numerically and that the dyadic reduction is applied to modify the
factorization (23)

(24) MDM' = LDL'

so that D is again diagonal, dD = dx S dD, but Lis a monic LT-matrix.

If the random vector x is partitioned into two subvectors

•-£]•*-[«;]
and correspondingly also the matrices L and D

••-[n} »-[»nj
then the c.p.d.f. p(xb | xa) is normal with the expected value given by

(26) E[xb | x j = xb[a = xb + Ge , Lae = xa - xa

The covariance matrix of xb conditioned on the given (observed) value of xa is

(27) Var [xb | x j = LbDbLb

17

The marginal p.d.f. p(xB) has the expected value xa and the covariance matrix

(28) Var[xf l] = LaDV;

Remark (e). Note that the both resulting covariance matrices are obtained in
factorized forms with numerically guaranteed nonnegative definiteness as the algo
rithm of dyadic reduction used to perform the modification (24) cannot produce
negative weights D if the original ones D are nonnegative. Since L is a monic LT-
matrix e in (26) can be calculated without employing numerical division. Frequently
dxa = 1, then La = 1 and e is the prediction error, e = xa — xfl.

Proof. Since the modification of the factorization (24) does not change the given
matrix R (23) it is sufficient to consider only the modified factorization R = LDL\
where the monic LT-matrix Lis always invertible and det (L) = 1. Clearly

det(R) = f l ^
£ = 1

For the sake of simplicity the proof will be given only for the regular case when all
Dt are arbitrarily small but finite. The degenerate case when one or more Dt are zero
could be handled using characteristic functions instead of p.d.f/s. However, the
result would remain the same.

Using our notation for quadratic forms the normal p.d.f. can be rewritten in the
following way.

p(x) = (2n)~8x/2 (det(R))"1 / 2 exp { - i (x - *)' R~\x - x)} =
dx

= (2«rw2 (n A-r "2 e*p i-w-1; ^ (* - *)ii
i = l

' It can be easily verified that for L1, when partitioned similarly to (25), it holds

. ГL;1 o]

Then the quadratic form in the exponent of the p.d.f. can be decomposed as follows

| D ' - 1 ; L - 1 (x - x) | = | 5 ; 1 ; L ; 1 (x f l - x f l) | +

+ I V ; ~L-1GL-\xa - xa) + L-b\xb - xb)\ =

- l A T 1 ; ! ^ * . - xa)\ + \Db';L-\xb - xbla)\

where in agreement with (26)

%b\a — %b + GLa (xa — xa)

This decomposition is the main step in the proof as it enables the following factoriza
tion of the joint p.d.f.

dxa

?(xa, xb) = (2n)~^2 (0 Da^
m exp { - p ; 1 ; L~\xa - xa)\] .

i = i
dxb

(2K)-^ (n Du)-1'2 exp {-i |5; ' ; L~b>(x„ - xbla)\}
y = l

18

To prove that this factorization corresponds to the relation

P(*«> xb) =- p(xfl) p(xb I xa)

it is sufficient to perform the integration

?(xa) = P(xa, xb) dx6

The transformation z = L~b~
1(xb — xb\a) with the Jacobian de t (L^ 1) = 1 reduces

the multivariate integral into the product of univariate integrals.

f dXb f f - 2 1 a*b

1/2

j=ij I 2DbJ) j=i

To complete the proof is now trivial.

2.5. Linear composition of normal probability distributions

Suppose that the normal p.d.f.'s p(x) and p(y | x) are given by their expected

values and covariance matrices possibly LD-factorized.

(29) E[x] = x , Var [x] = Rx = LXDXHX

(30) E[y | x] = Mx + fc , Var [y | x] = R„* = Ly]xDy]xLy]x

One of standard steps repeatedly met when solving LQG problems is determination

of the joint p.d.f.

(40) p(x, y) = p(y \ x) p(x)

Result (2B): Linear composition of normal probability distributions.

The joint p.d.f. (40) is normal with the expected value

w E E1- [M - + J
and with the covariance matrix

determined by the relations

(43) Var [y] = Rylx + MRXM'

(44) Cov [y, x] = Cov [x, yj = MRX

'-1-i.U-fMJ
Proof. When substituting

p(x) = (2n)-^2det(Dxy^exp{^\D;i;L-x\x - x)|}

p > | x) = (2n)^2 det (Dylx)~V2 exp { - | | D ^ ; L~lx(y - Mx - fc)|}

29

into (40) it is clear that the quadratic forms in the exponents are added. The following
rearrangement of this sum of quadratic forms yields the proof.

I D ; 1 ; ! ^ * - x)\ + |D^;L;,yj - Mx - k)\ =

= \D;1;L~X\X - *)| + \D;i;L;i/y -Mx-k)- L~ylxM(x - x)\ =

jrD;1 o f r L; 1 o ifx-x 11
\l° D^\' l-L-ylxM L-ylxJly-Mx-ky

Apparently

[L;1 O •)-» [X o 1

This proves (41) and (45). The relations (43) and (44) are obtained by substituting
(45) into the right-hand side of (42).

R E F E R E N C E S

[8] T. W. Anderson: An Introduction to Multivariate Statistical Analysis. John Wiley, New York
1958.

[9] A. Kurosh: Higher Algebra. MIR Publishers, Moscow 1984.
10] V. Peterka: Bayesian approach to system identification. Chapter 8 in: Trends and Progress

in System Identification (P. Eykhoff, editor), IFAC Series for Graduates, Research Workers
and Practising Engineers, Pergamon Press, Oxford 1981.

3. LINEAR STOCHASTIC MODELS

In this section models are introduced which will be used to represent the process
to be controlled.

The section commences by general discussion of the question: What mathematical
models are needed for control-design purposes? The question is answered in terms
of conditional probability distributions and on this basis the concept of a linear
stochastic model of the controlled process is introduced. Also the concept of the
state of the process model is discussed in terms of conditional probability distribu
tions in the first paragraph.

In the second paragraph the nonparametric input-output model is suitably para
metrized to obtain the ARMA form of the model. Both positional and incremental
(ARIMA) types of the model are considered.

The Delta form of the input-output model is introduced in the third paragraph
where also PASCAL procedures for transformations of the ARMA form into the
Delta form and vice versa can be found.

The ARMA and Delta input-output models of both positional and incremental
types are transformed into a canonical state-space model in the fourth paragraph.

20

In the last paragraph of this section the relation between Delta models and sto
chastic differential equations is discussed and a simple PASCAL procedure for
digital simulation of a linear continuous stochastic process is given.

3.1. Process model in general

Suppose that, starting with t — 1, a control-system designer has the possibility
to observe the process up to and including the sampling period indexed by t0 ^ 0.
His task is to design a control strategy for the next Tsampling periods in some optimal
sense. Note that for t0 = 0 no prior observation is made. If the designer picked
a particular strategy and performed the experiment he could judge the control
performance according to the actual values of the data he can observe

(1)
{y(t0 + 1 • • t0 + T), v{t0 + 1 • • t0 + T), u(t0 + 1 • • t0 + T), w(t0 + .1 • • t0 + T)}

However, since the control strategy has to be chosen optimally and in advance the
designer must have models available which make it possible to compare all admissible
strategies before the input u(t0 + 1) is applied. The choice of a suitable criterion
for this comparizon will be discussed in Section 5. Here, it is important to note that
for any criterion which contains only the observable data it is sufficient to be able
to determine the probability distribution of the future data (1) conditioned on the
data available up to the sampling period t0 for any control strategy which might be
applied. In case of program control or of a given fixed setpoint the future command
signal w(t0 + k), k > 0, is a priori given and can be put into the condition. Here
the more general servo case will be considered in which the future command signal
is also uncertain.

By suitably repeated application of the decomposition rule (2.2) the joint c.p.d.f.
of the future data (l) can be written as follows

(2)
p(y(t0 + 1 • • t0 + T), v(t0 + 1 • • t0 + T), w(t0 + 1 • • t0 + T), w;t0 + 1 • • to + T)|

| (y(l •• t0),v(l •• t0), w(l •• to), w(\ •• t0)) =

='ff P(V(') I y(i - • - - i), <i • • t), u(i • • t), v/i • • t))

p(v(t)\y(l*-t~l),v(l-'t-l),u{\ . . t) ,w(l -- t))

p(u(t) | X I ' 't - 1), v(l • • t - 1), i<l • • t - 1), w(l • • t))

p(w(t) | y(l • • t - l),v(l • • t - 1), u{l • • t - 1), < 1 • • t - 1))

The particular factors in this multiple product have the following interpretation.

Control strategy

The c.p.d.f.

(3) p(u(t) | v(l •• t - 1),Y(1 •• t - 1), u(l •• t - 1), w(l •• t))

21

represents the transformation, in general stochastic, by which each u(t) for t =
= t0 + 1, . . . , t(j + T is generated on the basis of the data which are available at
the given time instant. In fact, the decomposition in (2) has been made in such
a way that the condition part of (3) contains all data on which an admissible control
strategy can operate. Hence, the set of c.p.d.f.'s (3) is what the designer has to de
termine when solving the control problem. In Section 5 it will be proved that under
very general conditions the optimal control strategies are deterministic, i.e. that the
optimal input u(t) has to be determined as a deterministic function of the available
data

u(f) = f,(u(l . • t - 1), y(\ • • t - 1), v(\ • • t - 1), < 1 • • t))

Then the c.p.d.f. (3) degenerates into a Dirac <5-function

8(u(t) - ftu(\ • • t - 1), y(\ • • t - 1), v(\ • • t - 1), w{\ • • t)))

and the control problem is reduced into determination of the function ft for each t.

Command signal

As mentioned above, if the command signal is predetermined for the entire control
horizon it can be considered as a given condition for all c.p.d.f.'s involved. However,
if it is a priori uncertain its evolution within the considered time span (t0 + 1, • • t0 +
+ T) must be modelled. When formulating the control problem it is natural to
assume that there does not exist any hidden feedback or feedforward from other
signals in the control loop in Fig. 1 which might influence the evolution of the com
mand signal w. This mean that

(4) p(w(t) | X I • * t - 1), v(X • - t - 1), u(l • • t - 1), w(\ • • t - 1)) «

= ?{w(t)\w(\ - t - \))

To define this c.p.d.f. for all t of interest a simple model suitable for the case of
positional servo will be introduced when it will be needed in Section 5.

Measurable external disturbance

The digital controller in Fig. 1 can operate on the disturbance v if it is available
for measurement. Assuming that the disturbance v is external means that

(5) p(v(t) | X1 • * t - 1), v(X • • t - 1), u(\ • • t), w(\ • • t)) -

-P&OK-•• ' - -))
According to this prior information the evolution of the external disturbance can
be considered as an autonomous process, i.e. as the measurable output of the un
controllable part of the external world sometimes called the enviroment. A suitable
model for this external process defining the c.p.d.f. (5) will be introduced in Section 5.

22

Controlled process

The c.p.d.f. which remains to be interpreted in the product on the right-hand side
of (2) describes the stochastic transformation performed by the controlled process
itself. Since there does not exist any direct connection between the command signal
w and the controlled process output y it can beassumed that

(6) ?(y(t) | y(l • • t - 1), v(l • • t), u(l • • t), w(l • • t)) =

= ?(y(t)\y(l -• t - l),v(l >- t),u(l ~ t)) =

= P M O I ' - i;v{t),u(t))

The first equality says that the conditioning on w{l • • t) is superfluous as the given
history of the command signal w can influence the output y(t) only through the data
which are already present in the condition. The second equality in (6) just recalls
the abbreviated notation introduced in the paragraph 1.2. By t — 1 in the condition
part the conditioning on all data observed on the controlled process up to and
including the sampling period t — 1 is indicated.

Process model. Any mathematical model which defines the family of the c.p.d.f.'s

?(y(t)\t-l;v{t),u(t)) for t = t0 + 1, t0 + 2, ...,t0 + T

will be called the process model.

Linear process model. The process model is called linear if the mean value of the
c.p.d.f. (6), i.e. the expected value of y(t), can be expressed as a linear function of the
data in the condition, and if the variance of y(t) does not depend on these data.

(7) E[y(t) 11 - 1; v(t), u(t)] = y(t 11 - 1; v(t), u(t)) =

= ky(t) + g0(t) u(t) + h0(t) v(t) +

+ E [-/*(') y(t - k) + gk(t) u(t ~k) + hk(t) V - fc)]

(8) Var [y(t)\t - l;v(t),u(i)] - R/t)

The linear model will be called normal if in addition to (7) and (8) it is also assumed
that the c.p.d.f. (6) is Gaussian (normal).

If e(t) is introduced as the difference between the true value y[t) and its expected
value (7)

e(t) = y(t)~ y(t\t- l;v(t),u(t))

then the model can be written in the form

(9) IfM y(t - k) =*£ [gk(i] u(t -* k) + hk(t) v(t - fc)] + ky(t) + e(t)
k=0 k=0

where f0(t) = I. The stochastic term e(t) has the variance (8) and its expected value
is, as readily seen, zero.

23

Multi-output case. The general form of a linear model (9) can hold for a single-
input single-output process as well as for a process with more outputs and more
inputs. The only difference is that in the latter case the coefficients (in general time
varying) are matrices of appropriate dimensions. However, in multivariate case
it will appear convenient to modify the model in the following way.

Suppose that the covariance matrix (8), which must be nonnegative definite, is
available in the factorized form

Ry(t)^Ly(t)De(t)Ly(t)

where Ly(t) is a monic LT-matrix (always and simply invertible) and Dji) is diagonal
with nonnegative diagonal entries. Let us multiply by L'1^) both sides of the model
equation (9). This, in general, changes all the coefficients. We shall not change
the notation but from now on the coefficient f0(t) will be a monic LT-matrix

(10) /„(<) = L'/(t)

which is reduced into/0(t) = 1 only in the single-output case. The advantage of this
modification is that the stochastic term e(t), now redefined as

(11) e(t) = L~\t) (y(t) ~y(t\t-l; v[t), u(t)))

has not only the zero mean, both conditional and unconditional

(12) £[e{t)\t-Uv(t),u(t)] = E[e(t)]~Q

but also uncorrected components

(13) VaxM.)] = E[e(0e'(0] = 4,W

It can be easily proved (see e.g. [10] § 3.1) that it also holds

(14) E[e(t) e'(t - k)] = 0 for k * 0

(15) E[e(t) y'(t - k)] = 0 for k > 0

(16) E[e(t) u'(t - k)] = 0 for k = 0

(17) E[e(r) v'(t - k)] = 0 for k = 0

Process delay (dead time, transport lag). In many practical cases the response
to a change of the input u(t) does not influence the successive sample y(t) but it
appears at the output only after Tu sampling periods. Then it holds

p(y(t) | t - 1; v(t), u(t)) « ?(y(t) \ y(X • • t - 1), v(l • • t), u(l • • t - Tu))

In the linear model (9) this means that the leading coefficients gk(t), k < Tu, are
zero. Similar delay Tv can exist also in the channel from the measurable external
disturbance v.

24

State-space model

If there exist a quantity s(t) of finite and fixed dimension (not necessarily accessible
to measurement) such that

(18) p(y(t), s(t) \y(l..t- 1), v(l ..t),u(.. t), s(t - 1)) =

= p(y(t), s(t) | v(t), u(t), s(t - 1))
and

(19) p(s(t)\t;v(t+l),u(t+i)) = p(s(t)\t)

then s(t) is called the state of the controlled process.
The condition (19) restricts the general definition of a state (18) to the state of just

the controlled process itself. This can be shown using the definition of the external
measurable disturbance (5) and the natural conditions of control discussed in para
graph 2.1 (see (2.5)). The possible state of the generator of the external disturbance
is not included in s(t).

By integrating out the output y(t) in (18) the c.p.d.f.

(20) p(s(t) | v(t), u(t), s(t - 1))

is obtained which describes the evolution of the state itself. The c.p.d.f.

(21) p(y(t)\v(t),u(t),s(t-l))

obtainable by integrating out s[t) in (18) relates the process output to the state
of the model.

Introduction of a suitable state, if it exists, can reduce the computational load
significantly. Later on a linear state-space model of special (canonical) form will be
constructed which defines the joint c.p.d.f. (18).

Given the state-space model the c.p.d.f. (6) is determined by the formula

(22) p«0l'-M0.«(0) =

= [P W O I »(0. »(0. <* - i)) P « < - i) I * - 1) <K. - i)
which shows that when operating with a state-space model it is necessary to evolve
p(s(t) | t). This is the problem of state estimation which will be solved in Section 4.

3.2. Regression models and ARMA models

The general form of a linear input-output model (9) is not of much practical value.
To make it practicable it is necessary to express its increasing number of coefficients,
in general time varying, through a finite and possibly low number of constant
(or at least temporarily constant) parameters. This parametrization can be done
in different ways and is subject to some additional assumptions. Since any mathemat
ical model can be only a simplified image of the modelled reality the same process
can be described, more or less accurately, by different models. The point of the

25

modeling effort is to choose the model structure so that the model be as simple
as possible, easy to handle (including parameter estimation), and at the same time it
should cover sufficiently broad class of practical cases. These requirements are,
of course, contradictory and some compromise has to be accepted. We shall proceed
so that simple and intuitively well understandable regression models of positional
and incremental type will be introduced first and then they will be extended to the
more general model ARMA.

Regression model of positional type

Often it can be assumed that only a finite and fixed length of the past input-output
history is significant for the prediction of the process output y(t). Then

p(y(t) \t-U v(t), u(t)) = p(y(t) | y(t -N.J- 1), v(t - N . .t), u(t - N..t))

where N determines the past history considered. The corresponding linear time
invariant process model (9) can be written for t > N in the form

(23) ifky(t -k) = igku(t-k) + i hkv(t - k) + ky + e(t)
K = 0 fc=0 fc=0

It is important to note that in practical applications, when the regression model
is identified from real data, a sufficiently long past history must be incorporated
into the process model, i.e. N must be chosen sufficiently large (dependent on the
sampling period). Only under this condition it can be assumed that p(e(t) t — 1;
v(t), u(t)) = p(e(t)) and the model can define p(y(t) \ t — 1; v(t), u(t)) for t > N as,
for the given condition, the transformation between e(t) and y(t) is one-to-one.
(See Section 2 for transformation of random variables.)

Recall that in multi-output case/0 is a monic LT-matrix (10) and the components
of e(t) are mutually uncorrelated, Var [e(t)J = De. When the both sides of (23) are
multiplied by f$ 1 = Ly the model can be rewritten into the standard regression
form

(24) y(t) - - £ at y(t - 0 + £ bt u(t - i) + £ dt v(t - i) + ky + s(t)
i = 0 i = 0

where
fli - Lyfi > bi = Lygt, dt = Lyhi, ky -= Lyky

and
(25) Vax[e(i) = Ry = LyDeLy

Incremental regression model

Many practical processes are contaminated by stochastic disturbances which are
nonstationary like drifts, unpredictable and unmeasurable load changes. Then
the reference level in the stochastic input-output relation (24) cannot be considered
as a constant ky. In such cases it is more appropriate to relate the predicted output

26

y(t) to the previous, already known, output y(t — 1) and to consider the incremental
regression model

(26) y(t) = y(t - 1) +

£ at Av(t - 0 + £ bt Ai*(* " 0 + I di M* ~ 0 + eW
i = l i = 0 i = 0

Then, instead of (23) we have

(27) £ A Ay(* - k) -= £ ^ Au(t - k) + £ fc* Ai>(. - fc) + e(t)
fc=0 fc=0 fc=0

Model ARM A

It is apparent that the larger is the memory size N of the regression models (23)
or (27) the broader is the class of processes which can be described by these models.
However, the larger is also the number of parameters which have to be determined.
This may be critical in cases of very fast sampling rates when N must be chosen
relatively large in order to incorporate a sufficiently long history of the process into
the model and to guarantee the white noise properties of e(t). To reduce the number
of model parameters in such cases it is possible to proceed as follows.

Consider N -* GO in the regression model (23) and introduce, for generality, also
the possible process delays Tu and Tv. Then, with obvious reindexing of the coeffi
cients, the model can be written as follows.

(28) f fky(t - k) = fgku(t - Tu - k) + fhkv(t - Tv - k) + ky + e(i)
fc = 0 fc = 0 fc = 0

In order to meet certain regularity conditions the coefficients in (28) have to satisfy
the relations ^

E j fc 2 < c o> E 0 f c 2 < o o > E ^ 2 < 0 0

fc=0 fc=0 fc=0

To express these infinitely many coefficients through a finite number of parameters
suppose that only the first m + 1 cofficients fk, gk, hk (k = 0, . . , m) can be arbitrary
while the rest of them for k > m (the "tails") can be approximately described as
a weighted sum of nc suitably chosen exponentials so that for k > m

(29) A = i>A-fe> 0fc = EIAr*> fcfc = i > A f c

; = i j=i i = i

where |£,] > 1 for all; . Note that in multivariate case the weights $Jt Tj and Yj are
matrices of appropriate dimensions while Cj are scalars determining the base of
exponentials.

Consider further the following weighted sum of neighboring cofficients fk for
k> m + nc

A + EcJ*-. = £#A~*(i + Ec#)
i = i j = i i = i

27

The rearrangement on the right-hand side shows that the weighted sum can be made
equal to zero if the scalar weights ct are chosen so that £t (j = 1, 2, .. , nc) are roots
of the polynomial n n

(30) «<o-i+:s«iC-ri(i-«7 ,o
i - i j = i

Hence with this choice and c0 = 1 it holds for k > m + nc

(31) !>J*- i = 0, "fctdk-i = 0, f > A ~ i = 0
i = 0 i = 0 i = 0

To simplify the exposition it has been tacitly assumed that the roots Cj are distinct
and real. However, from the theory of linear difference equations it is well known
that the base of functions which satisfy the relations (31) and which are used to
approximate fk, gk, hk for k > m can be made somewhat more general if also complex
and multiple roots are admitted.

The important point is that if the coefficients of the linear nonparametric input-
output model (28) satisfy the difference equations (31) then the moving average
with scalar weights cv taken over (28) for t, t — 1,.., t — nc has only n + 1 terms,
n = m + nc. For instance

nc oo nc oo

Z "j ZM< - J - k) = £ cj 1/,-jyit - o =
j = o fc=o j = o i=j

- _ (I Vi-j) y(> - 0 + Z (I cj,.,) y(t - o - 1 -. X' - 0
i = 0 j ' = 0 i = n c + l j = 0 i = 0

For the entire input-output relation (28) it is obtained

(32) iaiy[t-i) =
i = 0

= ^bi u(t -Tu- i) + tdtv{t -Tu- i) + "tcte(t - i) + kc
i = 0 i = 0 i = 0

where, with inc = min (i, nc),
inc inc inn

(33) at = £ Cjfi-j , bt = £ c,.^.,-, ^ = £ c,-/V;
J = 0 j = 0 j = 0

(34) kc = (£<!,) fc,
i = 0

The model of this form was given the name ARM A [12] indicating that autoregressive
(AR) and moving average (MA) terms are present. The way how the model has been
introduced here was chosen to support interpretation of c-parameters suitable for
our purposes. Later on it will be seen that these parameters are difficult to estimate
in real time and a proper understanding of their role can facilitate their suitable
prior choice.

In a similar way also the incremental ARMA model (ARIMA) can be introduced

28

as an extension of the incremental regression model.

(35) ffliAX.-O-
i = 0

= t btAu(t - Tu - 0 + f d i Ao(t -Tv- i) + "tCie(t - i)
i = 0 i = 0 i = 0

If t, is interpreted as backwards shift operator

(36) U(t) = / (< - !)

then the positional ARMA model can be written in the form

(37) a(Q y(t) = b(Q u(t - Tu) + d(Q v(t - Tv) + kc + c%) e(t)

and the incremental ARMA model in the form

(38) a(QAy(t) = b(Q Au{t - Tu) + d(Q Av't - Tv) + c(Q e(t)

where in both cases

(39) a(Q-iaff, KQ = Z W . A'O « I <*£'
i = 0 i = 0 i = 0

and c(C) is the polynomial (30) of order nc = n.
It is important to bear in mind that in multivariate cases ah bh and d(are matrices

but c,- are scalars. Recall also that the covariance matrix of e(t) is diagonal

(40) Var [e(tj] = Dc

and a0, according to (33), is a monic LT-matrix

(41) a0=f0^L-y
l

while c0 = 1.
We have constructed the ARMA models as an extension of regression models

for N -> oo assuming that an infinitely long past history of the process was available
for observation. This is the reason why the condition of stability had to be imposed
on the polynomial c(Q, viz. |£j| > 1 in (30). However, if the ARMA model is under
stood as a generator of the process driven by a white noise e(t) then the stability
of c(Q does not need to be required. In Section 5 it will be shown that for a finite
and growing length of observation the c-parameters have to be recalculated and
updated in real time so that the truly applied c-parameters are time varying and
converge to the coefficients of a stable polynomial (reflection of c(Q) even when the
original polynomial c(Q is unstable. Hence the assumption on stability of c(Q can
be relaxed and a root of c(t) can lie also at the stability boundary. This favorable
fact makes it posible to get rid of the constant ky in the positional ARMA (37) by
taking the difference

(42) fl(Q Ay(t) = /3(C) Au(t - Tu) +,dg) Av(t - Tv) + (1 - Q c(Q e(t)

29

Thus the positional ARM A can be considered as an incremental ARM A with the
^-polynomial having one unit root.

Remark (a). Strictly taken the two above interpretations of the model ARMA
are conceptually rather different namely in the meaning of the random variable
e(t). In the interpretation taken as the basis for our treatment e(t) is understood
as the difference between the true and expected value of y(t) (suitable transformed
in multivariate case) which can be eventually achieved after an infinitely long ob
servation of the process. In the other interpretation e(t) is understood as a fictitions,
unobservable, and actually nonexisting driving white noise introduced as a useful
modeling tool. Unlike e(t) defined by (11) the driving white noise can never be re
constructed from the observed data (neither asymptotically) if the ^-polynomial
in the ARMA model is unstable. In the sequel we shall handle the ARMA models
in such a way that these two cases do not need to be distinguished. We based our
construction of the ARMA model on the former interpretation in order to show
that a prior choice of scalar c-parameters actually means a choice of a base of ex
ponentials used to approximate the "tails" in the general nonparametric linear
time-invariant input-output model (28).

3.3. Delta models

Delta models, we are going to introduce, are theoretically equivalent to ARMA
models. They are just an other form of ARMA models which appears to be numeric
ally more robust especially in cases of fast sampling rates. We shall start the discus
sion by a very simple illustrative example.

Consider a deterministic continuous system of first order

dy/dr + a v = fiu

Suppose that the input u is manipulated digitally with a zero order hold as shown in
Fig. 2. Let the continuous output v be sampled with the sampling period Ts in such

Fig. 2. Continuous process digitally controlled.

30

a way that Td is the time interval between the time instants when the digital input u(t)
is applied and when the sample y(t) is taken. Note that the fraction of the sampling
period Tc = Ts — Td is available for computing the next digital input u(t + 1).
Clearly, 0 < Tc S Ts. For such a simple example it is easy to derive that the sampled
output and the digital input are related by the difference equation

y(t) + aLy(t - 1) = b0 u(t) + bLu(t - 1)
where

a, = - e x p (- a T s) , b0 = ^(1 - exp (-aTd)) , bL = •? (exp (-aTd) - e x p (-aT s))
a a

In case of fast sampling exp (—aTs) « 1 — aTs and

aL « - (1 - aTs), b0 * $Td, bL « /jTc

This clearly shows that the system dynamics is encoded in the small difference
between aL and 1 and that for a short sampling period aL must be numerically
represented with a high relative accuracy in order to distinguish different first order
systems.

To obtain the Delta form of the same model rewrite it in the following way

y(t) - y(t - 1) + (aL + 1) y(t - 1) = b0(u(t) - u(t - 1)) +

+ (b0 + bL) u(t - 1)
and equivalently

Ay(t) + a*L y(t - 1) = b* Au(t) + b*L u(t - 1)

where

a* = aL + 1 , b* = b0, b* = b0 + bL

For fast sampling the parameters of the Delta model are

a ? ^ a T s , b*0*fiTd, b* * 0TS.

In contrast to aL the relative accuracy of a* in case of fast sampling does not need
to be high. Note also that b*Ja* is the static gain of the system.

To proceed towards higher-order and stochastic cases consider the following
equality

(43) iaiy(t-i) = ia*A»-iy(t-i)
i = 0 i = 0

It is important to note that the lower is the order of the difference on the right-hand
side of (43) the more it is shifted backwards in time. Only under this condition the
equality (43) can be fulfilled for any parameter values and the mapping between
{at:i = l..n}and{a*:i -= ! . , «} is one-to-one. To establish this mapping it is
convenient to employ the algebra of operator polynomials. However, due to the
important time shift it is not possible to express the right-hand side of (43) using
a polynomial in operator A. Therefore it is suitable to introduce the forward-differ-

31

ence operator.

(44) 8/(t) = f(t + 1) - /(f), 5'/(f) = 8 ' - ty(' + 1) - 5f-l/(f)

(45) 8 = r 1 - l , A = 1 - C = C8

and to rewrite the right-hand side of (43) as follows

ia*A"-y(t-i) = C(ia*b"-i)yit).
i = 0 i = 0

Hence, instead of (43) we now can consider

(46) iai^-» = ia*b»-'
i = 0 i = 0

Substitution ^ - 1 = 5 + 1 gives the identity

£ a,<8+ l) » - ' - - £ a* 8«-<
i = 0 i = 0

which determines [a*: i = 0. ,n} for given {at: i = 0..«}

(47) a* = tBn{i,j)aj
j=o

where Bn(i,j) are the binomial coefficients

(48) ЧJM =
n - y
1 -J

which can be easily calculated using the recursion

(49) Bn(ij) = Bn(i + 1, j + 1) + B„(i,i + 1) , t>]

which starts with Bn(k, k) = 1 and #„(«, fc) = 1 for k = 0, .., n.
Similarly the substitution 8 = £ - 1 — 1 into the right-hand side of (46) determines

the inverse transformation

(50)

(51)

-iv-1 "-} -i-Z-CM-;. tfM-(-i)
j = 0 \ ř — j

-tf(u) = -tf(* + w +1) - itf(u +1), i > j
starting with B*(fc, fc) = 1 and 5*(w, fc) = (-1)" * for fc = 0, .., n. For example,
for « = 4 the transformation matrices are

BA =

From the way how the transformations (47) and (50) have been derived it is evident
that in multivariate cases each matrix position of the model parameters is transformed

1 0 0 0 0" - 1 0 0 0 0"
4 1 0 0 0 - 4 1 0 0 0
6 3 1 0 0 , вt = вi1^ 6 - 3 1 0 0
4 3 2 1 0 - 4 3 - 2 1 0
1 1 1 1 1 1 - 1 1 - 1 1

32

separately. Note that a0 = a0 and remains to be a monic LT-matrix. Of course,
the c-parameters are again scalars and c0 = c0 = 1. Note also that the coefficients
of the transformations are integers which can be calculated exactly with no rounding
errors involved. However, in case of fast sampling, subtraction of numbers of very
different orders can be critical namely in (47). PASCAL procedures performing
these transformations will be listed below.

In this way any ARMA model can be recalculated into a Delta form. Using for
brevity the operator notation

(52) .P*(8)-Irf-,5(

; = o
where n is the order of the corresponding backwards-shift operator polynomial p{Q,
we obtain: (Note the time shifts ensuring exact matching.)

— Positional Delta model replacing the ARMA form (37)

(53) fl*(5) y{t - n) = b*(8) u(t - Tu - n) + d*(ti) v(t - Tv - n) +

+ c*(5) e(t - nc) + ke

where

(54) kc = c*nky

or its modification according to (42)

(55) a*(h)Ay{t-n) =

b*(5) Au(t - Tu-n) + d*(5) Av{t - T0 - n) + 5c*(5) e(t - nc - 1)

— Incremental Delta model replacing the ARMA form (38)

(56) a*(6)Ay(t - n) =

= b*(b) Au(t - Tu- n) + d*(6) Av{t - Tv - n) + c*(5) e(t - nc)

Extension of the 8-polynomial c

If the random variable e(t) is interpreted as the unpredictable part of y(t) in the
sense of (11) for t -> oo then it is natural and suitable (but not necessary) to rearrange
the Delta model so that the highest difference of e(t) be the same as that of y(t)
(or of Ay(t) in incremental models). This extension of the polynomial c*(5) can be
done in the following way.

From the definition of the 5-operator (45) it is easily seen that

C(5 + 1) = 1
Hence

(57) c*(5) e(t - nc) = C"""c(5 + l)"-"c c*(5) e(t - nc) =

= (5 + I)"'"* c*(8) e(t - n)

Applying this extension (see PASCAL procedure EXTEND below) we can assume
from now on that all 5-polynomials in a Delta model are of the same order n. The

33

same effect is achieved if the polynomial c(C) in the ARMA form of the model is
extended to order n by adding zero term

(58) c(0 - 1 + c& + ... + cnc^ + 0 ^ + 1 + ... + Of,"

and then transformed, using (47) or PASCAL procedure ARMAtoDELTA listed
below, into a 5-polynomial.

Remark (b). The extension of the c-polynomial is, actually, not necessary. However,
if it is not done beforehand it will be performed automatically by the algorithm for
the evolution of the predictive c.p.d.f. p(y(t) | t — l;u(t)) which will be derived
in Section 4.

PASCAL procedures

The following three PASCAL procedures operate on a polynomial, maximally
of order (CONST) rnnax, represented by the variable parameter p (VAR) of TYPE
poly = ARRAY [0 , . nmax] OF REAL and perform the transformation indicated
by the procedure identifier. The result is returned in the place of the original poly
nomial.

PROCEDURE ARMAtoDELTA (VAR pipoly; {of order} ^INTEGER);
VAR i, j INTEGER;

B :ARRAY [0. .wmax, 0. .rnnax] OF INTEGER;
BEGIN

FOR i := 0 TO n DO BEGIN B[i, i] := 1; B[n, i] := 1 END;
FOR j := n -2 DOWNTO 0 DO

FOR i := j + 1 TO n - 1 DO B[i,j] := B[i + 1, j + 1] + B[i,j + 1];
FOR i:= n DOWNTO 0 DO

FOR j := 0 TO i - 1 DO p[q := p[i] + B[i,j] *p[j]
END;

PROCEDURE DELTAtoARMA (VAR p.poly; {of order} M : I N T E G E R) ;
VAR i , j :INTEGER;

B rARRAY [0. .nmax, 0. .nmax] OF INTEGER;
BEGIN

B[n,n]:=l;

FOR i := n - 1 DOWNTO 0 DO BEGIN B[i, i] := 1;
B[n,i]:= -B[n,i + 1] END;

FOR j := n - 2 DOWNTO 0 DO
FOR i ;= j + 1 TO n - 1 DO B[i,j] := B[i + 1, j + 1] - B[i,j + 1];

FOR i = nDOWNTO 0 DO
FOR j : - 0 TO i - 1 DO p[Q := p[i] + B[i,j] *p[f]

END;

34

PROCEDURE EXTEND (VAR p:poly; {of order} np, {to order} ^INTEGER);
VAR iJJIJu, Dn .INTEGER;

B :ARRAY [0. .nmax] OF INTEGER;
sum :REAL;

BEGIN
Dn := n — np;
FOR i := 0 TO Dn DO B[i] := 1;
F O R i : = 1TO Dn - 1 DO

F O R ; := i DOWNTO 1 DO B[j] := B[j] + B[j - 1];
FOR i := n DOWNTO 0 DO
BEGIN

sum := 0;
jl := i - Dn; IF jl < 0 THEN;/ := 0;
ju := i; IF ju > np T H E N ; M := np;

F O R ; ; = ;7 TO;u DO sum := sum + p[j] *B[i - ;] ;
p[i] := sum

END
END;

3.4. Canonical state models

In this paragraph both ARMA and Delta models will be transformed into canonical
state forms. The main reason for this representation of input-output models is that
it makes the algorithms for control, prediction and system identification compact
and uniform for both univariate and multivariate cases and, moreover, saves the
computer storage as well as the number of arithmetic operations required.

State representation of ARMA models

Consider the positional ARMA model (32) with c-part extended, for uniformity,
to order n by adding zero terms according to (58). The model can be written in the
following way

(59) a0 y(t) = b0 u(t - Tu) + d0 v(t - T0) + e(t) + sx(t - 1)

where we denoted

si(t - 1) =
n

= I [-«; y(t - J) + bJ u(f ~Tu- f) + dj v(t -Tv- j) + Cj e(t - ;)] + kc
j = i

Shifting the time index forwards by one the relation for sx(t) can be expressed as
follows

<*i y(t) + sx(t) = bx u(t - T„) + dx v(t - Tv) + cx e(t) + s2(t - 1)

35

where

s2(t ~ 1) = .£[-«-' y(t + 1 ^ J) + &; «(' + 1 - 2_ - j) +

+ ^ »(* + 1 - Tv-j) + Cj e(t + 1 - j')] + fcc

Continuing in this way we obtain for i < n

(60) a, y(t) + Si(t) = bt u(t - Ttt) + dt v(t - Tv) + c{ e(t) + s.+1(t _ _)

(61) st(t) = £ [~aj y(t + i - j) + bj u(t - Tu + i - /) +
j = i

+ dj v(t - Tv+ i~ j) + Cj e(t + i - I)] + fcc

and finally for i = n

(62) a„ XO + sn(t) = bn u(t - Tu) + d„ v(t - Tv) + cn e(t) + kc

Summing up it is seen that the system of equations (59), (60) for i = 1 . . n — 1,
and (62) can be written in the following matrix form which will be called the canonical
state model.

(63) A x(t) = bu(t - Tu) + d v{t - Tv) + c e(t) + H s(t - 1) + kx

where

(64) 4 0 = [/(«), S'(03. m = [>;(<)> «,(* • •. <(')]

(65) Я =

7 0 0 . 0 "
0 / 0 . 0
0 0 / . 0

0 0 0 . /
0 0 0 . 0

(66) A =

a0

UІ I

aг I

an-i

[bo ~ ~d0 1 " 0 "

h dг 0

bг
d2 0

, ь = , d = , fc* = •

Ь.-! -*-_ 0

л _ Л _ Л
and, since in multivariate case the parameters ct- remain scalars

r

(67) c =

cj
C2I

iA-_

36

where 1 is a unit matrix of dimension dy. Recall that in multivariate case a0 is a monic
LT-matrix. Consequently, also the matrix A, where only the structurally nonzero
elements are indicated, is a monic LT-matrix of dimension (n + 1) dy. The a-par-
ameters of the model are placed in the first dy columns of this matrix.

For zero time delays Tu and Tv the model (63) defines the conditional mean value

(68) E[x(t) | v(t), u(t), s(t - 1)] = A~\b u(t) + d v[t) + H s[t - 1) + kx)

and the conditional covariance matrix (singular)

(69) Var [x(t) \ v(t), u(t), s[t - 1)] == A~xcDe c'(A~x)

If, in addition, e(t) is assumed to be normal then the entire c.p.d.f. p(x(t) | v(t), u[t),
s(t - 1)) = p(y(t), s(t) | v(t), u(t), s(t - 1)) (18) is defined. Hence, s(t) is a state
of the model. If the delays Tu and/or Tv are present then the state must be extended
by {u(t - i): i = 1. .Tu] and {v(t - i): i = l..Tv}. However, this part of the total
state can be handled separately and when we shall speak about a state we shall
mean just s(t).

In the same way the canonical state form can be obtained for the incremental
ARMA model.

(70) A x(t) = b Au(t - Tu) + d Av(t - Tv) + H s(t - 1) + c e(t)

where now the absolute term kx is missing and

(71) x'(») = [A/(<),s'(0]

Recall that this form can represent also the positional ARMA model if a unit root
is inserted into the polynomial c(Q.

State representation of Delta models

Consider the positional Delta model (53) but expressed in backward differences.

(71) fjaiA"-iy(t-i) =
i = 0

= £ [bt An"lu(t -Tu-i) + dt A"-'i<- -Tv-i) + Ci A"'1 e(t - ij] +kc
j = 0

To simplify writting we omit the stars distinguishing the parameters of ARMA and
of Delta models as no confusion can occur any more. However, the reader has to
baer in his mind that they are different. We also assume that the c-part of the model
has been extended to order n (see Remark (c) below).

In order to transform (71) into a canonical state model it is suitable to introduce
the operation which is inversed with respect to the backward difference A. Clearly

A/(r)= f(t)-f(t-i)

f(t) = Af(t)+f(t-l)

37

and recursively

f(t) = Af(t) + Af(t - i) + f(t - 2) = 'E Af(t - 0 + /(O)
k = 0

where /(O) is an arbitrary constant.
Hence, it is possible to write

(73) A^f(t) Jj:f(t - k) + A-%0)
k = 0

A"!j(0 = E A - 0 " 1 ^ - - fc) + A- ' / (O)
fc = 0

Application of A"" to the relation (71) gives

(74) £ a , A - ^ - 0 =
i = 0

= £ A-'[foi «(- - Tu - 0 + dt v(t -Tv- i) + ct e(t - 0] + f0(t)
i = 0

where f0(t) is a function reflecting, according to (73), the effect of posibly nonzero
initial conditions. For our purpose it is important to know about this function that
its nth difference is

A%(t) = kc, t>0

The relation (74) can be written similarly to (59)

(75) aQ y(t) = bQ u(t - Tu) + d0 v(t - Tv) + e(t) + st(t - 1)

where „
*-(' - i) = Z *~J[-«j y(t - i) + bj u(t -TU- j) +

/ = i

+ dj v(t - Tv - j) + cj e(t - ;)] + fQ(t)

Shifting the time index by one ahead and taking the difference we have

Ast(t) = st(t) - st(t - 1) =

= t A-J + 1[-aj y(t+l- j) + bj u(t -Tu+l-j) + dj v(t - Tv + 1 - j) +

+ cj e(t + l - j)] + AfQ(t + 1)

a, y(t) + ASl(t) = bt u(t - Tu) + dt v(t - Tv) + ct e(t) + s2(t - 1)

This shows that it is possible to continue similarly to ARMA case if in each step
also the difference is applied. In this way it is obtained for i < n

(76) a, y(t) + As//) = b{ u(t - Tu) + dt v(t - Tv) + ct e(t) + si+1(t - 1)

and for i = n

(11) an y(t) + Asn(t) - bn u(t - Tu) + dn v(t - Tv) + cn e(t) + kc

The matrix form of the canonical state model (75), (76), (77) can be left the same

38

as (63)

(78) A x(t) = bu(t - Tu) + dv(t - Tv) + c e(t) + H s(t - 1) + kx

with matrices introduced by (65), (66), and (67) but in this positional Delta case

(79) *'(<) = [/(<), _*'(<)]

In the same way the canonical state representation of an incremental Delta model
can be obtained in the form (70)

(80) A x(t) = b Au(t - Tu) + d Av(t - Tv) + c e(t) + H s(t - 1)

but with

(81) *'(<) = [A/(<),AS'(<)]

As discussed before, by this incremental model also the positional Delta model
can be represented if instead of the original polynomial c(8) of order nc the poly
nomial 5c(5) is considered and then extended to order n according to (57).

Remark (c). If the extension of the c-part of the Delta model has not been done
beforehand (see Remark (b)) then the leading coefficients {ct: i = 0. ,n — nc — 1}
in (72) must be set to zero, c„_„c = 1, and the time index of e should be shifted
accordingly, i.e. by n — nc steps ahead. In a state representation this means that the
first n — nc elements of the matrix c (67) are zero and e(t + n — nc) should stay
instead of e(t). Note that e{t + n — nc) will influence the output only after n — nc

steps, i.e. it will meet the output y(t + n — nc) with the same time index. However,
if e(t) is interpreted, or simulated on a digital computer, as an external driving
white noise then its time shift is insignificant.

3.5. Digital simulation of continuous stochastic processes

Digital simulation of continuous stochastic processes is not the main topic of this
paper. However, it is believed that an interested reader might appreciate a simple
tool which makes it possible for him to experiment with the presented algorithms
and to investigate their sensitivity with respect to violation of theoretical assumptions
on which they are based. The purpose of this paragraph is to show that Delta models
can serve this purpose, and to give a simple and fast PASCAL function performing
this task.

To avoid the theory of stochastic differential equations of higher order consider
first the ordinary differential equation

d-r" i=i dr" ' i=o d-c" l

When simulating a continuously operating system described by such an equation
on a digital computer it is necessary to admit some kind of approximate discretization.
Since our interest is to simulate the evolution of the output y in natural time, i.e.

39

(83)

in the direction of positive T, it is suitable and convenient to consider the following
discretization

ABY(Q A A - V f t - Q = -A A - ' I I (. - Q

(AT)" ik \ (AT)"-£ , 4 , . (AT)" - '

where AT is a sufficiently small increment of time T. The time shift of lower order
differences guarantees that y(t) appears in the relation only once and that, given
{y(t — 0* '' — 1- -n} an<^ {M(* — 0* l ~ 0- •«}, y(0 is determined uniquely for any
values of the coefficients. For AT -> 0 this time shift disappears and in the limit
the relation (83) approaches the original differential equation (82). Multiplying the
relation (83) by (AT)" > 0 the following Delta model is obtained.

YJalA
n-íy{t-i) = YjbiA"-iu(t-i)

/ = o í = 0

where

(84) a ř = (A т) Ч , ^-(AтУßi

Now consider the state-space representation of a single-output Delta model
of positional type (78)

(85)

It is easy to verify that

A^Å
УЩ=bu(t) + ce(t) + Hs(t-l)

(86) A'1 =

1

at 1
a2 1

- 1
— ax 1
— a2 1

l-a„
Applying this inverse

[4 . 1] = A ~ ' н s { t ~1)+л"bu{г)+A~,ce{t)

the canonical state model can be written as the state equation

(87) As(t) = As s(t - 1) + bs u(t) + cs e(t)

and the output equation

(88) y(t) - Sl(t - 1) + b0 u(t) + e(t)

where

-a, 1
— a2 1

(89) A. = 1

— a,

Ъx - Ü^ЪQ cj - ax

b2 - a2b0 C2 ~ "2

. ъs = • > cs =

1
0_ J>„ - anb0_ Jn ~ a„_

40

The ("th row in (87) is

(90) As/*) = -a, s_(t - 1) + s ; + 1(f - 1) + (bt - a;b0) u{t) + (c, - a,) e(.)

If the state components are rescaled so that

(91) trj(f) = s i(()/(AT) i-1, er^) = s.(.)

and if the parameters are expressed according to (84)

(92) A; = a;(AT);, 6, = /?;(AT); , c, = y^A.)1

then we have instead of (90)

halt)

Aт
= — a i a_(t - 1) + ai+1(t - 1) + (0, - a;jS0) и(í) + (y, - a:) e(í)

and the state-space model (87) —(88) now is

(93)
Zi

y(t) = «r..(í - 1) + p0 u(t) + e(f)

^) = Ф cт(ř - 1) + V м(ř) + Г e(ŕ)
Aт

(94)

where

(95) Ф

— â 1

— a„

Ч> =

Bi - ^i/^o- ľl -- a_

ßг ~ <*2ßo
, г =

ľ2 " - «2

ßn ~ «и/V _ľ„ " - a«_

Comparing (93) and (94) with the continuous-time stochastic model (in the in
novations representation [11])

(96) dajdx = <P a(x) + W u(x) + r e(x)

(97) y(x) = a_(x) + P0 u(x) + e(x)

it is seen that the Delta model (85) can be used to approximate the continuous-time
model if the continuous time T is scaled so that its chosen increment AT (small but
finite) is a time unit. This scaling of time appears suitable both algoritmically and
numerically.

In a similar way it is possible to show that the incremental Delta model (80)
can be used to simulate the continuous-time process described by the model [11]

(98) da = <Pa dx + V du + F dw

(99) dy = a_ dx + J?0 dw + dw

where dw = e dt is the increment of the Wiener process.

41

PASCAL procedure and function

The following PASCAL procedure CONTbyDELTA recalculates, according to
(92), the parameters of a continuous-time linear process model to the parameters
of the Delta model by which it can be approximated. The function PROCESS
generates the process output performing one step of its digital simulation. The
nonstandard types of their parameters are

TYPE
poly = ARRAY [0. ./.max] OF REAL;
system = RECORD

n : INTEGER {order} ;
a, b, c, s : poly {parameters and state}
END;

PROCEDURE CONTbyDELTA (VAR p:poly; rc:INTEGER; df.REAL);
VAR/, ^INTEGER;
BEGIN

FOR / : = 1 TO n DO
FOR j : = i TO n DO p[j] : = p[j] * dt

END;

FUNCTION PROCESS (VAR S: system; u, e:REAL): REAL;
VAR ^INTEGER;
BEGIN

WITH S DO
BEGIN

s[0] := s[l] + b[0] * u + c[0] * e;
FOR i := 1 TO n - 1 DO s[i] := s[i] + s[i + 1] - a[i] * s[0] + b[i] *u +

+ c[i] * e;
s[n] := s[n] — a[n] * s[0] + b[n] * u + c[n] * e;
PROCESS := s[0]

END
END;

Remark (d). The discrete-time process, by which the continuous-time process
is approximated, is slightly less stable than the original one. This is due to the fact
that the region of stability for the roots of a 5-polynomial is a disk of radius 1 centered
on the point (— 1, 0) in 5-plane. (The relation (45) maps the region outside the unit
circle in ^-plane on the above disk in 5-plane.) In the original continuous-time scale
this disk has radius 1/AT and the center on the point (—1/AT, 0), see Fig. 3. This
means that stable continuous-time systems with poles of their Laplace transfer
function /?(s)/a(s) lying between the circle and the vertical axis in Fig. 3 are simulated

42

as unstable. To see that this defect is, as a rule, well negligible the reader is re
commended to simulate the system described by the differential equation d2j>/dT2 +
+ (2TC)2 y = (2TT)2 U which, for zero initial state and M(T) = 1 for t > 0, should

Im(s)

0 Re(s)

Fig. 3. Stability region in complex j-plane for Dslta approximation of continuous systems.

produce the output y(r) = 1 — cos T. Choosing AT = 0001 the approximating

Delta model has the parameters according to (84):

1 , ax = 0 , aг = (2тt)2 . 10" 0 , Ьx = 0, bг = (2тt)2 . 10 - 6

The instability of the discrete model starts to be visible on the computer screen only
after about 4 periods of the output (after 4000 integration steps realized by the func
tion PROCESS). Otherwise, both the amplitude and the phase of the output are
simulated very precisely.

R E F E R E N C E S

[11] K. J. Astrom: Introduction to Stochastic Control Theory. Academic Press, New York,
1970.

[12] G. E. P. Box and G. M. Jenkins: Time Series Analysis, Forecasting and Control. Holdsn-

Day, San Francisco, Cambridge, London, Amsterdam 1970.

4. STATE ESTIMATION AND OUTPUT PREDICTION

In order to be able to control a given process in a rational way it is necessary
to be able to predict its future motion. If the process is described by a state model
then the prediction requires to propagate the conditional probability distribution
p{s[t) | t) by which the uncertainty of the model state s[t) is described. This can be
seen from the formula (3.22).

In this section the solution of the classical problem of state estimation and output

43

prediction will be revised with emphasis on algorithmic and numerical aspects.
To provide a general view on the problem the first paragraph is devoted to its con
ceptual solution in terms of conditional probability distributions. Such a solution
does not yield practical algorithms but facilitates a deeper rooted understanding
of the problem. In the succeeding paragraphs the conceptual solution is specialized
for the linear models introduced in Section 3.

In the second paragraph it will be shown that for canonical state forms of input-
output models it is possible to derive algorithms which are simpler and numerically
more robust than the standard Kalman filter. They are uniform for both ARMA
and Delta models and can solve also continuous cases with good approximation.
To make the main ideas of the algorithmic solution as transparent as possible the
single-output case is considered first.

The kernel of the presented solution is the algorithm for propagation of the state
covariance matrix which replaces the Riccati equation of the Kalman filter. This
algorithm and the corresponding PASCAL procedure are discussed in detail in the
third paragraph.

In the fourth paragraph it is shown that the effectivity and numerical reliability
of the algorithmic solution can be well maintained also in multi-output case.

In the last paragraph the prediction of the process output and of the model state
for more than one steps ahead is considered. It will appear useful in control synthesis
for processes with time delay.

In the given problem the external measurable disturbance v does not need to be
considered explicitly. It can be regarded as an additional process input and as such
can be easily incorporated into the final results. The fact that this external input
cannot be manipulated is not essential here. However, it is essential that v(t) as well
as u(t) influence the model state s(t) but, under natural conditions of control (see
paragraphs 2.1 and 3.1), they alone do not bring a new piece of information about
s(t — 1) in addition to the information contained in the past input-output history.
Recall that s(t — 1) is the state of the controlled process itself, not of the generator
of v(t).

Throughout this section it is assumed that the parameters of the model are known.
Since this condition is permanent for all probability distributions involved it is not
explicitly stated. The simultaneous estimation of the model parameters and of the
state will be considered in Section 6.

4.1. Conceptual solution

Suppose that the inputs u(k) and the outputs y(k) of a particular process, possibly
multivariate, have been observed for k= 1,2, ...,t— 1 and that the c.p.d.f.
p(s(t — 1) | t — 1) has been determined. The problem is: Given the state space
model defining the c.p.d.f. (3.18) p(y(t), s(t) \ s(t — 1), u(t)) find the predictive

44

c.p.d.f. for the next output p(y(t) 11 - 1; u{t)) and, after the output is observed,
determine p(s(t) | t) to prepare the next step of the recursion.

The solution of the given problem can be decomposed into three stages. In the
first stage the joint probability distribution for y(t) and s(t), given u(t) and the past
input-output history, is determined. Employing just the elementary operations with
c.p.d.f.'s (2.1) and (2.2) it is possible to write

p(y(t), s(t) \ t - l ; u(t)) = f p(y(t), s(t), s(t - 1) \ t - l;u(ij) ds(t - 1) =

= f p(y(t), s(t) 11 - l;s(t - 1), u't)) p(s(t - 1) 11 - I; »(*)) d<* - 1)

From the definition (3.18) of the state we have

p(y(t), s(t) | t - 1; s(t - 1), u(t)) = p(y(t), s(t) | s(r - 1), u(t))

and under natural conditions of control it also holds according to (3.19)

p(s(t - l)\t - l;u(t)) - p(s(t - l)\t - 1)
Hence

(1) p(y(t),s(t)\t-l;u(t))-

p(y(t), s(t) | s(t - 1), u(t)) p(s(t - 1) 11 - 1) ds(t - 1)

In the second stage the marginal distribution for the prediction of the process
output is determined.

(2) p{y(t) \ t - l ; u(t)) = !p(y{t), s(t) \ t - l ; u{t)) ds(t)

In the third stage the recursion is concluded by conditioning the probability
distribution for the state s(t) with respect to the newly observed output y(t).

(3) P(s(oit) = ^ ; ^ ' f - 1 ; f)
p(y(t) \t -1; u(t))

Thus the problem of state estimation and output prediction is conceptually solved.
The inspection of the relations (1) to (3) shows that if the model defining p(y(t),

s(t) | s(t — 1), u(t)) is linear and normal, and if p(s(t — l)\t — 1) is assumed to be
normal then the piedictive c.p.d.f.'s (1) and (2) are normal and also p« t) | t), up
dated according to (3), is normal, i.e. the normality is reproduced. This means that
for a linear normal state-space model it is sufficient to express the prior uncertainty
of the initial state s(0) by a normal c.p.d.f. p(s(0)) and the problem can be solved
considering only first and second moments (expected values and covariances). This
observation is of fundamental importance for further applications of this conceptual
solution.

45

4.2. Algorithmic solution for canonical state representation of linear normal
input-output models

In order to cover aJl models discussed in Section 3 at the same time and by the same
algorithms it is suitable to rearrange slightely the state representation of Delta models.
The relation (3.76) for the ;th component of the canonical state can be rewritten
in the following way

(4) at y(t) + Si(t) = s{t - 1) + si+1(t - 1) + b, u(t - T„) + c, e(t)

where the term with v(t) has been omitted for brevity. (As discussed above this
simplification does not restrict the generality.) Recall that in multi-output case each
component of the state st(t) is a vector of dimension dy. Comparing (4) with (3.60)
it is easily seen that both Delta and ARM A models can be described by the relation

(5) Ars^\^Hs(t-l) + bu(t-Tu) + kx + ce(t)

if the matrix H of dimensions (n + 1) dy x n dy introduced by (3.65) is redefined
in the following way

(6) H ыa
where / is a unit matrix of dimension n dy and n is the model-type indicator

(7) n = 1 for Delta models,
H = 0 for ARMA models.

The matrix coefficients A, b, c in (5) and the possible absolute term kx have the same
structure (3.66 — 67) for both cases but, as discussed in detail in paragraph 3.3, their
parameter entries are, in general, different.

By comparing (5) with (3.70—71) and with (3-80 — 81) it is seen that if y(t) and
u(t — Tu) are replaced by their increments Ay(t) and Au(t — Tu), respectively, then
(5) with kx = 0 covers also incremental models. As discussed in connection with
equations (3.70) and (3.80) by incremental form also positional models can be
represented if the corresponding root (1 in ARMA case and 0 in Delta case) is inserted
into the c-polynomial. If also the Remark (3c), concerning the c-part of a Delta model,
is recalled then we are prepared to solve our problem with rather broad generality.
However, in order not to hide the main ideas of the algorithmic solution in technica
lities the single-output case will be considered first.

Single-output case

The white-noise component e(t) of linear input-output models introduced in Section
3 has the same dimension as the output y(t). Thus in single-output case the diagonal
covariance matrix De (3.40) is reduced to a nonnegative scalar which will be denoted
here as Q.

(8) Var [<r)] = Q

46

Suppose that the c.p.d.f. p(s(t — 1) | t — 1) is normal with the mean values
s(t — 1 | t — 1) and with the covariance matrix factorized as follows

(9) Var [s(t - 1) | t - 1] = Q Ls(t - 1) Ds(t - 1) Ls(t - 1)

where Ls(t — 1) is a monic LT-matrix and Ds(t — 1) is a diagonal matrix with
nonnegative diagonal entries. These factors are supposed to be given numerically.
Note that the scalar Q is extracted in (9) and does not need to be given numerically.

Taking the expectation conditioned on the observed input-output data up to t — 1
and on u(t) the model (5) yields

(Ю) Лч ř
i;ц(0)

Šyt j t - 1; u(t))
= Я ś(t - 11 ř - 1) + b u(t - Tu) + kx

The first row in (10) determines the expected value (the prediction) of the output

(11) y(t\t - 1; u(t)) = st(t - 111 - 1) + b0 u(t - Tu)

and the remaining rows in (10) determine the prediction of the state

(12) st(t [if — 1; u(t)) = -fl ; j)(f | f - I; w(f)) + /(i;(f - 1 | t - 1) +

+ ,?, + 1(z - 1 | f - 1) + b-, u(t - Tu), / < n

(12') 5„(f | t - 1; w(*)) = -a„ y(t\t - 1; u{t)) + fi s„(t - 1 | t - 1) +

+ 6„ u(t - Tu) + /cc

From (5) and (10) we also have

A\f-^jt~!;U:
i
t)^\ = H(s(t-l)

[s(t) - šKt\ t - 1; w(ř)) j v v 7 l(ř 1 í \)) + ceU)

Hence the joint covariance matrix is

(13) v„[y[t)
)

Var Глť 1; u(t)

= ^ ~] [/ / L / l - 1) Ds(t - 1) Lsl(- 1) H' + cc'1 (A~1)' =

= ^-[c,HZ,][i0J[LfH,](A-)'

where the time argument has been omitted for brevity
The mean values (11) and (12) and the covariance matrix (13) determine the normal

joint probability distribution (1). The remaining stages (2) and (3) of the general
recursion can be accomplished at the same time by applying the Result (2A). For
this purpose it is sufficient to modify the factorization of the joint covariance matrix
(13) so that it gets the form

(14)
Ls(0 i ;ц(0 = QLĎL

47

where Lis a monic LT-matrix and D is diagonal. Since, according to (3.86), A 1 is
already a monic LT-matrix

(15) A'1 = _ _ . , a' = [aua2,...,a„]

it suffices to modify only the inner matrix product on the right-hand side of (13).

(i6) fc*-j[jy[i.>]--'-'
Since the left-hand side of (16) can be considered as a weignted sum of dyads with
the weights given by the diagonal nonnegaiive entries of the inner diagonal matrix,
the modification can be performed by a suitable application of dyadic reduction.
The algorithm performing this task will be described in detail in the following
paragraph 4.3. At this place let us assume that the modification has been performed
and let us partition the resulting monic LT-matrix L and the diagonal matrix D
in the following way

(17) L =
1 0
č L.

Ď = dy 0
0 Ď.

where c is a column vector of dimension n, Ls is a monic LT-matrix, and dy is, in this
single-output case, a nonnegative scalar number.

After substituting the right-hand side of (16) into (13) it is seen that the monic
LT-matrix L in (14) is

1 0"
18) A~'L = •a I

p° j=r i °
[č Lsj _č - a Ls

The application of the Result (2A) is now straightforward. Restoring the time argu
ment

(19) ~c(t) = ~c, LJt) = Ls, Ds(t) = Ds, d/yt) = dy

we obtain
(20) s(t | /) = S(t | / - 1; «(/)) + (c(t) - a) (y[t) - y[t\t - \; «(/)))

(21) Var [</) | /] = Q Ls(t) D/t) Ls(t)

(22) Var[y'yt)\t-l;u(t)] = 6dy(t)

This concludes the recursion.
It is important to note that the multiplication by A-1 in (18) does not influence

Ls = Ls(t). This means that the evolution of the state covariance matrix (21), of the
prediction variance (22), and of the time varying component c[t) of the Kalman gain
(c(t) — a) is determined solely by the parameters c of the model, by the observation
time /, and by the initial state covariance matrix which us used to characterize the
prior uncertainty of the state s(0) before any data are observed. No other parameters
neither data enter this evolution.

Instead of calculating the estimate (the conditional mean) of the state s(t) according
to (11), (12), and (20) it is more suitable to proceed as follows. For the ith component

48

of the state the relation (20) gives

Sjt | /) = S,{t [t - 1; u(t)) + (ct(t) - a,) (y(t) - p(t | t - 1; u(r)))

When s,(f | f — 1; u()) is substituted from (12) the term at y(t \ t — 1; u(t)) is
cancelled. Making use also of (11) it is finally obtained

(23) St(t | r) = pi s/j - 1 | t - 1) + s ; + 1(f - 1 | f - 1) -

- ct(t) St(t - 111 - 1) - (at - c,[t)) y(t) + (b, - ct(t) b0) u(t - Tu),

i < n

(23') Sn(t \t) = fi Sn(t - 1 | t - 1) - c„(r) s.(.* - 1 | f - 1) -

- K - c„(0) y(t) + (b„ - c„(t) b0) u(t - Tu) + kc

Summing up we come to the following

Result (4A): State estimation in single-output case.
If the white-noise component e{t) of the canonical state-space model (5) is normally

distributed with zero mean and with the variance Q (8), and if the probability distribu
tion p(s(0)) describing the prior uncertainty of the initial state ŝ O) is also normal
then the c.p.d.f. p(s(t) | t) is normal for all f > 0 and the evolution of its mean value
is governed by the difference equation

(24)

where

(25)

S(t | f) = (џl + C(t)) S(t - 1 | t - 1) - (a - č(t)) y(t) +

+ (b- č(t) b0) u't - Tu) + ks

C(t)

C ((ř)
c2(t)

1 0 0
0 1 0
0 0 1

b„]

c„_l(f) 0 0 0 . 1
_cn(t) 0 0 0 . 0

(26) c'(f) = [c1(f),c2(f),...,c„(f)]

(27) a' = [al,a2, ...,an], b' = [bl,b2,

(28) k's = [0,0,...,0,kc]

The coefficients c,(f), in general time varying, as well as the factors Ls(f) and Ds(t)
of the state covariance matrix (21), and the variance of the output prediction (22)
can be propagated simultaneously by the modification of the matrix factorization
(16) which, with partitioning (17) and time indexing (19), reads

"1 0
(29) [c,HLjt- 1)] 0 ű s (ř - l) J L Ľ s (ŕ - l) Я ' J

1 0 lГdy(t) 0 lГ l c'(t)l
c(t)Ls(t)JІ0 Ds(t)Цo Ľs(t)j

49

The one-step-ahead prediction of the output y(t\t — 1; u(t)) is given by (11) and
the prediction of the state s(t | t — 1; u(t)), if required, can be calculated according
to (12).

Remark (a). Note that the variance Q (8) of the white-noise component of the model
does not enter the evolution of conditional means and of time-varying factors of
covariances. Therefore it does not need to be known if the prior covariance matrix
of the initial state s(0) is chosen in proportion to this possibly unknown parameter.

(30) Var [.<0)] = Q LjO) DJO) LJ.O)

Remark (b). The vector difference equation (24) clearly shows that the dynamics
of the filter generating the state estimate s(t | t) is given by the matrix (/il + C(t))
and by the evolution of the coefficients c(t) (26) which determine this matrix. To get
a deeper insight it is advantageous to consider the stochastic difference equation
by which the difference between the true but unknown state and its estimate

(35) s(t) = s(t) - sj | t)

is governed. By simple algebraic manipulation with the model (5) and the difference
equation (24) of the estimation filter it is possible to derive

(36) s(t) = (ill + C(t)) s{t ~ I) + (c - at)) e(t)

where
(37) c' = [cuc2,.... c„]

Two important observations can be drawn from this stochastic difference equation:
(i) Suppose that the algorithm performing the modification (29), converges for

t -*• oo producing c(oo) = c, Lj oo) = Ls, Ds(co) = Ds, and C(oo) = C. Since the
estimation of the state is optimal (in the sense that it extracts all relevant information
about the state contained in the observed data) the stochastic difference equation
(36) cannot be unstable for t -> oo. This means that none of the roots {/t;: i = 1, ft}
of the characteristic equation det ((A — n)l — C) = 0 can lie outside the unit circle.
The characteristic equation with the matrix C of structure (25) reads

i = l

Hence, in ARMA case (n = 0) the polynomial

c(X) = X" + j^CiX"-1

; = i

has no roots outside the unit circle even when the polynomial c(Q of the ARMA
model is unstable. Similarly, in Delta case (fi = 1) the polynomial

c(8) = 5" + £c;5"-«'
i = l

has no roots outside the circle of radius 1 centered on the point (— 1, 0) in 5-plane.

50

(ii) If the c-polynomial of the model is stable and c = c then, according to (36),
s[t) converges to zero. Asymptotically, the state of the model can be reconstructed
exactly and the state covariance matrix converges to a zero matrix, Dj co) = 0.

These observations will be supported by examples in the following paragraph
where the algorithm performing the modification (29) will be described in detail.

4.3. Algorithm for propagating the state covariance matrix and generating c(t)

An algorithm will be designed which performs the modification of the matrix
factorization (16) and in this way, according to (29), propagates the factors Ls(t)
and Ds(t) of the state covariance matrix (21), and simultaneously generates c(t) (26)
and the factor dy(t) of the prediction variance (22). This algorithm replaces, for the
canonical state model (5), the Riccati equation of the standard Kalman filter. Unlike
the Riccati equation it guarantees numerically the nonnegative definitness of the
propagated covariance matrix. This is of extraordinary importance for practical
computation particularly in often met cases when the state covariance matrix con
verges to a zero matrix (see Remark (b)). The basic idea of the algorithm rests on
the fact that the left-hand side of (16) can be considered as a sum of weighted dyads
and therefore can be modified using the dyadic reduction.

To design the algorithm it is sufficient to consider only the rows of the right-hand
factor on the left-hand side of (16) and their weights as shown in the scheme Fig. 4
where each row represents one dayd and its weight. Note that the last row,

1

Djj - 1)

Dsi

Ds2

D.

0

C 0 Cl C2 C 3 -лl

1 . .

1 1 •
1 .

Ľ/t - 1)

1
Fig. 4. First stage of the algorithm CGEN.

containing just a single nonzero entry (one), is added but the zero weight is assigned
to it. This trick makes the algorithm compact. In most cases c0 = 1, but as discussed
in Remarks (b) and (c) in Section 3, it can also be c0 = 0 if the c-polynomial of a
Delta model is not extended to the full order n.

The goal is to perform the modification (16) so that the right-hand factor depicted
in Fig. 4 be a monic upper triangular matrix L'. This can be achieved when the first
row c0, Cj, ..., c„ is totally zeroed by sequential application of the dyadic reduction.
The row having the weight Dsl is used to zero the first entry c0, the next row is used

51

to zero the second entry (cj modified by the first step), and so on until the situation

Ds(t)

Dsl

Ds2

D,

0 0 0 0 0 0
1 č. . • č„

1 .
1 1

1
1 .

1 1

č'(t)

m

Fig. 5. Final stage of the algorithm CGEN.

depicted in Fig. 5 is reached. Note that c' appears in the second row and that both
Ls(t) and Ds(t) are shifted by one row lower. This must be respected when coding the
algorithm.

PASCAL PROCEDURE CGEN

The above described algorithm is realized by the following procedure CGEN.
The nonstandard types of its parameters are
TYPE row = ARRAY [0. .nmax] OF REAL;

matrix = ARRAY [0. .nmax] OF row;
where nmax is a suitably chosen integer constant. Since CGEN makes use of the
procedure DYDR (see paragraph 2.2) the type row must be the same for the both
procedures.

Parameters:
L . . . type matrix; factor Ls of the state covariance matrix to be updated, L[z',j] =

= Lsji; must be initialized including L[i, i] = 1; the part under the main
diagonal not used; Lis extended by row L[0] which can be arbitrary when
the procedure is called.

. . type row; factor Ds (its diagonal elements) of the updated state covariance
matrix, D[i] = Ds ;; D[0] can be arbitrary when the procedure is called.

. . type row; parameters c of the model, c[i] = c ; (i = 0, ..., n).

. . type INTEGER; model order.

. . type INTEGER; model-type indicator (in the text denoted by fi); set inti =-- 0
for ARMA, mti = 1 for Delta model.

The generated c appears in the row L[0], c ; = L[0, {]; dy appears in D[0],
-a

PROCEDURE CGEN (VAR L matrix; VAR D:row; crow; n,mti. INTEGER);
VAR i, j : INTEGER;

£>e:REAL;
BEGIN
De:= 1;
FOR i:= 1 TO n DO

D

c
n
mti

52

BEGIN
FOR j := i + 1 TO n DO L[i - l , j - 1] := L[i,j~\ + mti * L[i,j - 1];
L[i — 1, «] := mti * L[i, n\;
D[i - 1] : = D[i]
END;

D[n] : = 0;
FOR i := 0 TO n DO DY£>R(c, L[i], De, D[i], i, i + 1, n)
END;

Example (4.1). For a first-order process model (« = 1,L= 1) simple formulae
for the evolution of the scalars Ds(t) and ct(t) can be derived. They can help to under
stand what the algorithm actually does. Going through the algorithm step by step
it is found that for c0 = 1

(38) Dh) = °^ ~ ^ (c - fif
K J W Djt - 1) + 1 V '

(39) Cl(t) - /i +
Z)s(* - 1) + 1

(40) cL/*) = Dsl* - 1) + 1

If, for Ds(0) > 0, Ds
_1(t) is considered as the dependent variable then the difference

equation (38) is transformed into the following linear difference equation of first
order.

D;Xt) = (Cl-n)-2D;\t-\) + (Cl-ny2

Hence, for (ct — /if =j= 1 we have

(41) D;\t) = D;\O)(CI - /z)-2 ' + ((c. - nf - l) " 1

and for the interesting special case when the c-polynomial has its root at the sta
bility boundary, (ct — /if = 1

(42) D;\t) = D;1(O) + t

The explicit solutions (41) or (42) determine cx(r) and dy(t) for any t > 0 according
to (39) and (40). Of particular interest are the values to which the algorithm con
verges for growing t. From (41) and (42) it is seen that
for (c. - nf ^ 1

(43) D;\co) = GO , Ds(co) = 0 , ct(co) = c, , dy(co) = 1

while for (c t — [if > 1

(44) Ds(co) = (c. - /i)2 - 1 , c.(oo) - / . = (cj - n)'1 , dy{co) = (Cl - nf

Hence, for t -> co the algorithm returns the polynomial c which is always stable.
Note also that according to (39) for all finite t

\ci(t) - p\ < |c, - n\

53

For an ARMA model (H * 0) with c. = - 1 the relations (39) and (42) give

for n = 0, c. = — 1

~cA']"_1 + Lvwr.
which clearly shows that cx(<) is approaching its asymptotic value ct(oo) = — 1
from the stable side. If such a first order model is transformed into the Delta form
(fi = 1) then C} = 0 and

for n = 1, Cj = 0

' «i(0 =
-VҶ0) + Í

which again shows that also in the Delta case the stability boundary (the pure
summation in the state estimator (24)) is approached in a cautious way.

Example (4.2). To demonstrate that also in higher order cases, which cannot be
analysed so easily, the algorithm behaves in a similar way let us consider an ARMA
model (n = 0) of order /? = 3 with the polynomial c(£) having two roots outside
the stability region

c(C) = 1 - 3-35C + 2-825J;2 - 0-25^3 = (1 - 1-25Q(1 - 2Q(1 - 0-1Q

Since all roots lie rather far from the stability boundary the procedure CGEN reaches
the stationary solution very fast. With D(0) = [1, 1, 1] and L(0) = I only after
about 30 steps (for t = 30) it is obtained with precision of 4 significant digits

c(C) = 1 - 1-400? + 0-5300C2 - 0-0400C3 = (1 - 0-8£)(l - 0-5Q(l - 0-lQ

Thus the unstable roots are reflected into the stability region. However, the prediction
variance is dy(co) = 6-250 times larger than the variance of the white-noise component
e of the model.

If the ARMA model is tranformed into the Delta form (using, for instance, the
procedure ARMAtoDELTA listed in Section 3) the equivalent 5-polynomial c is

c(5) = 53 - 0-35 52 - 0-875 5 + 0-225

and the procedure CGEN for mti = ft = 1 returns with a similar speed

c{8) = 53 - 1-600 52 + 0-7300 5 + 009000

and the same dy(cc) = 6-250, of course.

Example (4.3). In this example we will demonstrate the fact mentioned in Remarks
(b) and (c) in Section 3, namely that the procedure CGEN performs the extension
of the c-polynomial of a Delta model to the full order if it has not been done before
hand. Consider, for instance, a regression model of order 4. If this model is transfor-

54

med into the Delta form then the S-polynomial c(8), when not extended, is

c(8) = 0 84 + 0 53 + 0 82 + 05 + l

and, as discussed in Remark (c) in Section 3, the vector c in the canonical state model
(5) is c' = [0, 0, 0, 0, 1]. Applying the procedure CGEN the reader can verify that
after 4 steps, i.e. for t _ 4

c(8) = 84 + 483 + 682 + 48 + 1

Note that the matrix (/ + C(t)) in (36) has, for t > 4, four eigenvalues equal to zero.

Example (4.4). It may be interesting to see how the procedure CGEN can manage
the continuous process model if it is approximated by a Delta model simply replacing
dT by a small but finite time increment AT. For this purpose consider a continuous
process described by the model

,w.ffl„(t) + *L (T)
a(s) a(s)

where a(s), /?(s), and y(s) are polynomials in the differential operator s, and e(t)
is white noise. For demonstration let us choose y(s) with one positive (unstable)
root.

y(s) = s2 + 0-4 s - 0-6 = (s + 1) (s - 0-6)

First, let us suppose that the order of the model, given by the order of the poly
nomial a(s), is n = 2, i.e. the same as the order of y(s). Apparently, the choice AT —
= 0005 sec should give a good discrete approximation of the continuous model.
With this choice the c-polynomial of the approximating Delta model is (use formulae
(3.92) or the procedure CONTbyDELTA from Section 3)

c(5) = 52 + 2 . 1 0 ~ 3 5 - 1-5. 10~5

If the procedure CGEN is started with L(0) = / and £>(0) = [1,1] then after 1600
steps (compare T = 1600 (AT) = 8 sec with the time constants of y(s)) the stationarity
is approach width

c(8) = 52 + 7-992 . 10"3 5 + 1-495 . 10~5, dy = 1-006

In the real-time scale this corresponds to (recall formulae (3.92))

y(s) = s2 + 1-605 s + 0-6049

which well approximates the correct solution

y(s) = s2 + 1-6 s + 0-6 = (s + 1) (s + 0-6)

Even more interesting is the case when the order of y(s) is lower than the model
order, i.e. than the order of a(s). To demonstrate such a case let us consider the same
y(s) but formally written as the third-order polynomial

y(s) = 0 s3 + s2 + 0-4 s - 0-6

55

Correspondingly, with the same AT = 0005 sec, we now have

c(5) = 0 53 + 5 . 10""3 52 + 1 . 10""5 5 - 7-5 . 10~8

Starting with L(0) = I and D(0) = [1,1,1] the procedure CGEN gives for / = 1600
(T = 8 sec)

c(5) = 53 + 1-008 52 + 8-024 . 10"3 5 + 1-509 . 10~5 , cly = 2-515 . 10~5

In order to see what this result means in the real time scale it is suitable to proceed
as follows. When inspecting the factorization (29) as modified by the procedure
CGEN it is seen that the result does not change when dy is divided by (AT)2 and
at the same time c(5) is multiplied by (AT). Hence, the couple {e(5), dy) can be equally
written as

c(5) = 5 . 10^3 53 + 5040 . lO - 3 52 + 4012 . 10"5 5 + 7-545 . 10~8 ,

dy = 1-006

Now when the transformation (3.92) back to the continuous time is applied it is
obtained

y(s) = 0-005 s3 + 1-008 s2 + 1-6048 s + 0-6036

Compare this result with the polynomial obtained by exact reflection

y(s) = 0 s3 + s2 + 1-6 s + 0-6 = (s + 1) (s + 0-6)

It should be mentioned that these examples were calculated using the precision
of only 4 bytes floating-point arithmetic.

4.4. Multi-output process

When trying to extend the derivation from paragraph 4.2 to multi-output case
the first difficulty met is that Var [e{tj\ is no more a single number Q but a diagonal
matrix

rQ1 0 . 0

(45) Var [e(tj\ = De
0 Q2 . 0

0 0 0 Qsy

which cannot be simply extracted from all expressions for covariance matrices. Hence,
to be able to proceed further we have to set Q = 1 in (9) leaving De incorporated
in the matrix factors Ls and Ds which are now of dimensions n dy x n dy. Instead
of (11) it is obtained

(46) a0 y(t\t- 1; u(t)) = s,(t - 1 11 - 1) + bQ u{t - 7;)

while (12) and (12') are still valid with the only difference that now the coefficients at

are matrices of dimensions dy x dy. Note that the prediction p(t | t — 1; u(t)) can
be calculated from (46) very easily, without any division, as a0 is a monic LT-matrix.

56

Continuing in the revision of the single-output case we arrive to the relation (13)
which now reads

(47) Var^\t-l;u{t)^ = A^[c,HLs-]

Also here A'1 is a monic LT-matrix

(48) A'1

De 0
0 Ds

aõ1 0 0 . 0"
•fljao-1 7 0 . 0

c
LЛ

(л-7

— a-,a 2 " 0
1 0 / . 0

•a„a
- 1 0 0

Similarly to the single-output case, it is sufficient to modify only the inner matrix
product in (47) to perform conditioning according to Result (2A).

(49) м f;-:! C

ĽЛ:
LĎĽ

Recall that De is a diagonal matrix and that, according to (3.67), c' is a block-row
with all matrix entries of diagonal form

c' = [c0I,cJ,c2I, ...,c„I]
where all c ; are scalars.

The following observation is of primary importance for simple and well feasible
numerical solution of multivariate cases. The matrix L's = Ls(t — 1) is a monic
UT-matrix of dimensions n dy x n dy which can be partitioned into n x n matrix
entries of dimensions dy x dy. Only the matrix entries on and above the main
diagonal are, in general, nonzero. Suppose that all these nonzero matrix entries have
the diagonal form. To be able to express ourselves shortly and clearly we shall say
that such a matrix has an internally diagonal structure. If L's with the internally
diagonal structure is multiplied by the matrix H' (6) then the structure of the product
LSH' is also internally diagonal. Thus all factors on the left-hand side of (46), which
are to be modified, have the internally diagonal structure. When inspecting the
algorithm of dyadic reduction which is used to perform the modification it is found
that it preserves this structure. The matrix L, when partitioned similarly to (17)

(50) / 0
ë Lv

B "-5-0"
_o Bs]

yields L s = Ls(i) and the internally diagonal structure is reproduced. Practically
this means that the overall algorithm can be decomposed into dy independent
algorithms of reduced dimension, and, moreover, if these algorithms are started
in the same way then a single algorithm of the same complexity as in single-output
case can perform the task, and the submatrices c and Dy in (50) get the forms

(51) [õj, u], я, dyDe

57

where dy, cv,c2, ...,c„ are scalars generated by the procedure CGEN described
in the previous paragraph.

The above favourable fact, discovered by carefull investigation of the algorithmic
solution, has the following probabilistic interpretation. In the multi-output case each
component of the state sjt) has dy subcomponents

(52) s'Jt) = [si(1)(t), si(2)(t),..., si(Sy)(t)] , i = \,2,...,n

Let us rearrange the entire set of n dy state subcomponents into dy vectors of dimen
sion n in the following way.

(53) s'(k)(t) = [sm(t), s2(k)(t),..., s„(k)(t)] , k = 1, 2 , . . . , dy

If the prior uncertainty of the state s(0) is described by a normal probability distribu
tion with

(54) Cov[Sw(0),so ,(0)] = 0 , k+j

then also for all f > 0

(55) Cov [s(k)(t), s(j)(t) | t] = 0 , k+j

If, in addition, it is assumed

(56) Var [sw(0)] = Qk LjO) DjO) LjO), k=\,2,...,dy

then

(57) Var [s(k)(t) | t] = Qk Ljt) Djt) LJt), k = 1, 2, ..., dy

and
(58) Var [a0 y(t) \ t - 1; u(t)] = djt) De

where the monic LT-matrix Ljt), the diagonal matrix Djt), and the scalar dy(t)
are common for all k and can be generated by the procedure CGEN. Note that here,
and from now on, the matrix factors Ljt) and Djt) are only fo dimensions n x n.

It should be emphasized that this simplification, which means a considerable
reduction of the computational load, could be achieved only thanks to the introduc
tion of the model parameter a0 as a monic LT-matrix (3.41). This made it possible
to introduce the white-noise term e(t) of the model as a random vector with un
corrected components, i.e. with the diagonal covariance matrix (45).

Equipped with this knowledge we can complete the extension for multi-output
case in a straightforward way. Continuing in the revision of the single-output case
in paragraph 4.2 we come to the generalizing (23)

(59) St(t\ t) =

= ii Sjt - 1 | t - 1) + si+l(t - 1 | t - 1) - cjt) sjt - 1 | f - 1) -

- (a, - cjt) a0) y(i) + (b, - cjt) b0) u(t - Tu), i<n

(59') s„(t | t) = ix Sj[t - 1 | t - 1) - cn(t) st(t - 1 | t - 1) -

- (an - c„(t) a0) y(t) + (b„ - c„(t) b0) u(t - Tu) + kc

58

If these relations are considered row-wise then the obtained result can be formulated
as follows.

Results (4B) State estimation in multi-output case.

Let s(k)(t) be the components of the state introduced by (53). Let ai(k),
kc(k) denote the feth rows of the model parameters ah bh and kc, respectively, and let

bңk), and

(60) Ҷk)

Ҷk)l

Ҷk)2

Ҷk)n

'(k)

b(m
Ь(k)2

Ь(k)n

K(k) —

c(k)

Assume that

(i) the white-noise term e(t) of the canonical state-space model (5) is normally
distributed with zero mean and with the diagonal covariance matrix (45),

(ii) the probability distribution p(s(0)) used to describe the prior uncertainty of the
state s(0) is chosen to be normal with uncorrelated components s(k)(0),

(iii) the initial covariance matrices (56) are chosen so that they differ only in the
factors Qk.

Then the probability distribution p(s(r) | t) is normal for all t > 0, the state compo
nents s(k)(t) remain mutually uncorrelated, and their conditional mean values are
determined by dy separate filters (k = 1, 2, ..., dy) as follows.

(61) S(k)(t | t) = (nl + C(t)) Sm(t - 1 | t - 1) -

- («« - c(t) a0(k)) y(t) + (b(k) - c(t) b0(k)) u(t - Tu) + ks(k)

where the matrix C(t) (25) and the vector c(t) (26) are common for all k and are
supplied by the procedure CGEN together with Ls(t), Ds(t) and dy(t) by which the
variances (57) and (58) are determined. The one-step-ahead prediction of the output
and of the state can be calculated recursively according to (46) and (12).

Remark (c). Note that, similarly to single-output case, the variances gk (k =
= 1,2,..., dy) of the mutually uncorrelated components of the discrete white noise
e(t) do not need to be known if only the conditional means (the point estimates)
are of interest. In Section 6 we shall see that this favourable fact holds also when
the model parameters a and b are estimated jointly with the state.

4.5. Prediction in case of process delay

Hitherto only one-step-ahead prediction of the process output y(t) and of the state
s(t) of the process model has been considered. Namely, given S(t — \\t — 1) we are
able to determine y(t | t — 1; u(t)) and S(t | t — 1; u(t)) from the relation (10) which
can be solved recursively using (11), or (46) in multi-output case, and (12). If the
process has a time delay Tu > 0 then the predicted y(t) and s(t) do not depend on

59

the already applied inputs u(t — k) k = 1, 2, . . Tu — 1, but only on w(f — Tu)
and the inputs applied previously. However, when controlling such a process it is
necessary to be able to predict the effect of the generated input u(t — Tu) on the
output y(t) and on the state s(t) only on the basis of the data which are available
at the moment when this input is generated. Hence, it is necessary to predict the
process by Tu steps more ahead. We shall show two possible ways how to proceed.
Since the delay discussed here concerns only the manipulated input the external
measurable disturbance v will be considered separately.

The first possibility is to increase the order of the process model by Tu and to
shift the ^-parameters correspondingly. Then the canonical state form (5) of the
model will have no explicit time delay Tu

(62) ыtu = н s'ył ~ l) + b u ® + dv(f - т») + k* + c evř)
but the matrix b, now of dimensions (n + Tu) dy x du has Tu leading (block-)
entries equal to zero.

(63) V = [0,0,. . . ,0, b'0,b\,... ,b'„]

Now it is possible to proceed as if no delay Tu were present. However, it should be
emphasized that in case of a Delta model (fi = 1) the first (block-) column in the
matrix A (3.66), i.e. the 8-polynomial a(5), as well as the matrix d, the 8-polynomial
d(5), must be extended to the full order n + Tu as described in Section 3.

The second method does not require the extension of the model state. Suppose
that the input-output data up to t — 1 are available and that the input u(t) is to be
generated. When the time index is shifted by Tu steps ahead and when the mean
value conditioned on the data up to t — 1 is taken the model equation (5) gives

(64)
'y(t+ Tu\t~ \;u(t))
S(t + Tu\t- l;u(í))

= A~l\H S(t + Tu - 1 | t - 1) + b u(t) + d v{t + Tu - Tv \ t - 1) + kx~]

This relation shows that it is necessary to predict s(t + Tu — 1) and v(t + Tu — Tv)
in order to estimate the effect of u(t), which is to be decided, on the future motion
of the process. Suppose that the prediction of the external disturbance is available.
A model suitable for this purpose will be constructed in Section 5. Now it will be
shown how the estimate s(t + Tu — 1 | t — 1) can be effectively calculated.

For j within the range 0 ^ j < Tu the model equation (5) yields

'y(t + j | t - 1)
S(t + j j t - 1)_

(65)

= HS(t + j - l\t - 1) + bu(t +j - Tu) + d v(t + j - Tv | t - 1) + kx

Hence s{t + Tu — 1 | t — 1) can be calculated recursively, for j = 0,1,..., T„ — 1,

60

using the relations
(66) a0 p(t + j | t - 1) =

= St(t +j - \ \ t - l) + b0u(t +j - Tu) + d0 v(t +j - Tv\t - 1)

(67) St(t + j | t - 1) = -at y(t + j | t - 1) + n S-\t + j - \\t - 1) +

+ Sn.jfr + j - 1 | t - 1) + b: u(t + j - Tu) + di v(t + j - Tv | t - 1) ,

i — 1,. . . , n — 1

(67') S„(f + j | t - 1) = - a „ tft + j | f - 1) + Sn(t + j - 1 | t - 1) +

+ fo„ u(t + j - 7;) + dn v(t + j - Tv\t - I) + kc

Note that all inputs employed are available at the moment when the calculation is
required, however, Tu past inputs must be stored in the memory of the computing
device. Note also that, as a0 is a monic LT-matrix, y(t + j \ t — 1) can be calculated
from (66) very easily, also recursively.

5. CONTROL SYNTHESIS

The problem of optimal control can be formulated in different ways depending
on the criterion used to measure the control performance and on the set of admissible
strategies among which the optimal one is to be chosen. Since the control strategy
must be chosen in advance, before it is applied and before its true effect can be obser
ved, the criterion cannot be anything else than a single-valued probabilistic charac
teristic of the future motion of the process by which an ordering in the set of admis
sible strategies is introduced. In this section the expected value of a suitably chosen
loss function, covering an arbitrary long but finite control horizon, will be considered
as the criterion and the strategy minimizing this criterion will be chosen among the
strategies which make use of all data available at the moment when the particular
input is generated.

In the first paragraph, using dynamic programming in the form suggested in [17],
a general functional recursion is derived which solves the problem conceptually.
It is shown that this functional recursion can be reduced to a special kind of Bellman
equation if certain sufficient statistics exist.

In the following paragraphs the loss function is restricted to be quadratic. Its
choice is made in the second paragraph where also suitable models for the evolution
of the external signals (the command signal and the external measurable disturbance)
are introduced. When compared with the ordinary LQG control theory, as it can be
found in standard engineering textbooks [11, 13, 15, 16], the problem formulation
applied here is somewhat restricted and at the same time somewhat more general.
The restriction concerns the loss function which is allowed to be a function only
of data which can be observed on the process. No attempt is made to control internal

61

process variables which are not accessible to measurement. The reason why we
accept such a restriction is that it makes it possible to operate only with input-output
process models which can be identified from observed data. It also means that the
model state, we make use of to reduce the computational burden, does not need
to have physical interpretation. On the other hand the quadratic loss function is
chosen to better reflect the engineering needs in industrial process control and to
cover a broader class of operating modes of the controller (regulation, servocontrol,
program control).

In the algorithmic solution of the optimum control synthesis it is suitable to
consider the positional and the incremental forms of process models separately.
Since the incremental form can cover also positional models (see Sections 3 and 4)
and since the algorithm of control synthesis is simpler and more compact for this
form, it will be considered first in the third paragraph.

In the fourth paragraph the algorithm of the optimum control synthesis for
positional models is derived.

5.1. Control optimal in the mean — conceptual solution

Suppose that a given process has been observed and possibly somehow controlled
up to and including the sampling period t 0 ^ 0. Starting with the input M(£0 + 1)
the process has to be controlled for t = t0 + I, t0 + 2, ..., t0 + Toptimally in the
sense we are going to define.

In order to make the writting shorter and more transparent it is suitable to shift
the time indexing backwards by t0. We shall write u(k) instead of u(t0 + k) and
similarly for all other signal samples. Thus w(l) is the first input which is to be decided
and the observation of the process started for k = —t0.

It is also suitable to introduce the following sets of data:
Data which are not known before the control starts

(1) 3Ck = {y(l..k),u(i..k),v(\..k),w(\..k)}

All data up to and including the sampling interval k

(2) ®k = {y(-t0..k),u(-t0.. k), v(-t0.. k), w(l.. k)} = {20, 9Ck}

@k = {y(k), u(k), v(k), w(k), ^ _ , } , k> 0

History of the external disturbance

(3) rk = v(-t0..k) = {v(k),rk^}

History of the command signal

(4) ifk = w(\..k) = {w(k),ifk^}, k>0

Let l(3>r) be a scalar nonnegative function of the observed data which will be used
to evaluate the control performance after the control task is accomplished. It is

62

supposed that the smaller the true value of this function will be the better is the
control performance: l(2T) is a loss function. Since the future data entering the loss
function are not available when the first input w(l) has to be decided, it is appropriate
to design the control strategy using the expected value of the loss function as a cri
terion

J = E[l(2T) | 20] = 1(2T) p(SCT | 20) d.ifT

Of course, it is assumed that there exists an admissible control strategy which makes
this expectation finite.

To define the admissible control strategies it is important to consider how the
command signal is made available for the controller. As discussed in paragraph
1.2, in case of program control the command signal is preprogrammed in advance
for the entire control horizon T and the controller can operate also on the future
values of this signal. Conceptually this is not a very interesting case as the command
signal enters the loss function only as a set of fixed parameters WT. Here the more
general case of servocontrol will be considered. It will be assumed that when u(k)
is being decided the command signal is known only up to w(k) (the desired value of
the output y(k) following u(k)).

It will appear advantageous to consider the following decomposition of the loss
function into T nonnegative terms

1(2 T) = lT(2T) + lT-1(2T_1) + ... + 1,(2,)

Note that such a decomposition is not unique. For instance, we could simply choose
1(2T) = lT(2T) and lk(2k) = 0 for k < T. A more suitable choice will be made
later on.

The problem of optimum control synthesis can be formulated on the conceptual
level as follows: Given the c.p.d.f.'s

p(y(k) \k~l; v(k), u(k)), p(v(k) | * V /) , p(w(k) | * V .) , k=\,2,...,T

determine the c.p.d.f.'s

p(u(k)\w(k),2k_1), k=\,2,...,T

minimizing the criterion

(5) •I = E [E / f c (^) l ^ o] = Z [lk(2k)p(3Ck\20)AXk
k=\ fc=i J

It is advantageous to solve the problem recursively. Assume that the way of
generating the inputs u(k) for k = t, ..., T— 1 have been somehow determined
and that only the control law for the last one u[T) remains to be chosen. To choose
it optimally it is necessary to determine the optimal c.p.d.f.

(6) p(u(T) | w(T), 2,.x) = p(u(T) | w(T), 3CT^, 20)

as a function of the data ?JCr_t in its condition which are not known at the moment

63

when the choice must be made. To perform this task recall (3.4), (3.5), (3.6), and
consider that

p (^ T | 20) = p(y(T), v(T), u(T), w(T) \ _? r_.) p (^ r _ , | _*0) =

= p(Xr) | T - i;<r),U(T)) P « r) | rT.t) P(«(r) | w(r),®T-l)

p(w(T) | WT-l)p(a>T_ t\20)

This makes it possible to rewrite the last term of the criterion (5) with k = T, the
only one which depends on the c.p.d.f. (6), in the following way

(7) E[tT(@T) | %] =
t

F r(u(r), w(r), 0 r _,) P(u(r) | W(T), ®T„V)MT)

p(w(T) | TTr_x) dw(T) p(s;T_l | _>0) _ # _ _ .
where

(8) F r („ (T) , w (T) , ® r _ 1) =

/ r(^ r) P(y(01 r - i; <r), «(r)) d><r) ?(v(t) | r r _ ,) d<r)

Since both p(w(T) [- #" T _ 1) and p (^ ,

r _ 1 | ^ 0) a r e nonnegative functions normalized
so that their integrals are equal to 1, the term (7) will be minimal if we succeed
to choose the c.p.d.f. (6) in such a way that the integral

(9) jVr(u(T), w(T), <?r_i) P[u(T) | w(T), 0 r _ i) du(T)

be minimal for all possible w(T) and 3>T-^.
The function FT(u(T), w(T), ^ T _ i) is nonnegative, and when plotted with respect

to u(T) for some arbitrary but fixed w(T) and S r _ 1 it might look, for instance, like

F-.ulT^wrrj.S^)

T

fтШi.І!1

^ (w t U ^ T - 1 1

»-u(T)
Fig. 6. Illustration to the optimal choice of p(u(T) w(T), _> r_i).

the curve F r in Fig. 6. The problem to determine the c.p.d.f. (6) minimizing the
integral (9) is equivalent to the problem how to distribute one unit of the probability
mass along the curve F r in Fig. 6 so that its moment with respect to the w(T)-axis

64

be as small as possible, i.e. so that its centre of gravity be as low as possible. It is
obvious that this will be achieved if all the probability mass is placed at the lowest
point of the curve FT. This means that the optimal choice is

(10) p{u(T) | w{T), 9T_t) = d{u{T) - u*(w(T), 3> __..))

where _(•) is a Dirac .-function and

(11) uT(w(T), ®T_t) = arg min FT(u(T), w(T), <_-T_i)
u(T)

If the minimum
(12) F*(w{T), 0 T_ .) = minFT(M(T), w(T), 2r_t)

u(T)

can be achieved for more than one u(T) then any of the minimizing arguments (11)
can be chosen as optimal. However, the value of the minimum (12) is always unique.

If we denote

(13) Br-i(^r-i) = [F*(W(T),9T^) p'yj)\iTT_l) dw(T)

then the partially minimized criterion (5) can be expressed as follows.

E[Br_ 1(_^T_1) + / T _ x (_Vi) + __ _(-$*) I %] =

\(BT _!(_Vi) + iT-i(^T-i))p(^T-i\^o)dsrT-i +

+ 1 (V A) P (^ I ®o) d̂ rfc

í<
In this way the first step of the optimization procedure for k — Tis completed and
the next step for k _= T — 1 is prepared. Denoting

F r _ , (_ (T - 1), w(T - l) , 0 r _ 2) = f(J»r_!(__>_-_0 + / r - i (^T- i))

p(XT - 1) I T - 2; _(T - 1), «(T - 1)) dy{T - 1) p X T - 1) | * V _) dv{T - 1)

and proceeding further in the same way the following result is obtained.

Result (5/1). Optimum control synthesis.

The control strategy minimizing the criterion (5) is deterministic

(14) u(k) = ut(w(k), £?*_,)

and is generated by the functional recursion

(15) Fk(u(k),w(k),%_t) =

= [(Bk(9k) + lk(%)) p(y(k) \k-l; v{k), u(k)) dy(k) p(v(k) \rk_t) dv(k)

(16) 4(w(k), 2k_.) = arg min Fk(u(k), w(k), 9)k_ ,)
u(k)

(17) F*(w(fc), 3k.t) = min F/u(k), w(k), # k_,)
u(k)

(18) Bk-i(-**-i) = f F*(w(fc), ^ t _ .) p(w(fc) | *V.)dH<fc)

which has to be solved for fc = T, T — 1, ..., 1 with the initial condition BT(@T) = 0
The minimum of the criterion is J* = B0(@0).

Bellman function

Because the subset 3Ck. t of the set of data &!
k-1 = {3£k. u Ss0] on which the opti

mal control strategy (14) operates is not known at the moment when the strategy
has to be decided, the optimal control law for each k must be determined as a function
of these not yet known data S£k.x. This domain of the function u*(-), in general
of growing dimension, can be reduced to a finite and fixed dimension if the following
conditions are fulfilled.

a) There exist sufficient statistics Sy(k), Sjk), Sw(k), here understood as deterministic
functions, in general multivariate but of fixed dimensions, of observed data and
possibly also of the time index fc, such that

(19) p(y(k) | fc - 1; v'k), u(k)) = p(y(k) | <fc), u(k), S/k - 1))

(20) p(v(k)\Vk.1) = p(v(k)\S/k- 1))

(21) p(w(k)\Wk.l) = p(w(fc)|Sw(fc- 1))

b) The evolution of these statistics is known

(22) S/k) = f/y(k), u(k), v(k), S/k - 1), fc)

(23) S/k) = f/v(k), S/k - 1), fc)

(24) 5w(fc) = fw(w(fc), Sw(k - 1), fc)

c) It is possible to decompose the loss function so that

(25) 1(3T) = £ l/y(k), v(k), u(k), w(k), S/k - 1))
fc=i

where S/k) is a fixed-dimensional function of the data such that

(26) S/k) = f/y(k), w(k), u(k), S/k - {))

Let S(fc) be the union

(27) S(k) = S/k) u S/k) u S ^) u Sw(k)

By inspection of the recursion (15) to (18) it can be easily verified that under these
conditions the optimal control law producing u(k) operates on w(fc) and on the sta
tistic S(k — 1). If we omit, for brevity, the explicit notation of the arguments of
the functions

k = k(y{k), w(fc), tt(fc), v(k), S,(k - 1))

66

and
(28) Bk - BjS(k))

then the optimal control law is

(29) ut(w(k), S(k - 1)) = arg min E[B, + lk \ u(k), w(k), St(k - 1)]
u(k)

where the Bellman function (28) is determined by the difference equation

(30) Bk_l = E[min _[Bk + lk\u'k), w(k), S(k - 1)]| S(k - 1)]
u(k)

which has to be solved for k — T,T~ 1, ..., 1 with the initial condition BT = 0.

Algorithm of dynamic programming

Under given conditions one step of the functional recursion (15) to (18) can be
decomposed into the following three stages:
1. Given Bk + lk take the mean value over y(k) and v(k)

(31) Fju(k), w(k), S(k - 1)) = E[Bk + lk | u(k), w(k), S(k - 1)] =

[(Bk + lk) p(y(k) | v(k), u(k), S/k - 1)) dy(k) p(v[k) \ Sjk - 1)) d</c) 1
2. Determine the minimum of Fk(u(k), w{k), S(k — 1)) with respect to u(k)

(32) Ft(w(k), S(k - 1)) = min Fju(k), w(k), S(k - 1))
u(k)

(33) ut(w(k), S(k - 1)) = arg min Fju(k), w(k), S(k - 1))
u(k)

3. Take the mean value over w(k) to obtain the Bellman function for the next step
of the recursion

(34) Bk_t = E[F*(w(k), S(k - 1)) | Sxk - 1)] =

Ft(w(k), S(k - 1)) p(w(k) | Sjk - 1)) dw{k)

From (15) and (18) or from (31) and (34) it is seen that the optimum control
synthesis requires to define suitable models for the evolution of external signals v
and w. They will be introduced together with a quadratic loss function in the follow
ing paragraph.

5.2. Quadratic criterion and models of external signals

In the rest of this section the following quadratic criterion will be used to measure
the expected performance of the controller

(35) J = I E[£ (\Qjk); Mjk) r(k + Tu)\ + \Q/k); Mjk) Au(k)\) +
T k=l

67

+ \<&T); MJT) (S(T + Tu\ T) - 5)| | Z>0]

where r(k) is the control error

(36) r(k) = yjk) - w(k)

Qjk) and Qjk) are diagonal matrices with nonnegative diagonal entries, QS(T)
is diagonal with positive diagonal entries, Mjk), Mjk) and MjT) are monic
LT-matrices of appropriate dimensions, and s is the desired value of the last state
for k = T + Tu. Tu is the possible process delay. Note that the first control error
which can be influenced by the choice of u(\) is r(l + Tu).

The first nonnegative quadratic form in the criterion (35) |Q/fc); Mjk) r(k + T„)| =
= r'(k + Tu) M'Jyk) Qjjc) Mjk) r(k + Tu), Qjk) ^ 0, reflects the requirement that
the control errors (36) be small. The choice of Qjk) 2: 0 and Mu(k) in the second
quadratic form of the criterion (35) makes it possible to damp the movements of
the actuator(s) if it is required by the given technology and/or implementation.
There are seldom reasons to choose the matrices Mjyk) and Mjk) different from
unit matrices.

The last term in (34) with Qs > 0, penalizing the deviation of the estimate of the
last state from its desired value, is introduced in order to secure the asymptotic
stability of the control loop also for Qjk) = 0. Note that for T-> co and for finite
Qs and I this last term is negligible but only when all signals driving the state estimator
(4.24) are stable. Large entries of Qs help to stabilize the control loop also in case of
relatively short control horizon T.

To be able to determine the control strategy minimizing the criterion (35) it is
necessary to adopt suitable models for the evolution of external signals, i.e. for the
measurable external disturbance v (if available) and for the command signal w.
These models are required to determine the conditional means in (15) or (31) and
in (18) or (34).

Measurable external disturbance

As in most practical industrial cases the measurable external disturbances are
nonstationary we shall design the controller so that it may be optimal for a "general
ized random walk"
(37) v(k) = v(k - 1) + ejk)

where

(38) E [e „ (f c) | n - i] = E[e„(fc)] = 0

and the variances of the uncorrected increments ejk), k = 1,.. . , T, can be arbitrarily
time-varying but finite and independent of the past history ir

k-x- The random walk
(37) generalized in such a way is a very realistic model for load changes at unpredict
able time instants, drifts, etc. Note that such a model does not need to be identified.
The practical experience indicates that usually not much can be gained if a more
detailed model for the evolution of the measurable external disturbance is considered.

68

Command signal

As it has been discussed in the paragraph 1.2 the following typical operating modes
of the controller will be considered.

Regulation. In industrial process control often the task of the controller is to
compensate measurable or immeasurable stochastic disturbances and to keep
certain output variables as close as possible to prescribed constant values. If the
output yc is measured as the deviation from the given fixed setpoint then yc(k) =
= r(k) and w(k) = 0 for all k.

Program control. In industrial practice cases are met when the desired output
of the process is time-varying but a priory preprogrammed for the entire control
horizon T. Then the task of the controller is to manipulate the actuators in such
a way that the true output yc of the process follows the command signal w which
is a priori known and the controller, when generating u[k) can operate also on the
future values of the command signal w(j), j > k, stored in the memory of the computer.
This prior information often can significantly improve the performance of the
controller. For instance, the controller informed about the future change of the
command signal starts to manipulate the process well in advance in order to minimize
the control errors, especially when its actions are damped by a relatively large weight
Qu in the criterion (35).

Positional servo. If the future course of the command signal is uncertain a pro
babilistic model has to be employed. We shall consider the case when the changes
of the command signal cannot be predicted. Then a suitable model is the above
introduced generalized random walk

(39) w(k) = w(k - 1) + ejk)

It should be emphasized once more that the variances of the mutually uncorrelated
increments ejk) can be arbitrarily time-varying but they are assumed to be indepen
dent of the past history of the command signal. The prediction of such a process is

(40) E[Wj)\Wk] = W(k), j>k

In the following paragraphs algorithms of optimum control synthesis will be
designed for the case of program control and for the case of positional servo. The
case of regulation is covered either by program control with w(k) = 0 for all k or by
positional servo with zero variance of ejk).

5.3. Algorithm of optimum control synthesis for incremental process models

Consider a process with time delay Tu _ 0 described by the state model in the
incremental form which, with the time index shifted by T„ steps ahead, reads

69

(41)

:щk + тu)
'k + тu) [1 = Hs(k - 1 + Tu)+ b Au(ќ) + d Av(k + Tu - Tv) + ce(k + Tu)

where the matrices A, b, d are defined by (3.66), the matrix c is defined by (3.67),
and the matrix H by (4.6)

H = џ +

Recall that for /i = 1 the relation (41) is a canonical state representation of an
incremental Delta model while for /i = 0 it represents an incremental ARM A model.
As discussed in Section 3 the incremental form (41) can represent also positional
models if the c-parameters are suitably modified.

Since in steady state the mean value of the state s of the incremental model (41)
is equal to zero it is appropriate to choose s = 0 in the criterion (35).

In the present paragraph the following Result (5 B) will be proved and the corre
sponding algorithms will be designed.

Result (5 B): Optimal controller for incremental process models.

Suppose that the controlled process is described by the incremental model (41).
If the evolution of the external measurable disturbance is assumed to be a generalized
random walk (37) then in case of program control the structure of the optimal
control law minimizing the criterion (35) is

(42) Aw(fe) = -muw(k) - mur(k) r(k) - mus(k) S(k - 1 + T„ | fc - 1)

where

(43) r(k) = yjk - 1 + Tu \ k - 1) - w(k + Tu)

and Syk — 1 + Tu | fe — 1) is the ru-steps-ahead prediction of the state of the model
(41). The parameters muJk), mur(k) and mus(k) of the optimal control law (42) are
vector and matrices of appropriate dimensions which can be determined by the
algorithm of dynamic programming with the Bellman function of the nonnegative
definite quadratic form

(44) Bk = |Q0(fe); m0w(k) + m0r(k) r(k + Tu | fe)| +

+ \Qjk); mjk) + mr(k) r(k +Tu\k) + Ms(k) s(k + Tu\k)\ + 0(fc)

where

(45) r(fe + T„ | fe) - yjk + T„ | fe) - w(fe + Tu)

and fi(k) is the component which cannot be influenced by the previous control
actions, i.e. by Au(j) for j ^ fe.

The parameters of the Bellman function (44) are:

o0(fe) ^ 0 . . . diagonal matrix of dimension dy,

m0w(k) ... column-vector of dimension dy,

70

mjk)
Qs(k) Ł 0
mjk)
mr(k)
Ms(k)

matrix of dimensions dy x dyc (dyc = dw = 8r)
diagonal matrix of dimension ds = n dy ,
column-vector of dimension ds,
matrix of dimensions ds x dr ,
monic LT-matrix of dimension ds.

In case of positional servo the optimal control law and the Bellman function are
modified so that muJk) = 0, m0Jk) = 0, mjk) = 0 and

(46) r(k + Tu | k) = yc(k + Tu \ k) - w(k) ,

r(k) = yc(k - 1 + Tu | k - 1) - w(k)

Remark (a). The prediction yc(k - 1 + Tu \ k - 1) and S(fc - 1 + T„ | fc - 1)
on which the optimal controller operates can be calculated by Tu steps of the recursion
(4.66) and (4.67) starting with the state estimate s(k — 1 | k — 1) supplied by the
state estimator according to Result (4A) in single-output case or according to Result
(4 B) in multi-output case. Clearly, for Tu = 0 no prediction is required and
y(k — 1 I k — 1) = y(k — 1) which is available when u(k) is generated. An alterna
tive way how to handle the process delay is to extend the model order by Tu and to
proceed according to the first method described in the paragraph 4.5, however, at
the cost of higher computational burden.

Remark (b). The Bellman function being a nonnegative definite form can be
factorized and/or decomposed in various ways. This means that the right-hand
side of (44) is not unique. The form given in (44) has been found algorithmically
and numerically most advantageous among a number of other possibilities which
have been investigated. This holds also for the algorithms described in the sequel.

Remark (c). Since the criterion is quadratic and the employed models are linear
the algorithm of dynamic programming is reduced to operations on quadratic forms.
For numerical and algorithmic reasons it is more advantageous to perform the main
optimization stage (31) and (32) using the dyadic reduction instead of following
the route of the Riccati-like equation to which the recursive relation (30) could be
brought in this linear-quadratic case. However, the reader should be acquainted
with the decomposition and minimization of nonnegative definite quadratic forms
described in the paragraph 2.3.

Single-input single-output process, T„ = 0

To make the exposition easier to follow the Result (5 B) will first be proved for
this simplest case. The proof will be given by designing an algorithm which propagates
the Bellman function in the form (44) producing the optimal control law (42) at the
same time.

Consider the following decomposition of the loss function

(47) lT = \Qr{T); r{T)\ + \QU(T); AM(T)| + \QS(T); MS(T)S(T\ T)\

71

(48) lk = \Q/k); r(k)\ + |o„(/c); &u(k)\ , k<T

In the given simple case

(49) r(k) = y(k) - w(k) , r(k) = y(k - 1) - w(k)

Let us suppose that the parameters of the Bellman function (44) are given numeri
cally for some k < Tand let us perform one step of dynamic programming from k
to k — 1. To make the writing easier to survey we shall occasionally omit the time
indexing of numerically given quantities when no confusion can occur. First we shall
design the algorithm for the program control. It can be easily modified for the case
of positional servo afterwards.

It is advantageous to decompose the algorithm into the following stages.

Stage la. To prepare Bk + lk for calculating the conditional mean (31) it is suitable
to modify, using the dyadic reduction, the following sum of two quadratic forms
so that r(k) appears only in one of them.

(50) \Q0(k); mjk) + m0/k) r(k)\ + \Q/k); r(k)\ =

"Öol . Гm0v

Qr J ' L°
m 0 r

1

" 1
r(k)

l_l
Гl

"ßo"
1

m0w 0
mrw 1

1
r(k)

\Q0; m0w\ + \Qr; m.

The second equality in (48) means application of the dyadic reduction to reduce m0r

to zero. In the given simple case the following explicit formulae can perform the task.

(51) Qr = Qr + Q0m
2

0r, mrw = (Q0jQr) m0rm0w , Q0 = (Q/Qr) Q0

The reason for the modification (48) is that the first term on the most right-hand
side of (48) cannot be influenced by the previous control actions and has to be added
to the unreducible part f$(k) of the Bellman function (44) in order to prevent the
growing of certain numbers within the numerical algorithm of optimum control
synthesis.

(52) A/Vv/c) = \Q0; m0w\ = Q0m
2

0w

Stage lb. For calculating the conditional mean (31), first over y(k) and than over
v(k), it is suitable to express r(k) and S'Kk | k), which enter Bk + lk as random variables,
in the following way.

(53)

where

r(k) = y(k) - w(k) = y(k - 1) - w{k) + Ay(k) =

= Қk) + &ў(k | k - 1; u(k)) + e(k)

e(k) = y(k) - y(k\k - I; v(k), u(k))
From (4.20) we have

s(k \k) = s(k\k- I; v{k), u(fc)) + (c(k) - a) e(k)

12

This makes it possible to express Bk + lk as follows

Bk + lk = \QU; Au(k)\ + \Qr; mrw + r(fe) + Ay(k | fc - 1; v(k), ii(fc)) + s(fc)| +

+]& mw + -, w + K, MJ [-*; 11:;; < | <;»] + K + M , .
. (c -a))e (fc) | + /!(fc) + A/!w(fc)

Now taking into account that according to (4.22)

Var [e(fe) | fc - 1; v(k), u(k)~] = Var [v(fc) | fc - 1; »(fc), u(fc)] = e ci,(fc)

and that according to (41)

Ay(k | fc - 1; y(fc), u(fc)) = ^(fc - 1 | fc - 1) + b0 Au(k) + d0 Av(k)

[A% | fc: 1;S S] - ^ w -»ifc -»+»A««+<• M*»
we can determine the conditional mean over y(k)

E[Bfe + lk | fc - 1; <fc), ii(fe)] = |Q„; Au(fc)| +

+ |gp; mrw + r(fc) + st(k - 1 | fc - 1) + b0 Aw(fc) + d0 Av(k)\ +

+ \QS; mr r(k) + G(Hs(k - 1 | fc - 1) + b Au(fc) + rf A»(fc))| +

+ fS(k) + Aj8w(fe) + A/3y(fe)
where

(54) G = [mnMs-\A-i

(55) A/9/vfe) = e dy(k) (Qr + \QS; mr + Ms(c - a)\)

Now it is already easy to determine the conditional mean over v(k) and thus to
complete the evaluation of (31). According to (37) and (38) we have E[Ay(fc) | fc — 1;
u(kj] = 0 and if we denote

^(fc) = Var [ev(k)]

then (31) gives for the case of program control

(56) Fk(Au(k), r(k), S(k - 1 | fc - 1)) = E[Bk + lk \ fc - 1; u(k)] =

= \QU; Au(k)\ + |g r ; b0 Au(k) + mrw + r(fe) + ^(fe - 1 | fc - 1)| +

+ \QS; muAu(k) + mw + mr r(k) + GH (̂fe - 1 | fc - 1)| +

+ P(k) + A/9w(fc) + Aj8,(fc) + A/jy(fe)
where

(57) mu = G/3

(58) A^(fc) = Qv(k) (\Qr; d0\ + IS-; Gd\)

To complete the first stage of the algorithm of dynamic programming we shall show
how the matrix G (54) and the vector m„ (57) can be efficiently calculated. Making

73

м .] [J !] = K.мj

m„ = m,~ Msa

«м-

use of (4.15) we obtain

(59) G - [mr

where

(60)

Substituting of (59) into (57) gives

(61) mu = \ma, A

Also the product GH can be calculated very easily

(62) GH = [m., MJ ^ [j] + j^J) = ^Ms + [m„, Mj R]

Recall that for Delta models /* = 1 while for ARMA models ^ = 0. Note the special
form of GH which is close to a monic LT-matrix. This will appear advantageous
in the following stage of the algorithm.

Stage 2a. Now the dyadic reduction will be emloyed to minimize FjAu(k),
r(k), §(k — 1 | k — 1)) with respect to Au{k). For this purpose it is suitable to re
arrange (56) into a single quadratic form the scheme of which is shown in Fig. 7.
In the top row of this scheme the variables are indicated by which the underlying
columns are multiplied when the quadratic form is evaluated as a sum of weighted
squares. Each row produces one square the weight of which is given in the most
left column. Empty spaces are zeros which do not enter the calculation. Note the
special form of GH.

AM 1 r st s2 • sn

Qu

Qr

1 0 0 0 0 0 0 0
b0 mrv 1 1

Qs
mu

l

m w

i
í •

mr

• - 1
. . 1 |
. GH . 1 |
. . . . 1

Fig. 7, Scheme of the quadratic form E& to be minimized.

To minimize such a quadratic form with respect to u(t) it is sufficient to apply
the dyadic reduction so that the one lying under Au(t) is used to reduce the rest
of the underlying column to zeros as shown in Fig. 8. Note that neither the zeros
in the empty space of the scheme nor the ones indicated in Fig. 8 are destroyed
if the reduction is performed downwards. At the same time the first row of the numerical
area in the scheme, originally filled with zeros (Fig. 7), becomes, in general, nonzero
as indicated in Fig. 8. After this modification the only square of the quadratic form

74

Fk which depends on the choice of u(k) is produced by this first row

(63) 2„(Au(/c) + muw + mur r(k) + mj(k - 1 | k - l)) 2

and can be totally zeroed, and thus the nonnegative definite

AM r §I s0 , . s„

Qu H m uw '"ur • • mus . .

1
1

1 1
. 1

1

Fig. 8. Minimization of the quadratic form Fk by dyadic reduction.

quadratic form Fk minimized, by the choice

(64) Aw(fe) « -muw - murr(k) - mj(k - 1 | k - 1)

This proves the optimal control law (42) for the given simple case. Note that the

weight Qu in (63) determines the increase of the criterion if the optimal control law

could not be fulfilled. If Qu is small then the minimum is flat.

Stage 2/3. If the square (63) represented by the first numerical row in Fig. 8 is

zeroed by the optimal control law (65) then the remaining rows represent the mini-

malized quadratic form Fk. However, it is necessary to transform it into the form

of the Bellman function (44). This can be done by reducing the last row as depicted

AM 1 f §! s2 . . s„

й. 1 m

ð.

m
uw '"ur

0
0
0 rňw

0
0

m.

• • ™us . .

1 |

• 1 1
. . 1 |
. Ms . 1

1
0 m0w m0r 0 0 0 0 0

Fig. 9. Reduction of the last row - reconstruction of the propagated form of the Bellman function.

in Fig. 9. Again the dyadic reduction can be employed to perform the task. However,
not to destroy the desired structure the last row must be reduced from right to left
using, as reducing, the rows with ones lying above the zeroed entries.

After this modification the minimized quadratic form Fk can be decomposed

75

in the following way.

(65) F*(r(fc), §(k-l\k- 1)) = \Q0(k); m0Jk) + m0r(k) r(k)\ +

+ |gs(fc); mjk) + mjk) r(k) + Mjk) s(k - 1 | fc - l) | +

+ P(k) + Apjk) + Afi/k) + Apv(k)

Stage 3. The Bellman function Bk_t is obtained from E* if in (65) it is expressed

(66) f(k) = y(k - 1) - w(k) = y(k - i) - w(fc - 1) - Aw(fc) =

= r(k - 1) - Aw(fc)

Since in program control Aw(fc) is known in advance the operation (34) is replaced
by the following correction of mjk) and m0Jk)

(67) mjk - 1) = mjjc) - mr(k) Aw{k) ,

m0Jk - 1) = m0w(fc) - mjk) Aw(fc)

Hence the Bellman function Bk~t is obtained in the reproduced form (44) with
Q0(k - 1) - 20(fc), mjk - 1) = mjk), Qjk - 1) = Qjk), mjk - 1) = mjk)
and Mjk - 1) = Mjk).

This concludes the recursion and to complete the proof for the case of program
control it remains to show that the given structure of the Bellman function and of
the optimal control law suit also for fc = T. Considering the initial condition BT = 0
it is easily seen that besides QjT), MjT), Qr{T) and Q/T) given by the last com
ponent of the loss function (47) the algorithm starts with

(68) mw(T) = 0 , m0w(T) = 0 , mjj) = 0 , mQr(T) = 0 ,

<20(T) = 0 , /i(T) = 0

Note that mjk) and m0w(fc) remain zero also for fc < T if Aw(fc) -= 0 for all fc.

Positional servo. If the future course of the command signal is uncertain then the
conditional mean (34) has to be determined. If the generalized random walk (39) with

E[Aw(fc) | Hrk„{\ = 0 , Var [Aw(fc) | # V i] = Qjk)

is used to model the uncertainty of the future command signal at the moment fc = 1
then the above Stage 3 has to be modified in the following way. Instead of (66) and
(67) we now have

E[f(fc) | fc - 1] - r(k - 1), mjk - i) = mw(k) = 0 ,

*n0Jk - 1) = m0w(fc) = 0

This reduces to zero also mrw in (51) which means that the entire corresponding
column in the schemes Fig. 7, Fig. 8 and Fig. 9 can be omitted. Apparently, also
the increment (52) of the component fi(k) of the Bellman function is reduced to zero
but it is replaced by an other increment produced by the conditional mean (34)

76

with EJ given by (65).

A /?#) = Qw(k)(\Q0(k); m0r(k)\ + \Qs(k); mr(k)\)

Process delay Tu > 0

It is not difficult to verify that the above algorithm of optimum control synthesis
holds also for the process model with time delay if the control error r(k) and the
related variable f(k) = y(k — 1) — w(k) on which the optimal controller operates
are replaced by their T„-steps-ahead predictions (45) and (43) in case of program
control, or (46) in case of positional servo. The only difference caused by the process
delay is a more complex evaluation of the increments of the component /j(fe) of the
Bellman function. Since they influence only the minimum of the criterion which
can be achieved by the optimal control, but not the optimal control law itself, they
are not followed in detail here. The PASCAL procedure LQGI listed below can be
used also for processes with delays.

Stochastic deadbeat control

Recall that the mean value of the state s of an incremental model is zero in steady
state.

Since the weights Qr(k) and Qu(k), by which the control error and the change
in the position of the actuator are incorpotated into the quadratic criterion, can be
different for different k it is possible to choose QS(T) > 0, Qr(T) > 0, QU(T) = 0
and for k < T, Qr(k) = 0, Qu(k) = 0. By inspection of the above algorithm it can be
verified that with this choice the rank of the matrix on which the algorithm operates
is decreased by one in each step if dynamic programming. Since for k = T this
rank is, in general, n + 1 the stochastic deadbeat control can be obtained by n + 1
steps of dynamic programming. In such a case the minimum of the criterion is BQ =
= /?(0) and does not depend on the state estimate s[0 | 0).

It is a great advantage of the numerical algorithm based on dyadic reduction
that it can safely manage such singular cases. This means that the below listed
procedure LQGI can well be used to calculate deadbeat control and other (often
more reasonable) modifications of the quadratic criterion.

Remark (d). Note that the parameters of the optimal control law (42) do not
depend on the c-parameters of the process model. The c-parameters are reflected
only in the state estimate s(k — 1 | k — 1) on which the optimal controller (including
the prediction if required) operates. Note also that the measurable external disturb
ance, v, if the uncertainty of its future development is modelled by a generalized
random walk, does not enter the optimal control law explicitly. The feedforward
from v only helps to improve the estimate of the state.

PASCAL procedure LQGI

The following procedure performs one step of dynamic programming described
above and generates the parameters of the optimal control law. Nonstandard types
of its parameters are

TYPE poly = ARRAY [0. .nmax] OF REAL;
row = ARRAY [0. .jmax] OF REAL;
Matr = ARRAY [0. .imax] OF row;

where the integer constant nmax is the maximal model order, jmax = nmax + 3,
imax = nmax + 1. Since the procedure LQGI makes use of the procedure DYDR
(see Section 2) the type row must be common for both of them.

Parameters:

mti ... type INTEGER; model-type indicator (in text denoted by /i); set mti = 1
for Delta model, mti = 0 for ARMA.

n ... type INTEGER; model order.
a, b . . . type poly; model parameters; a[i\ — at; b[i] = bt.
Qr, Qu ... type REAL; nonnegative weights by which the square of the control

error and the square of the change in the position of the actuator are
penalized in the control step for which the control law is calculated.

dw . . . type REAL; dw = 0 in case of positional servo; increment of the command
signal preprogrammed for the next control step in case of program
control (Tu steps ahead in case of process delay if the model state is not
extended).

M . . . type Matr; the matrix on which the procedure operates; both in call-
state and in return-state the submatrices are placed as depicted in Fig. 9;
parameters of the optimal control law appear in the first row indexed
by iu -= 0: muw = M[iu,jw], mur = M[iu,jr], musj = M[iu,jr + ;] ,
j = I. ,n; the nonnegative weights are placed in the first column with
the column index jQ = 0; the first row indexed by iu = 0 can be arbitrary
when the procedure is called; rows with indices iu + i, i = 1. .n + 1,
must be initialized before the first call of the procedure including the ones
M[iu + i,jr + /] = 1, i =- 1. ,n. Large initial entries M[iu + i,]Q\ —
— Qs,i(T) stabilize the control loop,

PROCEDURE LQGI (mti, n: INTEGER; a, b: poly; Qr, Qu, dw: REAL;

VAR M: Matr);
CONST iu = 0; ir = 1;

JQ = 0; ju = 1; j w = 2, jr = 3; js = 4;

VAR i,j, ii,jj\ a} im,jn: INTEGER;
am, bm, Mij: REAL;

BEGIN
jn:= n + jr; j m : = „ + ir;

78

Mij := M[im,jr]; Qr := Qr + M[imJQ] * Mij * Mij;
M[ir,jw] := M[imJQ]\Qr*Mij * M[imjw];
il := im;
FOR i := « DOWNTO 1 DO

BEGIN
i i := i l - 1 ;
am := M[ii,j>] - a [i]; /3m := /3[i];
jj'^js;
FORj: = l T O i - 1 DO

BEGIN
Mij := M[ii,j'j'];
am := am — Mij * a[j]; bm := bm + Mij * &[/];
j1:=j'j" + i;
M[iljj] := m*i * M[ii,H] + Mij
END;

M[il,js] := mti * M[iijs] + am;
M[i\Ju] := bm + am * /3[0];
M[il,je] := M[zz,je]; M[il,jr] := M[iijr];
il := ii
END;

M[irJQ] := Qr;M[ir,jM] := b[0]; M[ir,jr] := 1;
M[iw,;Q] := Qu;
FOR j := jw TOjn DO M[iu,j] := 0;
j*j":=j*5;

F O R i : = ir TO im DO
BEGIN
DYDR(M[i], M[iu], M[i, jQ], M[iu, jQ], ju, jw, jj);
IF jj <jnTRENjj:=jj + 1
END;

FOR i : = im - 1 DOWNTO ir DO
BEGIN
j*: = jj - i ;
DYDR(M[im], M[Q, M[imJQ], M[iJQ]jj,jwj);

j'j':=j

END;
IF dw <> OTHEN

FOR i := ir TO im DO M[ijw] := M[i,jw] - M[i,jr] * iw
END;

Remark (e). If the procedure LQG7 has to be used for the most common case
of positional servo or of regulation then it suffices to set the procedure parameter dw
permanently to zero. However, in such a case the following simplification can be
recommanded:

79

— Omit the procedure parameter dw, the third line of the body where M\ir,jw] is
calculated, and the last IF statement.

— Replace jw by jr.
— In CONST declaration omit jw and setjr = 2 and js = 3.

Multivariate case

The extension of the above algorithm of optimum control synthesis for a multi
variate case (dy >. 1, du — 1, dyc = dw = dr ^ dy) is rather straightforward.
If we omit the calculation of the increments of /?(/c) which do not influence the
optimal control law then it suffices to consider, instead of rows and columns in the
schemes Fig. 7, Fig. 8 and Fig. 9, block-rows and block-columns of dimensions
given in Result (5B), to replace the ones by monic LT-matrices, and to modify the
particular stages of the algorithm in the following way.

Stage la. Instead of the explicit formulae (51) the modification (50), which now
reads

\Q0; m0w + m0r r(k)\ + \Qr; MF r(k)\ = |g 0 ; m0w\ + |g r ; mrw + Mr r(k)\

where Mr andM r are monic LT-matrices, must be performed using dyadic reduction.

Stage 1/3. Instead of explicit inverting of the monic LT-matrix A (see (4.48), as
applied in (59) and (60), it is now more advantageous to calculate the first dy columns
ma of the matrix G recursively using the relation following from (54).

GA = \ma, MJ
Some care must be exercised when calculating the second quadratic form on the

right-hand side of (56) corresponding to the second numerical block-row in Fig. 7,
especially when the number of controlled outputs is lower then the number of obser
ved outputs, i.e. when dyc < dy. If the vector of controlled outputs yc is placed
in y as first, y' — \y'c, •] , and the model parameters a0, a monic LT-matrix, and b0

are partitioned correspondingly

«.-[?••?]. io-p"]
then from the first dyc rows of the model equation (41) it is obtained

Ape(k + Tu | k - 1; u(k)) = fl0V(-?io(fc - l + Tn\k-l) + b0c Au(k))

where slc is the corresponding subcomponent of state component sv However,
in order to match the rest of the algorithm (reduction of the last block-row in Stage
2b) the second numerical block row in Fig. 7 must consist of dy rows and therefore
the discussed quadratic form has to be extended in a way which does not change
its value.

| [f] i [^]Mk) + ["J-] + [^lH']w +

+ [**" 5]l1(k-l + T.|k-l)|

80

The inversion of a0c is a very low price paid for a drastic simplification of state
estimation, and especially of joint parameters and state estimation (see Section 6)
in multivariate case. As a0c is a monic LT-matrix the caclulation can be performed
by a simple recursion operating on all matrix entries in the upper part of the block-
row which have to be multiplied by this inverse.

Stage 2a. The only modification is that instead of a single column a block of du
columns has to be reduced to zero sequentially from left to right.

Stage 2/3. Similarly, the block of dy last rows has to be reduced to zero proceeding
upwards in order not to destroy the structure.

Stage 3. In case of program control (67) remains valid if mr and m0r are inter
preted as matrices of dimensions ds x dr and dy x dr, respectively. Note that even
in multivariate case mw and mw0 are just single columns.

In case of positional servo or of regulation no calculation is performed in Stage 3
and the procedure can be simplified similarly to single output case (see Remark (e)).

5.4. Algorithm of optimum control synthesis for positional process models

In this paragraph the Result (5 B) will be modified for the positional process
model (3.63)

(69)

}l I ^] - Hs(k - 1 + Tu) + bu(k) + dv(k + Tu - Tv) + ce(k + Tu) + kx

The matrix parameters A, b, c, d and kx are defined by (3.66) and (3.67) while the
nonparametric matrix H will be considered in the form (4.6) to cover both ARMA
and Delta cases. Compare (69) with the previously considered incremental model
(41) and recall that

k'x = [o,o,...,o,k'c-]

Result (5 C): Optimal controller for positional process models.

Let the controlled process be described by the positional model (69) and let the
measurable external disturbance be considered as the generalized random walk
(37). Then the control law minimizing the quadratic criterion (35) for the case of
positional servo and Tv ;> Tu can be given the structure

(70) Au(k) = -mjk) u(k ~ 1) - mjk) - muw(k) w(k) - mjk) v(k - 1) -

— mus(k) S(k — 1 + Tu | k — 1)

where s,k — 1 + Tu | k — 1) is the Tu-steps-ahead prediction of the state of the model
(69). The parameters of the control law (70) can be determined by the algorithm
of dynamic programming with the Bellman function of the following nonnegative

81

A

definite quadratic form

(71) Bk =

= \Qs(k); mu(k) u(k) + mw(k) w(k) + mp(k) + mv(k) v(k) + Ms(k) s(k + Tu | fc)| +

+ \Qp(k); mpu(k) u(k) + mpw(k) w(k) + mpp(k) + mpv(k) v(k)\ + fi(k)

where M/k) and mpu(k) are monic LT-matrices, mp(k) and mpp(k) are vectors of
dimensions ds and du, respectively, and the rest of parameters are rectangular
matrices of appropriate dimensions. fi(k) is the component which cannot be in
fluenced by previous control actions.

In case of program control, when the command signal is given a priori for the
entire control horizon, the terms mw(k) w(k) and mpw(k) w(k) can be omitted in the
Bellman function and the command signal can be incorporated into the absolute
terms mp(k) and mpp(k). Then the optimal control law does not contain the term
muw(k) w(k).

Remark (d). The Remarks (a, b, c) from the previous paragraph are relevant
also here.

Single-input single-output process, Tu = 0

Since the extensions for the multivariate case and for a nonzero process delay are
very similar to the case of incremental model the Result (5 C) will be proved and the
algorithm for optimum control synthesis will be designed only for this simple case.

Similarly to (47) and (48) it is suitable to decompose the loss function as follows.

IT - \Qr(T);r(T)\ + \Qtl(T); Au(T)\ + \QS(T); MS(T)(S(T\ T) - s)\

lk = \Qr(k);r(k)\ + \Qu(k);Au(k)\, k<T

First we shall perform a general step of dynamic programming from k to k — 1
and afterwards we shall consider the first step for k — T and discuss the proper
choice of the last desired state s in the criterion (35).

Again, one step of dynamic programming will be decomposed into three stages.

Stage 1. For calculating the conditional mean (31) it is suitable to introduce

g(/c) = y(k) - y(k | k - 1; v(k), u(k))

and to express S(k | k) according to (4.20)

(72) s(k \k) = s(k\k- I; v(k), u(k)) + (c(k) - a) a(k)

Clearly
y(k) = y(k | k - l;v(k),u(k)) + e(k)

From the model (69) we have

(") A [$ | \ - u t l S i] - * ** - * I * - i) + > "» + - <k) + *,
82

the first row of which gives

(74) y(k | k - 1; v(k), u(k)) = st(k - l | k - 1) + b0 u(k) + d0 v(k)

Using the random-walk model (37) for v(k) it is possible to express the output y(k)
as follows.

(75) y(k) = st(k - 1 | k - 1) + b0 u(k) + d0 v(k - 1) + s(k) +

+ d0 ev(k)

Omitting the time index of numerically given quantities and making use of (73)
we can also write

(76) MJ(k | k) = [0, MJ [** | \ ~_ I g j ; Jg>] + Ms(2 - 5)a(fc) =

= GH s(k - l \ k - 1) + Gb u(k) + Gd v(k - 1) +

+ Gkx + Ms(c - a) s(k) + Gd ev(k)
where

G=[0,Ms]A^ = [- M s a , M j

Recalling that b' = [/30, /5J and ti' = [d0, t3'] we have

G/3 = -Msab0 + MSE , GJ = -Msad0 + Msd

Since Ms is a monic LT-matrix we also have

(Gkx)' = [0,0,...,0, fcj

Now it is already easy to calculate the conditional mean (31) Fk = E[Bfe + lk I
\Dk_uu(k),w(k)~]. Since the random variables s(k) and ê /V) have zero mean,
by their definition are uncorrelated and their variances are

Var [s(k) | k - 1] = Q dy(k), Var [ejk) | T f c - i] = Q»(k)

it is obtained

(77) Fk = \QU; Au(k)\ + \Qp; u(k) + mpw w(k) + mpp + mpv v(k - 1)| +

+ \Qr; b0 u(k) - w(k) + d0 v(k - 1) + s,(k ~ 1 | k - 1)| +

+ \QS', mu u(k) + mw w(k) + mp + Mv v(k - 1) + GH s(k - 1 | k - 1)| +

+ p(k) + A/i/fe) + Apjk)
where

(78) m„ = mu + Gb — mu - mab0 + mb , mv = mv + Gd = m„ - mflrf0 + md

(79) ma = Msa , mb = Msb , md = Msd

(80) mp = mp + Gkx , m'p = m'p + [0, 0, ..., 0, fcj

(81) GH = [-ma , MJ H = vMs + [-ma , M j P I

83

Hence, the main calculation, which is to be performed in this stage of the algorithm,
is the determination of the vectors ma, mh and md, all of dimension n, according
to (79). The fact that Ms is a monic LT-matrix simplifies the calculation.

Stage 2. To perform the minimization of Fk with respect to u(k) according to
(32) and (33) it is suitable to express the sum of nonnegative quadratic forms in (77)
as a single quadratic form as shown in the scheme Fig. 10 where Au = Au(k) and
u - u(k - 1).

AM W 1 v u st s2 . . sn

Qu

QP

Qr

1

1

Ь 0

0

mpw

- 1

0

mpp

0

0

mpw

d0

0

1

Ь 0

0 0 0 0 0

1

Qs
mu ™w

mp mv mu

• 1 ì
• • 1 1
. GH . 1 |
. . . . 1

Fig. 10. Scheme of the quadratic form Fk for positional models.

Note that u(k) is expressed as Au(k) + u(k — 1). As before, the empty spaces mean
zeros which do not enter the calculation and the dots mean the numbers in general
nonzero.

To minimize the quadratic form with respect to AM =- Au(k) it is now sufficient
to use the first row as reducing and to zero the rest of the column lying under AM.
If the dyadic reduction is applied sequentially from up to down the required structure
of the entire matrix is maintained as shown in Fig. 11. Because the minimization
procedure is, in principle, the same as in the above case of incremental models we
can shorten the commentary.

AM W 1 v u §<, §i . . §„

Qu 1 m,, m, m,
L

1

1 1
• 1 1
. . 1

1

Fig. 11. Minimization of the quadratic form Fk for positional models by dyadic reduction.

After this transformation of the nonnegative quadratic form the only square which
depends on the choise of Au(k) is produced by the first row and is totaly zeroed

by the control law

(82) Au(k) =

= - muu u(k - 1) - muw w(k) - mup - muv v(k - 1) - mus S(k - 1 | k - 1)

which coincides with the general form of the optimal control law (70) for the given
simple case.

The propagated form of the Bellman function can be reconstructed by reducing
the right hand part of the last row as shown in Fig. 12. This reduction must be
performed from right to left in order not to destroy the desired structure of the form.
Note the right positioning of the column multiplied by u — u(k — 1) with the one
in the proper place. This makes the algorithm compact. The square produced by
the last row in Fig. 12 does not depend on the previous control actions and thus
contributes to the /J-part of the Bellman function.

(83) Ap0(k) = E[Q0; m0w w(k) + m0p(k) + mjk) v(k - 1) | D0]

Au w 1 v u sx s2 • > sn

Üu

й,

s.

Öo

1 mv

0 m pw

m,

m,

Щ

m.
mш

1

m, m. m, m,

. . mus . .

i !

. з |
• мs 1

1

1

0 m0w m0p m0v 0 0 0 0 0 0

Fig. 12. Reconstruction of the propagated form of the Bellman function by the reduction of the
last row.

Stage 3. In this last stage the conditional mean over w(k) has to be taken accord
ing to (34). If the a priori uncertain command signal is modelled as the generalized
random walk (39) then E[w(/<) | Wk^1] = w(k — 1). This means that it is sufficient
to replace w(k) in the Bellman function by w(k — 1) and to increase its /i-part,
(which actually does not need to be calculated) by

(83) Afijk) =- QJk) (\Qp; mpw\ + |QS; mw\)

where Qw(k) = Var [ew(fe)]. Recall that the variances gjk) as well as gv(k) can be
arbitrarily time varying.

Program control. In case of program control the a priori numerically given
w(k) can be incorporated into the algorithm in Stage 2 so that its negative value
is inserted instead of the zero in the row weighted by Qr and in the column multiplied
by 1 in the scheme Fig. 10. This means that the column lying in this scheme under w
can be fully omitted.

85

Choice of the last desired state

It remains to consider the first step of dynamic programming for k = T. Since BT = 0
we can write

BT + lT =- \Qr{T); r(T)\ + |Qr(T); Au(T)\ + |QS(T); MS(T)(^(T| T) - s)\

It is clear that it much depends on the choice of s. If we chose the desired last state s
as a numerically given vector it would be possible to consider formally BT = |QS(T);
mp(T) + Ms{T)s(T\ T)\ with mp(T) = -Ms(T)s and to proceed as in general
step. However, this would not be a very reasonable choice. It is more appropriate
to require that the process be as close as possible to a steady state after the last
control action Aw(T) is applied. This corresponds to the choice

(84) s = s(T- 1\T- 1)

With this choice we can proceed as follows. According to the above relation (76)
it holds

\Qs;Ms(s(T\T)-s(T- l | T - l) | =

= |QS; (GH - Ms) S(T - 1 \ T - 1) + Gb u(T) + Gd v(T - 1) +

+ Gkx + Ms(c - a) s(k) + Gd ev(T)\

This gives, see (78) to (81),

mu(T) = -mab0 + mb , mv(T) = -mad0 + md , m'p(T) = [0, 0, ..., 0, fcj

(85) GH - Ms = (n - 1) Ms + [- ma, M j |"j l

where
ma = Ms(T)a, mb = Ms(T)b, md = Ms(T)d

This means that it is possible to start the dynamic programming for k = T with
mu(T) = 0, mw(T) = 0, mp(T) = 0 and mv(T) = 0 and all what has to be done
to achieve the choice (84) is to decrease in the first step of dynamic programming
the model type indicator fi by one as shown by (85).

PASCAL procedure LQGP

The following procedure performs one step of dynamic programming and generates
the optimal control law for a single-input single-output positional model with zero
steady state offset kc — 0 and for the case of positional servo with no feedforward
from a measurable external disturbance. However, it can be easily modified for the
other cases discussed above. The nonstandard types of its parameters are the same
as for the above procedure LQGI. To economize the memory of the computer it
is suitable to choose imax = nmax + 2 and jmax = nmax + 3.

86

Parameters:

mti ... type INTEGER; model type indicator (in text denoted by fi); mti = 1
for Delta model, mti = 0 for ARMA; in the first call of the procedure
mti must be decreased by 1 to start dynamic programming with (84), e.g.
for ARMA model in the first call set mti = — 1.

n . . . type INTEGER; model order.
a, b . . . type poly; model parameters; a[i] = at, b[i] =- bt

Qr,Qu . . . type REAL; nonegative weights in the criterion (35).
M . . . type Matr; the matrix on which the procedure operates; both in call-

state and in return-state the submatrices are placed as depicted in Fig. 12;
parameters of the control law (82) appear in the first row indexed by
iu = 0: muw = M[iu,jw], muu = M[iu,ju], musj = M[iu,ju + j],
j = 1,2,.. n, (jw and ju are declared as CONST); the rows with indeces
i = iu + k, k = 1, 2, .. n + 1, must be incialized before the first call
of the procedure including the ones M[iu + k,jw + k]; large nonnegative
weights Qsk = M[jQ, ip + k], k -= 1 . . n, stabilize the control loop;
standard initialization of the remaining entries is zero.

PROCEDURE LQGP (mti, n: INTEGER; a, b: poly; Qr, Qu: REAL;
VAR M: Matr);

CONST in = 0;ip = l;ir = 2;
jQ = 0;jD = l;jw = 2; ju = 3; js = 4;

VAR i, j , ii, jj, il, im, jn: INTEGER;

am, bm, Mij: REAL;
BEGIN
jn : = n + jd; im := n + ir;
il := im;
FOR i := n DOWNTO 1 DO

BEGIN
n := il - 1;
am := a[i]; bm := b[i];
jj :=1s ;
F O R I : - l T O i - 1 DO

BEGIN
M / / : = M[ii,jj];
am := am + Mij * a[j]; bm := bm + Mij * b[j]:
jj:~jj+ 1;
M[il,jj] := mti * M[ii,jj] + Mij
END;

M[il, js] :— mti * M[ii,js] — am;
bm := M[ii,ju] + bm -am* b[0];
M[il,jD] := bm; M[il; ju] := bm;

87

M[iíJQ] := M[iiJQ]; M[iljw] := M[iijw];
i\ := ii
END;

M[iuJQ] := Qu;
FOR j : = jw TO jw DO M[iu, j] : -= 0 ;
M[ip,jD]:= 1;
M[ir,/Q] := £r; M[ir,jD] := /3[0]; M[ir,./vv] := - 1 ; M[ir, ju] := /3[0];

ti'-=m
FOR i : = ipTO im DO

BEGIN
DYDR(M[i], M[í«], M[iJQ], M[iuJQ]jDJwJj);
IFjj <jnTRENjj:=jj + 1
END;

FOR i := im - 1 DIWNTO ip DO
BEGIN

DYDR (Af[im], Afp], M[im,jQ], M[iJQ]jjJwj);

END
END;

R E F E R E N C E S

[13] J. S. Meditch: Stochastic Optimal Linear Estimation and Control. McGraw Hill, New York
1969.

[14] V. Peterka: On LQ optimum control of ARMAX processes. Proc. 9th IFAC Congress,
Budapest, 1986.

[15] A. P. Sage: Optimum Systems Control. Prentice Hall, Englewood Cliffs 1981.
[16] V. Strejc: State Space Theory of Linear Discrete Control. Academia, Prague 1978.
[17] M. Ullrich: Optimum control of some stochastic systems. Proceedings of the VHIth confe

rence ETAN, Beograd, November 1964, 291—298.

6. SIMULTANEOUS PARAMETER AND STATE ESTIMATION

In the foregoing sections it was assumed that the parameters of the process model
were a priori known. However, this is rarely the case in industrial practice. To make
the theory practicable it is highly desirable to develop procedures and reliable
numerical algorithms which make it possible to estimate the model parameters in real
time under the operating conditions of the control system. This is the topic of the
present section.

Usually, an attempt to estimate the parameters of a state-space model jointly
with its state leads to a problem of nonlinear filtering which can be practically

solved only with some approximation. The purpose of the first paragraph of this
section it so give a general view on the problem and to investigate under what condi
tions the problem can be simplified if the parameters are estimated separately from
the state. It turns out that such a simplification exists for the parameters a,b,d and kc

of the linear models introduced in Section 3.
In the second paragraph a filter is derived which updates the statistics (certain

matrices) which make it possible to express the estimate of the model state as a linear
function of the unknown parameters a, b, d and kc. This opens the way for the exact
solution of the problem of simultaneous estimation of these parameters and of the
model state.

In the third paragraph it is shown that the problem of parameter estimation can
be solved exactly within normal probability distributions.A filter is derived which
updates the mean values and the covariances of the unknown parameters and deter
mines the joint probability distribution for both the parameters and the state. It
turns out that also in this case the variance of the white-noise component of the
models does not need to be known if only the conditional means (point estimates)
are of interest. It enters the procedure only as a factor by which all covariances are
multiplied.

Unfortunately, the c-parameters of the linear models we deal with cannot be
exactly estimated in real time. Throughout this section it is assumed that they are
suitably chosen as the base of exponentials by which the "tails" of a regression
model are approximated as discussed in paragraph 3.2. The procedure developed
in the third paragraph of this section provides all probabilistic characteristics which
are required to calculate the aposterior probability distribution on a finite number of
hypotheses about posible values of these parameters. This can help to make the choice.
However, a detailed discussion of this problem is outside the scope of this paper.
An interested reader is referred to Section 6 in [10] for the way how to proceed.

With no loss of generality the external measurable disturbance v will not be
considered explicitly in this section. It can be considered as an additional process
input and the fact that this input cannot be manipulated is not essential for the
given problem. If required, the ^-parameters of the model can be estimated in the very
same way as the /3-parameters.

6.1. Conceptual solution

Suppose that a given process can be described by a state space model which,
if its patameters are known, defines the c.p.d.f. (3.18)

(1) ?(y(t),s(t)\s(t-l),u(t))

If a set of parameters 9 of this model is unknown then the model does not define
(1) but only

(2) p(y(t),s(t)\s(t-i), u(t),0)

89

To estimate the unknown parameters 9 jointly with the state s(i) means, in Bayesian
view, to evolve the c.p.d.f.

(3) p(s{t), 9 | t)

If the state s(t) is extended by the model parameters 9 then, following the procedure
applied in the paragraph 4.1, it is obtained instead of (4.1)

(4) p(y(t),s(t),9\t-l;u(t)) =

- p(y(t), s(t) | s(t - 1), 9, u(t)) p(s(t - 1). 0 11 - 1) ds (t ~ 1)

instead of (4.2)

(5) p(y(t) \ t - l ; u(t)) = ffp(y(r), s(t), 9\t~l; u(t)) ds(t) d9

and instead of (4.3)

(6) ?me\t) = ^f^\<-)f))
p(y(t)\t- 1; 11(f))

The functional recursion (4), (5) and (6) solves the problem of joint parameter
and state estimation conceptually, but, as mentioned above, only rarely can be
reduced to a feasible algebraic recursion without any approximation. Our case is an
exception.

The following result will appear very useful.

Resul t (6A): Estimation of the parameters separately from the model state.
If there exists a statistic X(t), a finite dimensional function of the observed data

but not of the unknown parameters,

(7) ' X(t) = f(X(t-l),y(t),u(t))

such that

(8) p(s(t)\t;9) = p(s(t)\X(t),9)

then, under natural conditions of control, the unknown parameters 9 can be estimated
separately from the state s(t) using the relations

(9) p(e 11) = P(y(t)\x(t-i),e,u(t))P(0\t-i)

P W O I < - i; - (0)
where

(10) p(y(t) | X(t - 1), 9, u(t)) =

p(y(t) | s(t - 1), u(t), 9) p(s(t - 1) | X(t - 1), 9) ds(t - 1)

/»
(11) p(y(t) \ t - l ; u(t)) = p(y(t) \ X(t - 1), 9, u(t)) p(9 \ t - 1) d9

•

Then, for any t, the joint c.p.d.f. for the estimated parameters and the state can be

90

determined as follows.

(12) ?(s(t), e 11) = P(s(t) | x(t), 9) ?(e 11)

Proof. There is not much to be proved. The given relations are just applications
of the elementary operations (2.1) and (2.2), and of the natural conditions of control
(2.5)

p(0 11 - 1; «(()) = P(e 11 - 1)

It is clear that the usefulness of the Result (6A) much depends on the existence
of the statistic X(t) with the properties (7) and (8), and on the form of the cp.d.f. (9).
In the following paragraph it will be shown that such a statistic exists for the pa
rameters a, b and kc (and d if required) of the linear process models considered in this
paper. As the cp.d.f. (9) is normal if e(t) is assumed to be normally distributed,
the problem can be solved within normal probability distributions and the functional
recursion can be reduced to algebraic operations on conditional means and covari-
ances.

6.2. C-filters

Let us consider the process model in the form (4.5)

(13) A P(WJ = H s(t - 1) + b u(t -Tu) + kx + c e(t)

where the parameters A, b, c and kx are defined by (3.66) and (3.67). If the non-
parametric matrix H of dimensions (dy + ds) x ds is considered in the form (4.6)

II -'GЬИ
then (13) can represent both ARM A and Delta models. If y(t) and u{t) are replaced
by their increments and if it is set kx — 0 then also incremental models are covered.

For the sake of simplicity only the single-input single-output case will be considered.
However, the presented solution can be well extended for the multivariate case,
namely thanks to the Result (4 B). (Actually, the multivariate case can be solved by
running the same dy filters in parallel.)

Let the unknown parameters be

(14) d = {a, b, kc) = {au a2, .. an, b0, bu . . bn, kc}

In order to see whether the Result (6 A) can be applied we have to investigate the
cp.d.f. (8). From the Result (4 A) we know that, under given assumptions, this
cp.d.f. is normal with the covariance matrix (4.21), which is independent of 6, and
with the conditional mean s(t 11), which envolves according to the difference equation
(4.24) and is a function of the unknown parameters (14).

(15) s(t 11; 0) = (nl + C(t)) s(t- l \ t - 1;6)-

-(a- c(t)) y(t) + (B- c(t) b0) u(t - Tu) + ks

91

To determine S(t \ t; 9) as an explicit function of 9 let us find the explicit solution
of the difference equation (15).

If the transition matrix G(t, k) is introduced so that

(16) G(t, fc) = [I (Hi + C(j)) , k<t
j = k+l

(17) G(t, t) = I

(18) G(t, fc) = (pil + C(t)) G(t - 1, fc)

then the explicit solution of (15) can be written as follows

(19) S(t \t;9) = S0(t | t) - Sy(t | t; a) + Su(t \ t; b) + sk(t | t; kc)

(20) -foC* I 0 =G(t,0)S(0)

(21) Sy(t \t;a) = £ G(t, k) (a - c(k)) y(k)
fc=l

(22) Su(t \t;b) =t G{t, k) (E - c(k) b0) u(k)
k=í

t

(23) Sk(t | t; kc) = £ G{t, fc) fcs
k = l

where S(0) is the expected value of the initial state s(0) before the observation of the
process starts and, according to (4.28),

(24) /< = [0, 0, . . . 0, fcj

Note that, in case of an incremental model, kc, ks and thus also Sk(t | t; kc) are zero.
It will appear advantageous to express

(25) a - cKk) = C*(k) a, b - c(fc) b0 = C*(k) b

where
(26) C*(fc) = [-c(fc),i]

Note that C*(t) of dimensions n x (n + 1) is the matrix C(t) (4.25) extended by an
additional column the only nonzero entry of which is a one in the last row. Using
(25) it is possible to rewrite (21) and (22) as follows.

(27) Sy(t \t;a)= Y(t) a , Su(t \ t; b) = U(t) b

where Y(t) and U(t) are rectangular matrices of dimensions n x (n + 1)

(28) 7(t) = J G(t, fc) C*(fc) y(k), U(t) = £ G(t, fc) C*(fc) u(fc)
fe=l k = l

and a' = [1, a '] . Hence, the explicit solution (19) of the difference equation (15)
can be expressed as the following linear function of the unknown parameters.

(29) S(t \t;9) = K0(t) - Y(t) a + U(t) b + K(t) kc

where K0(t) and K(t) are vectors.

92

Applying (17) and (18) it is easy to find that the following recursion holds.

(30) Y(t) = (,H + C(t)) Y(t - 1) + C*(t) y(t) , Y{0) = 0

(31) U(t) = (fil + C(t)) U(t - 1) + C*(t) u(t), (7(0) = 0

(32) K(t) = (ill + q ») K(t - 1) + [0, 0, . . 0, 1]' , K(0) = 0

(33) K0(t) = (jil + C(t)) K0(t - 1) Ko(0) = <0)

Note that each nonzero entry of the matrix added in (30) and (31) is multiplied
by the scalar y(t) or u(t), respectively.

If the prior probability distribution of the initial state s(0) is chosen sufficiently
flat (large numbers on the diagonal of Ds(0) in (4.30)) it is suitable to choose s(0) = 0
and to omit the term (33).

In this way the c.p.d.f. (8) has been brought into the desired form with the statistic

(34) X(t) = {Y(t),U(t),K(t)}

Summing up we have the following

Resul t (6 B): C-filters.

Estimation of the model parameters a, b and kc simultaneously with the state
s(t) requires to filter the input and the output of the process using filters operating
on matrices Y(t) and U(t) according to (30) and (31). If the possible offset kc is
estimated then also the vector K(t) has to be evolved in real time according to (32).
The time-varying coefficients c(t) which enter the filtering are generated by the
algorithm described in the paragraph 4.3.

PASCAL procedure GFIL

The procedure CFIL listed below incorporates one sample of the filtered signal
into a statistic of a matrix form according to (30) or (31). The nonstandard types
of its parameters are

TYPE row = ARRAY [0 . . nmax] OF REAL;
Mat = ARRAY [1 . . nmax] OF row;

where nmax is an INTEGER constant chosen with respect to the maximal model
order to be considered.

Parameters:

Xf . . . type Mat; matrix state of the filter (eg. Yor U) to be updated (according
to (30) or (31)).

x . . . type REAL; signal sample (eg. y or u).
c . . . type row; vector of coefficients generated by the procedure CGEN.
n . . . model order.
mti ... model-type indicator, mti — 1 for Delta, mti = 0 for ARMA.

93

PROCEDURE CF7L(VARx / : Mat;x: REAL; c: row; n, mti: INTEGER);
VARiJ: INTEGER;
BEGIN
F O R 1 : = O T O n D O

BEGIN
F O R i := l T O n - l D O

Xf[ij] := mti*Xf[ij] + Xf[i + 1,1] - c[q*Xf[l,j];
Xf[n,j] := mti*Xf[n,j] - c[n] * Xf[l,j]
END;

F O R i : = l T O n D O
BEGIN
Xf[i,i]:=Xf[i,i] + x;
Xf[i,0]:=Xf[i,0]-c[q*x
END

END;

6.3. Real-time estimation

Now we are prepared to solve the problem of estimating the parameters a, b and kc

simultaneously with the state s(t) in real time according to the Result (6 A). However,
since the problem is linear and Gaussian it will be sufficient to operate only on condi
tional mean values and covariances.

Let us order the set of 2n + 2 unknown parameters (14) into the vector

(35) 8' = [at,a2,...an,b0,bu... bn, kc]

and let us order the statistic (34) into the matrix

(36) X(t) = l-Y(t), 17(0, K(0] = [- Y*(>% mi

where Y*(t) is the first column of the matrix Y(t).
Then from (29) for K0(t) = 0 we have

(37) š(t \t;9) = X(t) = -Y*(t) + Z(t)

Since we are interested in recursive estimation let us assume that the mean value
of the uncertain parameter vector (35), conditioned on the input-output data observed
up to the sampling period t — 1, is given

(38) E[0 | t - 1] - 6(t - 1)

and that also its covariance matrix is given in the factorized form

(39) Var [6 . | t - 1] = Q Le[t - 1) De(t - 1) Le(t - 1)

where the monic LT-matrix LQ(t — 1) and the diagonal matrix De(t — 1) are given
numerically while the scalar factor Q = Var e(t) does not need to be known. The

mean value (38) and the covariance matrix (39) fully determine the c.p.d.f. p(0 | t — 1)
if it is normal.

To be able to update p(9\t - 1) = p(0\t - 1; u(t)) with respect to a newly
observed output y(t) we need to determine the numerator of (9), i.e. the joint c.p.d.f.

(40) p(y(t), 0 11 - 1; u(t)) = p(y(t) | X(t - 1), u(t), 9) p(6\t- 1)

From the Result (4 A) it is known that p(y(t) \ X(t - 1), u(t), 9) is normal with

(41) B[y(t) | t - 1; u(t), 9] = y(t\t- 1; u(t), 9) = s\(t - 1 | t - 1; 0) + b0 u(t)

(42) V a r [y (O | r - l ; M (t) , 0] = a ^ (O

where dy(t) does not depend on the unknown parameters and is supplied by the
procedure CGEN simultaneously with the coefficients c(t) required for updating
the statistic X(t - 1).

The conditional mean value st(t — 1 \ t — 1; u(t), 9) is given by the first row
of (37) for the time index t — 1

s,(t - 1 11 - 1;0) - Xt(t - 1) P 1 = -Y*(r - 1) + Zx(t -1)9 + b0u(t)

where Xt(t — 1) and Zx(t — 1) are the first rows of the matrices X(t — 1) and
Z(t - 1), and Y*(r - 1) is the first entry of the column vector Y*(t - 1). Thus,
(41) can be written

y(t\t- l; u(t), 9) = ~ Y*(t - 1) + Z±(t - 1) 0 + b0 u(t)

or more concisely

(43) y(t\t~l; u(t), 9) = - Y?(t - 1) + z(t) 9

where z(t) is a row-vector with the entries

(44) zj(t) = Z1}j(t - 1) for j + n + 1

(44') zn + 1(0 = Z l ! f l + 1(f- 1) + M(r)

Now the required joint c.p.d.f. (40) can be determined using the Result (2 B)
slightly modified in the following way. Replace in (2.29) to (2.45) y by 9 and x by
y(t), exchange their positions in (2.41) and (2.42) and, of course, correspondingly
also their covariances. In this way it is obtained

(45) E|>(0 I t - 1; «(0] = - !?(< - 1) + <<) Ht ~ 1)

and, when we introduce the row-vector

(46) f(t)^z(t)Le(t-l)

the joint covariance matrix is

(47) V a r p f | r - l ; u (0]] =

95

- e [o L,(t - 1)J |_o D,(t - 1)J [/(.) _/r - 1)J
To perform the conditioning (9) it is sufficient, according to the Result (2 A),

to modify the factorization of the joint covariance matrix (47), in the following way

(48) p / w ird' (<) ° i r ' ° i -
(W> |_° L,(t - 1)J [0 D,(t - 1)J lf'(t) L,(t - 1)J -

r i o i ra.(f) o ir i^wi
" lg,(t) L,(t)\ I 0 D,(t)J[0 L,'t)\

The algorithm which performs this modification will be described below. Then the
Result (2 A) gives

(49) B(t)~B(t-l) + ge(i)t(t)

where s[i) is the prediction error

(50) t(t)~y(t)-$(t\t~ l;u(t))

t{t) = y(t)+Y*(t)-z(t)B(t-l)

At the same time it is obtained

(51) Var[0|f] = Q Le(t) De(t) Le(t)

(52) Var [y(t)\t- 1; u(t)] = Q dy(t)
This, together with the updating the statistic (36) according to (30), (31) and (32),
solves our problem of recursive parameter estimation.

It remains to determine the joint probability distribution for the parameters 6
and the state s(t). A straightforward application of the Result (2 B) gives

(53) E[S(») | 0 = X{t) [g f j = - Y*(t) + Z(t) B(t)

(54) Var
1 _ Шt) 0 1 fD,(t) 0 1 ГĽв(t) Ľ,(t) ZЩ

\~eЫt)Чt)LШo o.(0JLo щ J X0
The procedure can be summarized as follows.

Result (6 C): Simultaneous parameter and state estimation.

Suppose that the observed process can be described by the model (13) with given
parameters c but unknown parameters a, b and kc. The unknown parameters and
the state s(t) can be estimated in real time, under the earlier stated assumptions
with no approximation involved, using the following procedure.

Given the statistics Ls, Ds, X, L9, Dg and 6 from the previous step, say for the
time index t — 1, proceed as follows.

1. Using the given parameters c apply the procedure CGEN to update Ls and Ds,
and generate c and dr

96

2. After a new input u(t) is applied and the succeeding output y(t) is observed
compose the row vector z acording to (44), place y(t) — Y*(t — 1) into z 0 and
using dy apply the below described procedure LDFIL to update Lg, D0 and the
parameter estimates 9.

3. Using c update the statistic X applying the procedure CFIL to its components Y
and U. If also kc is estimated update the last colmn of X according to (32).

4. Multiply the statistic X by the parameter estimates B according to (53) to obtain
the estimate of the state s(t).

5. Repeat 1.

The uncertainty of the estimates is characterized by the covariance matrix (54).
The variance of the one-step-ahead prediction of the output y(t) is given by (52).
The variance Q of the white-noise component of the model (13) does not need to
be known if only the estimates (the conditional means) are of interest. However,
it is assumed to be constant.

Remark (a). Into 0(0), D0(O) and Le(0) the prior information about the possible
values of the estimated parameters can be incorporated. This can be very useful
when starting a selftuning control.

Remark (b). The recursive estimation of the parameters 0 derived in this paragraph

is, actually, nothing else than a least-square regression where z(t) is the regressor,

y(t) + Y*(t — 1) is the regressant and dy(t) is the weight assigned to the minimized

square of the residual.

LD filter

The modification of the matrix factorization (48) can be performed using dyadic

reduction. The left-hand side of (48) can be considered as a weighted sum of symmetric

dyads. In the scheme Fig. 13 each row represents one dyad and its weight placed

in the most left column. N is the number of estimated parameters, in our case (if

also kc is estimated) N = In + 2. The empty spaces are zeros which do not enter

the computation.

0 0 0 . 0 d„

D ,N

1

h
fг

h

1
1 . Ľ .

1 . .
~i l •

1 1
Fig. 13. Scheme illustrating the application of dyadic reduction to the modification of the

matrix factorization (48).

The goal of the algorithm, to achieve the desired form of the right-hand side
of (48), is to zero all entries ft lying under the one which is the only nonzero entry

97

in the first row when the algorithm starts. Hence, the first row is used as reducing
in the dyadic reduction. However, not to destroy the upper triangular form of the
matrix Le it is necessary to start with/y and proceed backwards for i = N, N — 1, . . 1
until the situation depicted in Fig. 14 is reached. The vector g0, required for the
updating of the parameter estimates according to (49), appears in the first row
as indicated.

0,1

9,2

Ď ,N

1 00,100,2 • • 9Q,N

0 1 . . ,
0 | 1 . L' •
0 ~~J 1
0 *""] 1 .
0 | 1

Fig. 14. Reduction of/generates gg in the first row.

PASCAL procedure LDFIL

The below listed procedure performs one step of least-square regression with
weighting of the minimized squares of residuals. It calculates the vector / according
to (46), performs the modification of the matrix factorization (48) and updates the
parameter estimates. At the same time it updates LB and D9 in (51) and generates dy

for (52). The nonstandard types of its parameters are

TYPE row = ARRAY [0 . . Nmax] OF REAL;
Matrix = ARRAY [0 . . Nmax] OF row;

where Nmax is an INTEGER constant chosen with respect to the maximal number
of the estimated parameters. Since the procedure makes use of the procedure DYDR
the type row must be common for both of them.

Parameters:

Par . . . type VAR row; parameter estimates Par [i] = 6{; must be initialized before
the first call of the procedure; Par [0] not used.

D . . . type VAR row; diagonal of Dg extended by dy in D[0]; procedure modifies
D[0] to cly and therefore D[0] must be restored whenever the procedure
is called; D must be initialized before the first call of the procedure when
the large numbers D[i] for i = 1 . . N mean very uncertain prior estimate
Par.

L . . . type VAR Matrix; monic upper triangular matrix Le extended by the
column with index / = 0 where the vector/' can be found, and by the row
with index i = 0 where the gain vector g'e appears; must be initialized before
the first call of the procedure including the ones on the main diagonal,
L[i, i] = 1 for i = 1 . . N.

z . . . type row; row of processed data, z[0] regressant, z[/],j = 1 . . N, regressor.
N . . . type INTEGER; number of estimated parameters.

98

PROCEDURE LDFLL(VAR Par, D: row; VAR L: Matrix; z: row; N: INTEGER);
YAR i,j: INTEGER;

/ , e: REAL;
BEGIN
e:=z[0];
F O R / : = 1 T O N DO

BEGIN
e := e — z[i] * Par [i];

FORj := 1 + l T O i V D O / : = / + z [j] * L [i , j] ;
L[i\0]:-=/;
L[0, (j := 0
END;

FOR i:=N DOWNTO 1 DO DYDR (L[i], L[0], D[i], D[0], 0, i, N);
FOR J := 1 TO NDO Par [i] :=~ Par [i] + L[0, i] * e
END;

7. ADAPTIVE AND SELF-TUNING CONTROL

The previous section gave an unswer to the problem of how to predict the output
of an observed process one step ahead and at the same time to estimate the state
of its linear model if the main parameters of the model are not known. Under the
stated assumption the answer is exact. Unfortunately, the problem of optimum
control synthesis, minimizing the criterion (5.35) for the control horizon T > 1,
is much more difficult and the present theory does not yield its exact solution which
could be practically realized using the present-day computer technique. This is dis
cussed in the first paragraph of this last section.

Fortunately, there exists an approximative solution of the given problem which
is well feasible and appears to be successful in practical applications even when its
full theoretical analysis is still lacking. It is the self-tuning control, based on the so-
called certainty equivalence hypothesis, discussed in the second paragraph. In this
concluding paragraph it will be outlined how the above derived algorithms can be
employed to implement such a control practically,

7.1. Problem of dual control

In the previous Section 6 it was derived that, under the lack of knowledge of the
parameters 6 (6.14), the predictive c.p.d.f. p(y(t) | t — 1; u(t)) is normal with the
mean value (6.45) and the variance (6.52). The inspection of the above results also
shows that the statistic

(1) Sy(t -1) = {X(t - 1), $(t - 1), Lg(t - 1), D9(t - 1)}

99

is sufficient for this c.p.d.f. so that

(2) p(y(t)\t-l;u(t)) = p(y(t)\Sy(t-l),u(j))

Hence, all is prepared for the general method of optimum control synthesis accord
ing to the Result (5 A). Moreover, as a finite dimensional sufficient statistic (1)
exists (it exists also for unknown Q) the domain of the Bellman function is of fixed
and nongrowing dimension. However, when trying to apply the algorithm of dynamic
programming to this case serious difficulties are met already in the second step. The
function Fk defined by (5.31) is no more quadratic, neither elementar. Even when it
is calculated as a multidimensional table its minimization with respect to u(k) is
no simple problem. These are the reasons why such a control — called dual — is
unrealistic for practical use.

The problem of dual control was formulated firstly by Feldbaum [18] but could
be solved only for the most simple cases. The adjective dual means that such a control
modifies the control actions, which would be optimal for the known parameters,
so that it introduces perturbations improving the parameter estimation and thus
also the future controls.

7.2. Self-tuning control

A natural approximation of the optimal dual control is to replace the unknown
parameters by their point estimates and to perform the control synthesis as if the
model parameters were known. This is sometimes called certainty equivalence
hypothesis. Practically it means to combine the algorithm for parameter and state
estimation described in the Result (6 C) with one of the algorithms for optimum
control synthesis given in Section 5. However, it also means that the control law
has to be redesigned when the parameter estimates are updated. There are two
possible ways how to keep the computational load within reasonable proportions.

Receding control horizon. The control horizon for which the control law is designed
is chosen only slightly longer than is the settling time of the process, which is usually
a priori known with sufficient accuracy. However, then the settling of the final state
must be heavily weighted in the criterion in order to ensure the stability of control.

Iterative optimization. Usually better and simpler is to proceed as follows. For
T-* oo the parameters of the Bellman function, which determines the optimal
control for the current sampling period, converge to constants (except mw and m0lv

in (5.44) or mp and mpp in (5.71) in case of program control.) To find this asymptotic
Bellman function it appears to be sufficient to perform in each control step only
a very limited numer of optimization steps (just one is usually sufficient) using the
algorithm of dynamic programming. Such a control strategy is called 1ST (Iterations
Spread in Time) in [l] where it is discussed in more detail.

When starting the self-tunig control it is advisable to incorporate into the chosen

100

prior probability distributions as much prior information about the controlled
process as possible. The way how to proceed can be found in [19],

Time-varying processes

The control problem considered in this paper has been formulated and solved
as control of a process which can be described by a linear stochastic model with
unknown but constant parameters. The resulting controller has the ability to accumul
ate the information about the controlled process carried by the observed data and
to use it for automatic tuning of its control law. This removes the by-hand tuning
of standardly used controllers.

In many industrial applications the properties of the controlled process vary in time
and it is required that the adaptive controller be able to track these variations. Then
it is necessary to suppress the old information in order to make space for the new
one. The technique of exponential forgetting has been widely used for this purpose.
A probabilistic interpretation of this technique can be found in [10]. It explaines
the difficulties which may occur when the standard exponential forgetting is applied
in a closed control loop. Therefore a new technique of forgetting has been developed
[20, 21] which removes these difficulties. The identification procedure derived in
Section 6 provides all probabilistic characteristics which are required for the applica
tion of these heuristic but rationally based technique also for the models considered
in this paper.

When concluding it is appropriate to emphasize that the presented theoretical
results cannot be applied mechanically. It is the engineer, the control system
designer, who has to think and to apply the theoretical results adequately to his
practical problem, considering the assumptions under which the theory was deve
loped. The theory only can help him in keeping his thinking consistent in complex
situations and to provide algorithms which make it possible to realize his ideas
in a reliable way.

R E F E R E N C E S

[18] A. A. Feldbaum: Dual control theory I—IV. Automat. Remote Control 21 (1960), 874-880,
1033-10039, and 22 (1961), 1-12, 109-121.

[19] M. Karny: Quantification of prior knowledge about global characteristics of linear normal
models. Kybernetika 20 (1984), 5, 376-385.

[20] R. Kulhavy and M. Karny: Tracking of slowly varying parameters by directional for
getting. Proc 9th IFAC Congress, Budapest, 1984, Vol. X, 81-85.

[21] R, Kulhavy: Restricted exponential forgetting in real-time identification. Preprints 7th
IFAC/IFORS Symposium on Identification and System Parameter Estimation. York, 1985.

101

