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SUBOPTIMAL PERFORMANCE CRITERION SENSITIVITY 
OF LARGE-SCALE DECENTRALIZED CONTROL SYSTEMS* 

DJORDJIJA PFTKOVSKI 

The purpose of this pap:r is to consider sensitivity of suboptimal performance criterion of 
large-scale decentralized control systems. The suggested approach is not crucially dependent on 
any particular method for decentralized control system design. By calculation the gradient 
matrices the numerous computations for each parameter of the system are successfully avoided. 
Moreover, once the suboptimal control problem is solved no further computations are needed 
to carry out the sensitivity analysis. 

Two numerical examples are presented to illustrate the proposed methodology. In the second 
example the theory is applied to characterize the sensitivity of a power system example which 
employ five DC terminals to damp out inter-area oscillations due to the AC power system dy
namics. 

1. INTRODUCTION 

In classical control theory it is assumed that control actions are undertaken by 
a single controller that has all the available information about the system. While 
there are obvious theoretical advantages control centralization may be difficult 
for a number of economic and technical reasons. On the contrary when large-scale 
systems are considered, information processing and control decisions are delegated 
to a set of agents. Therefore, in recent years, there has been a revival interest in the 
development of satisfactory control design methods implemented in a decentralized 
way. In addition the increasing implementation of these methods has been enabled 
by the availability of increasingly cheap computers and the consequent increase in 
all branches of engineering of interactive computing facilities to assists in design 
and analysis. Hence, the study of decentralized control systems is critical when one 
attempts to design controllers for large-scale systems. One of the most basic issues 
that arise in this class of problems is the sensitivity of the decentralised design. 

The preservation of various system theoretic properties in the face of variations 
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in the system model is an important theme in system theory. Growing attention is 
being paid to the problem of sensitivity of dynamic systems to variations in param
eters [1 — 7]. From the sensitivity theory point of view, an important issue is to esta
blish relationship between an infinitesimal variation in a nominal system parameter 
and the corresponding change in some system properties. Bode [1] was the first who 
established the significance of sensitivity in the design of feedback control systems. 
Horowitz [2] has developed the methods of frequency domain to a high extent 
and has applied them to the design of low sensitivity conventional feedback control 
systems (see also [3]). In 1963 Dorato [8] called attention to the problem of parameter 
sensitivity of the performance index of optimal control systems. Great number 
of publications dealing with the sensitivity problem in optimal and suboptimal 
control systems systems have appeared in recent years [9 — 22]. 

It should be pointed out that while the sensitivity theory is primarily concerned 
with a relationship between infinitesimal variations in a nominal system parameters 
and the corresponding system property, the robustness theory [23] requires the 
explicit delination of finite regions of models about the nominal model for which 
the given property is preserved. The robustness properties of large-scale decentralized 
control systems have been studied in [24 — 29]. 

In this paper we consider the problem of sensitivity of the suboptimal performance 
criterion of decentralized multivariate control systems to small parametes changes, 
and suboptimal cost sensitivity matrices are derived. The suggested approach is not 
crucially dependent on any particular method for decentralized control system 
design. By calculation the gradient matrices the numerous computations for each 
parameter of the system are successfully avoided. Moreover, once the suboptimal 
control problem is solved no further computations are needed to carry out the 
sensitivity analysis. The cost sensitivity matrices can be used to indicate which 
process parameters most affect the performance index. Thus, the designer can look 
for information regarding which parameters most affect the performance index 
in order to decide when a design modification should be made. It is also shown that 
the problem of selecting the fixed dimensional outputs which will lead to the best 
decentralized output feedback can be included in the proposed formulation. 

The plan of the paper is as follows. 
In Section 2 we summarize briefly two approaches for generating decentralized 

feedback laws for large-scale systems. The main result, i.e., sensitivity analysis 
of large-scale control systems is given in Section 3, where the problem of selecting 
the fixed dimensional outputs which lead to the best decentralized feedback is also 
include. In Section 4 the sensitivity results are illustrated through two numerical 
examples. In this section we examine the sensitivity of the suboptimal decentralized 
control design of a power system which employ five DC terminals to damp out 
inter-area oscillations due to the AC power system dynamics. Finally, in Section 5 
we draw some conclusions. 



2. DECENTRALIZED CONTROL SYSTEM DESIGN 

In this section a brief discussion on two approaches for decentralized feedback 
designs is given. The approaches enable us to control the system by a set of controllers 
— each having different information and control variables. For more detailed 
discussion see [29]. 

Problem Formulation 

Consider a large-scale system 

(1) i(t) = Ax(t) + £ BiUi(t), x(0) = x0 
; = i 

where i = \, ..., k index the control inputs, x(t) e R" is the state of the system, and 
k 

ut(t) e W" is the control input ^ m; = m. The information available to the local 
controller is assumed to be , = 1 

(2) y/j) = C, x(t) 
k 

where yt(i) e Rn is a local output vector, ]T ri = r. The local control «,(r) is assumed 
1 = 1 

to be a direct feedback from the local output yt(t), namely 

(3) " ui(t) = Eiyi(t), i = 1,2, ...,/< 

where Ei is a time-invariant gain matrix. 

Design Procedure 

Approach I 

The first approach is based on computation of a complete state feedback and reduc
tion to a specified control with a decentralized structure. In this case we introduce 
the performance index 

^ 0 0 

(4) / = - (xT(t) Q x(t) + uT(t) R «;») dt 
2 Jo 

where Q = QT S: 0, R = diag (/?,) > 0, i = 1, 2, ..., k, and we seek to determine 
the optimal control law which minimizes (4) subject to dynamic constraints 

(5) i(t) = A x(t) + B ut) 

where B = \BU B2, ...,Bk~], uT = [«T, wT, ..., ajf]. The solution is given by [30], 

(6) u{t) = Fx(t) , F = -R1 BTK 

where K is the positive definite solution of the algebraic Riccati equation 

(7) ATK + KA - KBR1BTK + Q = 0 
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Having the full state feedback the next step is to reduce this to a specified decentrali
zed structure, that is a control given by (3). In [29] different methods have been 
proposed for this selection (see Appendix I). 

Approach II 

The second approach is based on minimization of the decentralized quadratic 
performance index 

1 f co k 

(8) / = - (xT(t) Q x(t) + £ u](t) Rt Ui(t)) dt 
2 Jo >-=i 

g = oT>0, R, =RJ > 0 , i = 1,2,...,k 

Both approaches lead to the control law of the form 

(9) ui(t) = EiCix(t) 

where the values of the matrices Eh i = 1, 2, ..., k, depend on specified approach 
chosen (see Appendix I). 

The implementation of any of the decentralized control laws proposed in this 
section leads to the closed loop system of the form 

(10) x(t) = (A + £ BtEfit) x(t) 
i=\ 

To reduce the dependence of the decentralized gains on the initial state .v0 we 
suppose that x0 is a random variable uniformly distributed on the unit sphere with 
E{.v0} = 0, and E[X0A:T} = /, and we minimize the expected value of the performance 
index [31]. In this case, when the decentralized control is applied to the system (1) 
the value of the performance index is 

(11) J=iiP 

where P satisfies the matrix equation 

(12) (A + £ BtE,CF P + P(A + i BAC) + i CjEjRtEtCt + Q = 0 
i = l i=\ i=\ 

3. SENSITIVITY ANALYSIS 

In this section we consider the problem of sensitivity of the suboptimal performance 
criterion of large-scale decentralized control systems to small parameter variations, 
and suboptimal cost sensitivity matrices are derived. The problem of selecting 
the fixed dimensional outputs which will lead to the best decentralized output-
feedback is also included in this section. 

Suppose that originally the system parameter values are given and that a decen
tralized control law based on these values is computed. However, in practice the 
parameter values may change. Three basic types of variations exist: 
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(a) Mathematical modeling and data errors in defining the nominal system and 
plant. 

(b) Variations in dynamic characteristics caused by changes in environmental 
conditions, manufacturing tolerances, aging, wear, noncritical material failures, 
and off nominal power supplies. 

(c) Maintenance induced errors in calibration, installation and adjustment. 
Hence, the designer may look for information regarding which parameters most 

affect the decentralized control system. Dynamic systems, especially control systems, 
are often designed such that certain performance index takes either optimal or pre-
assigned value. In these cases the quality of the system is characterized by the per
formance index, and it is quite logical that the sensitivity measure of interest is the 
performance index sensitivity. Thus, the designer can look for information regarding 
which parameters most affect the performance criterion in order to decide when 
a design modification should be made. 

Suppose that the actual system matrices A, Bt and Ch i = 1,2,..., k, are given by 

(13) A = A + AA , B ; = B; + ABt, Ct = C; + AC; 

In a similar way, the weighting matrices Q and R, i.e., Rh i = 1, 2, ..., k, in the 
performance indices (4) and (8) can be represented as 

(14) Q = Q + AQ , R = R + AR , Rt = R; + ARt 

where matrices AA, ABh AC;, AQ, AR, i.e., ARt are small variations in the nominal 
values of the corresponding matrices, respectively. 

The variation of the suboptimal criterion when the nominal value of the matrices 
change from X to X + AX, where X is any of the matrices given in (13) and (14), 
can be defined as 

(15) — = hm — 
dX AX-OAAT 

The results of this section are based on the following theorem. 

Theorem. The variations of the suboptimal criterion when the process parameters 
change are given by: 

(-) 

6) 

(b) 

7) 

00 

(16) д± = 2PV 
ÕA 

(17) — = 2PVČJÉJ 
ČB; 

(18) ±= -2(Е&Р + EjRfifi^V 
О С: 
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(d) 

9) 

(e) 

(19) д± = V 
J ÔQ 

(20) ± = EidPCjEj 
OR; 

where Et is defined by (9), P is the positive definite solution of (12) and V is the 
solution of 

(21) V(A + X BiEiCf + (A + i BiEiC) V + I = 0 
; = i ; = i 

Proof. Because the proof of the conditions (a) —(e) are based on similar arguments 
we shall merely show to obtain (a) and (c). The proofs employ matrix differentiation 
techniques based on [32 — 34]. 

(a) For A = A + AA and using (15) it follows that 

(v>\ dJ r AJ 

(22) — = hm — 
vA A^-O A A 

where 
(23) AJ = tr AP 

Therefore, implicit in what has been assumed is that the initial state is a random 
variable uniformly distributed on the unit sphere. 

For A = A + AA equation (12) becomes, 
k k 

(24) (A + AA + X BiE,C,)T (P + AP) + (P + AP) (A + AA + Y BiEiC;) + 
; = l ; = i 

+ X CjEjRiEiCi + Q = 0 
;= I 

Subtracting (12) from (24), and neglecting all the second-order terms, it follows that 
k k 

(25) AATP + (A + X BiEiCi)T AP + P AA + AP(A + Y 5,-^-C,.) = 0 
i = i ; = i 

that is, 
i.O k k 

(26) AP = exp [(A + X I^iC) t~\ [AATP + P AA] exp [(A + X 5;^;C;)t] At 
J * '' = 1 ; = 1 

Now, it can be easily proved that 

(27) A / = tr [VAATP + VP AA] 

where the matrix Fis the solution of (21). Applying the matrix differential calculation 
rules [32] on eqn. (22) the expression 

(28) — = 2PV 
dA 

follows immediately. 
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(c) For c; = = C ; + ЛC; we have 

(29) 
дJ ,. Л/ 

— = lim 
ÔC; ЬCi->0 Л C , 

I = 1,2, ..., fe 

Using the same techniques as in the previous case, we obtain 

| . o o A: 

(30) AP = exp [(A + X B,E,C^ t] [{Bfi AC,)T P + ACjEjR^C, + 
J o <'=» 

k 

+ CjEjRiEi AC, + P(BiE, AC,)] exp [(^ + X -W?,) t] dJ 
( = i 

that is 

(31) A/ = tr [VACj(EjBjP + EjR&Q + F(/>Z?,I<; + CjEjRtE) AC] 

Applying the matrix differential rules [32] on eqn. (29) the expression 

(32) ~ = -2(EjBjP + EjRiEiC) V 
OC; 

is obtained, where the matrix Fis the solution of (21). 
Notice that the proposed approach is not strictly connected with any particular 

method for decentralized control system design. Once the design problem is solved, 
no extra computations are required to obtain the sensitivity matrices. Moreover, 
the expressions are based on the process parameters of the initial design (i.e., around 
which sensitivity is examined). For example, the approximated variation of the 
performance criterion due to a small variation ABn of the Bh i = I, 2, ..., k, is 
given by: 

(33) A/ = tr [2VP A# ;E ;C ;] 

Notice that by calculation the gradient matrices we avoid numerous computations 
for each parameter of the system. As mentioned, in practice, due to environmental 
effects, aging, perturbations, etc., the parameter values may change. This point out 
to the fundamental problem of obtaining the characterization of the uncertainties 
(modeling errors or parameter variations) associated with a given model. The results 
presented in this section show that this knowledge can be acquired not only by 
experience with a real applications but also using the proposed sensitivity analysis 
of the suboptimal performance criterion. This information can help a designer 
to answer the following question: which parameter changes are so essential that they 
require particular attention, not only in the modeling process but also in the physical 
realization of the control system. The answer to this question is of particular interest 
in situations where physical intuition is of little or no help in pinning down the 
critical elements. 

Another important case is the following. Sometimes in the control systems due 
to economical or technical reasons it may be desirable to change the parameter 
values, during the operation of the system. In these cases the explicit expressions 
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of the perturbation matrices, AA, ABt etc., are usually available. If not, the information 
about the less sensitive variations is of interest, especially if there is some freedom 
in choosing the matrices AA, ABt etc. 

In what follows we consider the problem of selecting fixed dimensional outputs 
which will lead to the best decentralized output feedback design. More precisely 
we consider the following problem. Given the system (1) —(3), where the dimension 
of matrices C ;, i = 1, 2, ..., k, is fixed, how to choose the parameters of C ; in order 
to obtain the best achievable decentralized output feedback design. Notice that 
the answer to this problem can still be useful, even in the case where a designer does 
have the advantage of choosing the output matrices C;, i = 1, 2, .... k, because it 
provides a lower bound for performance index for fixed dimensions of matrices C ;. 
The solution of this problem is based on the following corollary. 

Corollary. The optimal matrix C ; is defined by 

(34) C ; = -{EjRxE^1 EjBjP 

where the matrix E{ is defined by (9). 

Proof. Follows trivially from the Theorem. 

The computational algorithm to solve this problem can be easily developed on the 
basis of existing algorithms for decentralized output feedback design, e.g. those 
proposed in Section 2. 

4. NUMERICAL EXAMPLES 

To illustrate some of the results presented in the previous sections let us consider 
two examples. 

Example 1. 

Consider a second order system with 

(35) 

(36) 

A = 
1 0" 
0 - 1 , в,= Г 

1 
, в2 = 

г 
- 1 

C, = [0 1], c2 
= [10] 

The design of the decentralized control system is based on the calculation of 
complete state feedback (by linear quadratic methodology) with 

(37) ô = 
"14 8" 

, R = 
1 0" 

8 6 5 Ł 

0 1 

The decentralized control law is obtained by simply setting the gains in the centrali
zed gain matrix which correspond to a state not available for feedback, to zero. 

It can be easily shown that the solution of the corresponding Riccati equation 
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3 1 
1 1 

is given with 

(38) K 

The decentralized control is defined with 

(39) E,CX = [0 - 2 ] , E2C2 = [ - 2 0] 

The corresponding value of the matrix P, eqn. (12) is 

1 
(40) P = 

53 - 5 
- 5 15 

First, we shall examine the variation in system actuator matrices Bh i = 1,2. 
Define the actual value of these matrices as 

(41) 

where 

(42) 

and 

(43) 

B, 

ß, = Bt + ABІ 

B7 

AB^ = ABi 

where b is a small scalar perturbation parameter. From (33) it can be easily shown 
that the approximated variation of the suboptimal performance criterion is 

2b 
(44) 

(45) 

A/, = ------ . 488 = 1-6842A 
7-76 

A/, 
2b 

7-76 
1212 = 4-5564A 

for Bt and B2, respectively. The corresponding value of the matrix Fis 

(46) V = 
í_ 

76 

12 3' 
3 8 

Notice that the suboptimal performance criterion is much more sensitive to variations 
in the matrix B2 than to those in the matrix Bu that is 

(47) AJjAJ2 = 0-3696 

In a similar way we can calculate the sensitivity of the performance criterion 
due to the small parameter variations in the output matrices Ch i = 1,2, 

(48) C, = [ 0 1 ] , C2 = [l 0] 

Notice that in this care 

(49) A / = - 2 tr [V(PBiEi + CjEjRiE,) AC,] 

495 



Define the variations in the output matrices Ct, i = 1, 2, by 

(50) C, = C; + AC; , J = 1, 2 . 

where 

(51) AC; = [c c ] , ( = 1,2 

and c a small scalar perturbation parameter. From (49) it follows that 

(52) A/3 = 2c 

7-76 
224 = -08421c 

2c 

7-76 
936 = -3-5188c (53) A/4 = 

and 

(54) A/3/A/4 = 0-2393 

Therefore, the suboptimal performance criterion is much more sensitive to the 
variations in the matrix C2. In this way a designer has some information regarding 
which parameters most affect the value of the performance criterion. 

Example 2. Five Terminal MTDC System. 

A multitenninal DC system embedded in a conventional AC power system can 
be used as a control for damping inter-area oscillations. The design of the multi-
terminal DC control system involves a large scale, multivariable system with the 
sensors and actuators geographically distributed. Besides its huge size and informa
tion constraints, one of the basic features of this system is the presence of different 
type of perturbations i.e., parameter variations in the actual plant. Thus, one of the 
most basic issues that arises in this class of problems, is the sensitivity analysis 
of the decentralized design. 

A power system example which employ five DC terminals to damp out inter-area 
oscillations due to the AC power system dynamics is used to illustrate the theory 
developed in the previous sections. A physical interpretation of the dynamics asso
ciated with this system is given in [29, 35]. An one-line diagram of this system is 
shown in Figure 1. The dimensions of the matrices A and Bh i = 1, 2, 3, 4 are 9 x 9 , 
9 x 1 , 9 x 1 , 9 x 1 , 9 x 1 , respectively (see Appendix II). 

As known, the angle of an area cannot be measured easily, thus only the frequency 
information is available to the controllers. Therefore, we consider the following 
information pattern: feedback using local frequency and frequency of the terminal 1. 
This decentralized information pattern corresponds to 

"10000000 0" 
001 0 0 0 0 0 0 

(55) C. = 

(56) C2 = 

496 

"10000000 0" 
0 0 0 0 1 0 0 0 0 



(57) 

(58) 

C3 = 

c 4 = 

"100000000 
0 0 0 0 0 0 1 0 0 
1 o o o o o o o o' 
0 0 0 0 0 0 0 0 1 

For decentralized output feedback design the two approaches proposed in Section 2 
have been used. Based on the modal-decomposition concept, the state weighting 
matrix Q was selected to penalize the complex modes associated with inter-area 

LECBNO 

Q GENERATOR 

* LOAD 

£ CONVERTER 

AC TRANSMISSION LINE 

DC TRANSMISSION LINE 

Fig. 1. A power system with 5 dc terminals and 5 ac nodes, each representing an area or a group 
of coherent generators. 

oscillations and the control penalty matrix R is selected as an identity matrix weighted 
by a scalar [35]. 

First, we shall examine the variations in the system matrix A. Define the actual 
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value of this matrix as 

(59) A + ÅA 

As mentioned, by calculation the gradient matrices we avoid numerous computa
tions for each parameter of the system. Therefore, although the matrix A has 81 
elements we can easily search for information regarding which element variations 
most affect the suboptimal performance criterion. The sensitivity of the suboptimal 
performance index due to small variations in some elements of the matrix A is given 
in Table 1. 

Table 1. Sensitivity o f / due to variations in some elements of the matrix A. 

Element 
Methoc 

-0-31484 . 

A/ 

Methoc 

-0-31484 . 

1 1 

105 

Method 2 Method 3 

Л{\, 1) 

Methoc 

-0-31484. 

1 1 

105 0-11026 106 -0-10365 106 

Л (2, 1) -0-50834. 10~ 6 0-47236 10~ б -0-45014 1 0 " 6 

Л{4, 1) -0-24823 . 1 0 " 6 -0-22904 1 0 " 6 -0-22741 1 0 " 6 

Л{6, 1) 0-15020. 10~б 0-14902 ! 0 ~ 6 0-14376 1 0 " 6 

A(8, 1) -0-19758 . Ю " 6 0-17498 1 0 " 6 -0-17157 1 0 " 6 

Л{Ъ, 3) -0-61047. ! 0 4 - 0-66877 І0 4 -0-62678 104 

A (4, 4) 0-89587 . ! 0 8 -0-30516 ю8 0-25742 ю8 

A (8, 9) -0-20175 . ì o - ' 0-1710! Ю~7 0-18942 1 0 " 7 

A (9, 9) -0-12279. ю5 -0-10812 ю5 -0-10490. ! 0 5 

The results indicate that the suboptimal performance criterion is far more sensitive 
to the variations in the elements A(\, 1), A(3, 3), A(4, 4) and A(9, 9) than in the other 
elements. 

In a similar way, we can calculate the effect of the variations in the system actuator 
matrices Bh i = 1, 2, 3, 4, and the output matrices Ch i = 1, 2, 3, 4. Table 2 and 
Table 3 give the sensitivity of the suboptimal performance index due to small perturba
tions in the matrices 2?, and Ch i = 1, 2, 3, 4. 

Therefore, the calculation of the gradient matrices allows us to easily provide 
information regarding which elements of the matrices A, Bt and C ; most affect the 
suboptimal performance criterion. 

Table 2. Sensitivity of / due to variations in Bh i = 1, 2, 3, 4, ABt = 0-02fi;, i = 1, 2, 3, 4. 

Matrix 
A/ 

Method Method 2 Method 3 

я, 0-573787 . 106 0-65711! . 106 
0-683157. 10° 

в2 
-0-825454. 10б -0-1141077. 107 -0-114413 . 107 

в, -0-101736. Ю5 0-1416788. 105 0-176724. 10D 

в4 
0-239774 . 102 0-665754 . 105 0-735508 . 105 

498 



Table 3. Sensitivity of / due to variations in C,, i = 1, 2, 3, 4, AC,- = 0-01C, i = 1, 2, 3, 4. 

Matrix AУ 

Method 1 Method 2 Method 3 

c, 
C, (1, 1) 
C, (2, 3) 

-0-23736. 107 

-0-13229. 108 

-0-66018. 107 

-0-13027. 108 

-0-69789. 107 

-0-14000. 108 

c2 

C 2 ( l , l ) 
C 2 (2, 5) 

0-98375 . ! 0 7 

0-97476. 107 

0-10967. 108 

0-10907. 108 

0-11422. 108 

0-11356. 108 

Cз 
C 3 ( l , 1) 
C 3 (2, 7) 

-0-50508 . 104 

-0-50508 . 104 

0-22925 . 103 

0-22925 . 103 

0-40771 . 103 

0-40771 . I0 3 

c4 

C 4 ( l , 1) 
C 4 (2, 9) 

0-63631 . 103 

0-63631 . 103 

-0-58052. 103 

0-58052. 103 

-0-33816. ІO3 

-0-33816. 103 

5. CONCLUSIONS 

A computationally efficient method for suboptimal performance criterion sen
sitivity in large-scale decentralized control systems has been proposed. The suggested 
approach is not crucially dependent on any particular method for decentralized 
control systems design. The problem of selecting the fixed dimensional outputs 
which lead to the best decentralized feedback also been considered. The sensitivity 
results were illustrated through two numerical examples. 

APPENDIX I 

First Approach 

When there are some states which are not feedback into the control system, it is 
impossible to obtain the optimal feedback control which agrees with the optimal 
one for state feedback system. Then the trajectory of the decentralized feedback 
system becomes different from that of the state feedback one. Thus, the objective 
is to determine the control law (3) so that the system (l) and (5) are "near" each other. 
There are a variety of quantities one can choose to minimize in such a case. Two 
obvious possibilities are: 

Method 1: 

(60) min \\BÍ(EÍCÍ — Ft) 

where Ft is the row of matrix F which is the optimal state feedback gain minimizing 
(4). In this case 
(61) Ei = FiCj(dCj)-' 

Method 2: 

(62) min X *T(t) (EtCi - ғy RІEfi, - Ft) x(t) dt 
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In this case 

(63) Ei-FiVCj^Cj)-' 

where Visa solution of the Lyapunov matrix equation 

(64) V(A + BFf + (A + BF)V + I = 0 

Second Approach 

(65) Ei= -R;xBiKVCj(CiCj)-' 

where matrices K and V are the solutions of 
A: k k 

(66) (A + £ BfiiCf K+K(A + Y Bfi.C) + £ CjEjRfiiC! + Q = 0 
i = 1 i = 1 i = l 

(67) (^ + £ BfiiQ V + V(A + Y BfiiC.Y + 1=0 
i = l ; = i 

APPENDIX II 

A 

-0-1892D+ 00 
-0-3770D+ 03 
0 - 8 2 5 3 D - 11 

-0-3770D+ 03 
0-9585D 

-0-3770D 
-0-1048D 
-0-3770D 
0-1078D 

14 
03 
11 
03 
10 

0-2090D - 02 
0-0000D + 00 
0-7056D - 02 
0-0000D 
0-3682D 
0-000OD 

-0-2419D 
0-0000D 
0-3994D 

00 
02 
00 
01 
00 
02 

C-5864D - 02 
0-0000D + 00 

- 0 - 3 3 7 6 D - 01 
0-0000D + 00 
0-4958D - 02 
0-0000D + 00 
0-8276D - 02 
0-0000D + 00 
0-3652D — 02 

0-2281D - 10 
0-0000D + 00 
0-2020D - 10 
0-0000D + 00 
0 - 9 1 1 4 D - 11 
0-3770D + 03 

-0-1823D+ 00 
0-0000D + 00 
0-1600D - 10 

B 

0-1199D - 02 
0-0000D + 00 

-0-3516D - 02 
0-OOOOD + 00 

-0-4005D - 03 
0-0000 D + 00 

-0-885ÍD - 03 
0-OOOOD + 00 
0 -3781D- 03 

0-2028D 
0-0000D 
0-2477D 
0-0000D 

-0-1124D 
0-0000D 
0-2233D - 04 
0-0000D + 00 
0-9191D - 03 

02 
00 
03 
00 
02 
00 

0 - 2 1 3 6 D - 10 
0-3770D + 03 

-0-1892D+ 00 
0-0000D + 00 
0 - 8 5 9 1 D - 11 
0-0000D + 00 
0-7498D - 11 
0-0000D + 00 
0 - 1 4 9 8 D - 10 

0-6905D - 02 
0-0000D + 00 
0-2783D - 02 
0-0000D + 00 
0-9376D - 03 
0-0000D + 00 
0-3313D - 02 
0-0C00D + 00 

-0-3349D - 01 

0 -1471D- 02 
0-0000D + 00 

- 0 - 9 8 9 8 D - 03 
0-0000D + 00 

-0-3533D — 03 
0-0000D + 00 

-0-4752D - 02 
0-0000D + 00 

-0-3256D - 04 

0 - 2 3 1 5 D - 02 
0-0000D + 00 
0-9396D - 02 
0-0000D + 00 

-0-1214D -
0-0000D + 
0-6369D -
0-0000D + 
0 - 1 5 5 0 D -

01 
00 
02 
00 
02 

0-1060D - 10' 
0-0000D + 00 
0-9622D— 11 
0-0000D + 00 
0 -4589D- 11 
0-0000D + 00 
0-4088D - 11 
0-3770D+ 03 

-0-1892D+ 00 

0-6536D - 0 3 " 
0-0000D + 00 
0-1231D - 04 
0-0000D + 00 
0-1286D - 04 
0-0000D + 00 
0-4695D - 03 
0-0000D + 00 
0-5189D - 02_ 

0-1497D - 09 
0-0000D + 00 
0-1309D— 09 
0-3770D+ 03 

-0-1691D+ 00 
0-0000D + 00 
0-5038D - 10 
OOOOOD + 00 
0 - 1 0 5 2 D - 09 

(Received April 23, 1985.) 
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