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A NOTE ON EXPONENTIAL DENSITY 
OF ETOL LANGUAGES 

ALEXANDR MEDUNA 

It is shown that any infinite ETOL language is exponentially dense. 

0. INTRODUCTION 

In the last years much attention has been paid to the study of the properties of 
ETOL languages (see e.g. Chap. V. 2. in [2]). This topic is also the subject of the 
present note investigating whether or not every infinite ETOL language is exponent
ially dense. Our answer is in the affirmative. 

Since the family of infinite ETOL languages is quite a large subset of the family 
of infinite context sensitive languages and, moreover, because the family of infinite 
context sensitive languages and that of exponentially dense languages are known 
to be incomparable (see the conclusion of the present note) the fact that every infinite 
ETOL language is exponentially dense is of some interest. This result can help us 
in the first place when we want to prove the given language not to be an ETOL language. 
In such a case it will namely do to show that it is not exponentially dense. 

1. PRELIMINARIES 

We shall assume that the reader is familiar with the theory of parallel rewriting 
systems. Items not defined explicitly are standard in language theory, see e.g. [2]. 
We recall now some terminology and notation. 

Let V be an alphabet and let x = at ... an, n ^ 0, be a word over V, i.e. x e V*. 
We use |x| to denote the length of x, i.e. |x| = n. If n = 0 then the word is called 
the empty word, denoted as A. The alphabet of x, denoted alph(x), is the set of all 
symbols from Fthat appear at least once in x. For a finite alphabet A, #j(x) denotes 
the number of occurrences of symbols from A in x. 
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An ETOLsystem is a construct G = (V, P, S, E) where Vis the alphabet of G, I 
is a subset of V, called the terminal alphabet of G, S is a symbol from K\ I, called 
the axiom and P is a finite set of finite substitutions on V, called tables. Usually, 
a table Te P in an ETOL system G = (V, P, S, I) will be specified by its set of pro
ductions, i.e. T = {a -> a: a e V, a e T(a)}. We also write a ->-r a to indicate that 
a —> oe is a production in T 

Let G = (V, P, S, Z) be an ETOL system. Let x and y be words over V. We say 
that x directly derives y (in G), denoted as x =>G v if y e T(x) for some table Te P. 
Let =>G be the reflexive and transitive closure of =>G. Let x and y be words over V. 
We say that x derives y if x =>G y. The language of G, denoted L(G), is the set of 
all terminal words that can be derived from the axiom, i.e. L(G) = {xel*: S =>* x}. 
The relations =>G and =>G are often denoted as => and =>* if G is understood. 
If we want to express that x directly derives y using the table Te P then we write 
x =>G y or x =>r y if G is understood. We say that G is a propagating ETOL sys
tem, abbreviated as EPTOL system, if every table T in P is A-free. Let a be a word 
in P* and let x and y be words over V. We say that x derives y using CT denoted 
as x =>G y (or x =>CT „v if G is understood) if either a = A and x = y or there 
exist words xt, ..., X|ff| e F* such that x =>G

l) xt =>G
2) ... =>G

('(I') X|a| = y. A symbol 
a from V is called acrine (in G) if there exists a table T in P and a word a in F* 
different from a such that a - » r a. We use A(G) to denote the set of all active sym
bols in G. Let k be a positive integer. We say that G is of index k if for every word 
w in L(G) there exists a derivation D: S = x0 =>G Xj =>G ... =>G x„ = w of w such 
that for 0 ^ i ^ n, #/t(G)(xI) ^ fc. We say that G is of finite index if G is of index 
fc for some fc _; 1. A symbol A from F is called lasting actively recursive (in G), 
abbreviated LA-recursive, if there exist x1; x2 in V*, w in T* and Q in P* such that 

(i) S=>*x1Ax2 =>* weL(G), 
(ii) A =>e oeA/?, Xj =>8 Xj, x2 =>e x2 where #X(G) a/^ = L alph(x1aA^x2) £ 

S alph(x1Ax2), 
(iii) there exists an active symbol B such that B e alph(af$) and B =>e yiBy2, where 

alph(yiy2) £ alph(x1Ax2). 

Language K is called exponentially dense if there exist positive constants c± and 
c2 having the following property: for any n ^ 1 there exists a string x in L such that 

e(«-l)c2 < II < e « c 2 > 

2. EXPONENTIAL DENSITY OF ETOL LANGUAGES 

In this section we show that each infinite ETOL language is exponentially dense. 

Theorem. Every infinite ETOL language is exponentially dense. 

Proof. I. Let G = (V, P, S, I) be an ETOL system which is not of finite index and 
let L(G) be infinite. The standard construction of proof of Theorem 0.2 in [3] to pro-
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duce an EPTOL system 
G' = (V, P', S, _) 

equivalent to the given G preserves the index. (Thus G' is not of finite index either.) 
Immediately from Corollary 1.3. in [3] it follows that V in G' contains at least one 
LA-recursive symbol A. From the definition of the LA-rescursive symbol it follows 
that in G' there exists an infinite sequence of derivations of the following form: 

S=>nxlAyl =>" wt 

S =>n xtAyt =>e x^A/l^ = x2Ay2 =>" w2 

S=>n xtAyt =>9 x2Ay2 =>e ... xi-1Ayi^1 =>e x^^Afiy^y = x;A>'; =>" w; 

S =>n x1Ay1 =>e x2Ay2 =>e... x ;_,yl)Vi =>exiAyi =>exiaAPyi = xi+1Ayi+l =>a wi+t 

for each i _ 1 where w; e L(G') and AeV,xu..., xi+ u ylt ..., yi+1 e V*, n, g, a e 
eP*. 

Since #A(G-)aP _ 1 and G' is propagating we have: 

Let 

Clearly 

Let 

|W;| < |w; + 1 | for each i _ 1 . 

r = max {|r(a)| : for some Te P' and a e V'}, 

s =\Q\ + \a\ 

d = Vs. 

d > 1 . 

c i = |wi| , c2 = l n d . 

Now using a very simple procedure we will prove that L(G') is exponentially dense: 
Since d > 1 we have for n = 1: ct _ \wA < cY eC2 = c1 e

lnd = c^d. Let n be an 
arbitrary fixed integer, n > 1. Then there exist w;, w ;+1 for some i _ 1 (see above) 
such that: |w;| < cA e"C2 _ |w ;+1 |. Since cx e"C2 _ |w ;+1 | and |w;+1|/d _ w; we have: 

„ p (n - l )C2 J p (n - l )C2 Ind ( n - l ) c 2 c2 nc2 I I 

c e(n-l)c2 _ Cl e « _ £l_^ _ Cl e _^ _ C l e < |_ i+_ < w I 
d d d d d 

and thus 
C i C ( n - l ) c 2 < | W ; | < C i e " C 2 _ 

II. Let G = (V, P, S, S) be an ETOL system of index k (for some k _ 1) and let 
L(G) be infinite. By Theorem 1.10. in [3] we can assume that there exist positive 
integers z and z such that, for every word w in L(G) that is longer than z, there exists 
a positive integer t _ 2k such that w can be written in the form w = y0a1>'ia2 .. • a,y, 
with |a,| < z for 1 _ i _ (, a1a2 ... a. i= A and for every positive integer m, the 
word >'0aT.yia2 • • • a7yt e L(G). Without loss of generality we can assume that we 
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have some such w from L(G) for which it moreover holds that 

\w\ ;> 2 . 
Let 

Cj = 1 , c2 = In d . 

where d is an arbitrary fixed integer, such that 2 < |w| < d. If n = 1 then 

C < |w| < c. eC2 = elnd = d . 

Let n be an arbitrary fixed integer, such that n > 1. Since L(G) is infinite, we can 
assume that there exist x i _ 1 , x i e L ( G ) such that |x,_ij < c t e"C2 ^ ]x,| and no 
word u e L(G) for which it would hold that jx i_1| < \u\ < [x^ . 
Since 

d :> \w\ ^ |ax ... a f | 
we have 

hi - k-t| ̂  d 
and thus 

lXІ <_!__!+ 1 . 
d d 

Using relation |x ; | ^ c1 e"C2 we get 

c i e"C 2 _ c i e ("" 1 ) c-e c* C l e
( " - ' ) C 2 e , n" _ C l e("^I)C2d 

< __] < Fi_Ü + i . 
d d 

Since 2 < d and clearly j x . ^ _ 2 w e o b t a i n 

and thus 

C l Є

( " - ! ) « < _ _ _ + 1 < ІJC___| 

C i - " " 1 * - < Ixj.J < C l e " C 2 

Hence, any infinite ETOL language is exponentially dense. D 

We note that immediately from the proof of Theorem 10 in [ l ] it follows that the 
family of infinite context sensitive languages and that of exponentially dense languages 
are incomparable. But the family of infinite ETOL languages is a subset of both 
the family of exponentially dense languages (as demonstrated above) and the family 
of infinite context sensitive languages. Thus no infinite context sensitive language 
which is not exponentially dense can be an ETOL language. And this is a fact that 
can often be of help by proving (e.g. the context sensitive language {a21": n >, 0} 
is not an ETOL language for not being exponentially dense). 
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