KYBERNETIKA - VOLUME 22 (1986), NUMBER 5

CHARACTERIZATION OF A DENSITY BY MINIMIZING THE LOGARITHMIC INFORMATION OF DEGREE q

FRANQUIBERTO PESSOA

We define the logarithmic information of degree q of a random variable X, the probability density f of which is given. In a class of probability densities having some particular properties, we look for that one minimizing this information. We first obtain an extension of an inequality of Nagy [3], which gives the expected result in a particular case.

1. INTRODUCTION

We consider the probability space $(\mathcal{R}, \mathcal{B}, P)$ where \mathcal{B} is the Borel σ -algebra of the subsets of \mathcal{R} and P is the probability law of a random variable X which we suppose absolutely continuous with regard to Lebesgue measure. We denote by f the probability density of P with respect to this measure.

In [2] Bouchon and Pessoa have defined the logarithmic information of degree q of a random variable and obtained non-additivity relations linking this information with the classic Fisher information and the mean Fisher's information of degree q. We shall give later the definition of the logarithmic information of degree q and, in a class of densities we will look for that one minimizing this information.

2. FUNDAMENTAL INEQUALITY

Let h(x) be a function defined and continuous on \mathbb{R} . We denote by E(h) the set of points where the function admits a maximum or a minimum. In the case where the function h is differentiable in every point of $\mathbb{R} - E(h)$, E(h) being supposed finite, we prove an inequality concerning the function h and the set E(h). This inequality is actually an extension of an inequality of Nagy (cf. [1] page 167). We first prove the following lemma:

Lemma 1.1. We suppose that the function h is strictly positive, that the set E(h)

403

has a finite number k of elements and that $\int_{-\infty}^{+\infty} h(x) dx < \infty$. Then k is necessarily an odd number.

Proof. We denote by $x_1 < ... < x_k$ the points of E(h). Then x_1 and x_k are necessarily points where the function admits a maximum, since otherwise the integral would not be finite. The function being continuous by hypothesis, the points x_i , i = 1, ..., k are alternatively the points of maximum and minimum respectively. We can conclude that k is necessarily an odd number.

Theorem 1.2. We suppose that h(x) > 0 for every $x \in \mathbb{R}$ and that $E(h) = \{x_1, ..., x_k\} \subset \mathbb{R}$, where k is a positive integer. If the function h is differentiable on $\mathbb{R} - E(h)$ and if the integrals

$$\int_{-\infty}^{+\infty} h(x)^q \, \mathrm{d}x \quad \text{and} \quad \int_{-\infty}^{+\infty} |h'(x)|^p \, \mathrm{d}x$$

exist for q > 0 and $p \ge 1$, then

(1)
$$\left(\int_{-\infty}^{+\infty} h(x)^q \, \mathrm{d}x\right)^{(p-1)/p} \left(\int_{-\infty}^{+\infty} |h'(x)|^p \, \mathrm{d}x\right)^{1/p} \ge \frac{2}{r} \sum_{i=1}^k (-1)^{i+1} h(x_i)^r$$

where r = (p - 1) q/p + 1, the equality holding if and only if h^{q} and $|h'|^{p}$ are positively proportional almost everywhere.

Proof. From Holder's inequality we have

(2)
$$\int_{-\infty}^{+\infty} h(x)^{(p-1)q/p} |h'(x)| dx \le \left(\int_{-\infty}^{+\infty} h(x)^q dx\right)^{(p-1)/p} \left(\int_{-\infty}^{+\infty} |h'(x)|^p dx\right)^{1/p}$$

We denote

(3)
$$J(h, p, q) = \int_{-\infty}^{+\infty} h(x)^{(p-1)q/p} |h'(x)| dx$$

and suppose that $x_1 < ... < x_k$. Then, taking into account the sign of derivative h' in each of the considered intervals, we have

$$J(h, p, q) = \int_{-\infty}^{x_1} h(x)^{(p-1)q/p} h'(x) dx + \sum_{i=1}^{k-1} (-1)^i \int_{x_i}^{x_{i+1}} h(x)^{(p-1)q/p} h'(x) dx + \int_{x_k}^{+\infty} h(x)^{(p-1)q/p} h'(x) dx = \frac{p}{(p-1)q + p} \left\{ \left[h(x)^{1+(p-1)q/p} \right]_{-\infty}^{x_1} + \sum_{i=1}^{k-1} (-1)^i \left[h(x)^{1+(p-1)q/p} \right]_{x_i}^{x_{i+1}} + \left[h(x)^{1+(p-1)q/p} \right]_{x_k}^{x_k} \right\} = \frac{p}{(p-1)q + p} \left\{ h(x_1)^{1+(p-1)q/p} + \sum_{i=1}^{k} (-1)^i \left[h(x_{i+1})^{1+(p-1)q/p} - h(x_i)^{1+(p-1)q/p} \right] \right\} = \frac{2p}{(p-1)q + p} \sum_{i=1}^{k} (-1)^{i+1} h(x_i)^{1+(p-1)q/p}$$

404

(4) $J(h, p, q) = \frac{2}{r} \sum_{i=1}^{k} (-1)^{i+1} h(x_i)^r$

where

$$r = \frac{(p-1)q}{p} + 1$$

If we replace (4) in (2) and (3) we obtain the expected result. The case where the equality holds is an immediate consequence of Holder's inequality. \Box

In the sequel we study the particular case where $p = q, q \ge 1$. In this case we have

(5)
$$\left(\int_{-\infty}^{+\infty} h(x)^q \, \mathrm{d}x\right)^{(q-1)/q} \left(\int_{-\infty}^{+\infty} |h'(x)|^q \, \mathrm{d}x\right)^{1/q} \ge \frac{2}{q} \sum_{i=1}^k (-1)^{i+1} h(x_i)^q$$

the equality holding in (5) if and only if

$$|h'(x)| = c h(x)$$

almost everywhere on \mathbb{R} , where c is a positive constant. Then, we have a.e.

(6)
$$h'(x) = c h(x) \text{ if } x \in]-\infty, x_1 \left[\bigcup \left(\bigcup_{n=1}^{(k-1)/2} [x_{2n}, x_{2n+1}] \right) \right. \\ h'(x) = -c h(x) \text{ if } x \in \left(\bigcup_{n=1}^{(k-1)/2} [x_{2n-1}, x_{2n}] \right) \bigcup [x_k, +\infty] \right]$$

By solving these equations and denoting by I_A the characteristic function of a set $A \subset \mathbb{R}$, we obtain (t-1)/2

(7)
$$h(x) = (\alpha 1_{1-\infty,x_1[}(x) + \sum_{n=1}^{(k-1)/2} \beta_n 1_{[x_{2n},x_{2n+1[}(x)])} e^{cx} + (\sum_{n=1}^{(k-1)/2} \gamma_n 1_{[x_{2n-1},x_{2n[}(x)]} + \delta 1_{[x_{k},+\infty[}(x)) e^{-cx}$$

where α , β_n , γ_n and δ are arbitrary constants linked together by the following relation, which is a consequence of the continuity of *h*:

$$\gamma_{1} = \alpha e^{2cx_{1}} = \beta_{1} e^{2cx_{2}}$$
$$\gamma_{n} = \beta_{n} e^{2cx_{2n}} = \beta_{n-1} e^{2cx_{2n-1}} \quad 2 \leq n \leq (k-1)/2$$
$$\delta = \beta_{(k-1)/2} e^{2cx_{k}}$$

 $\alpha = \beta_1 e^{2c(x_2 - x_1)}$

Therefore

(9)

$$\beta_{n-1} = \beta_n e^{2c(x_{2n} - x_{2n-1})} \quad 2 \le n \le (k-1)/2$$
$$\beta_{(k-1)/2} = \delta e^{-2cx_k}$$

405

Then

From this recurrent relation we get

(10)
$$\alpha = \delta \exp\left(2c\sum_{i=1}^{k} (-1)^{i} x_{i}\right)$$
$$\beta_{n} = \delta \exp\left(2c\sum_{i=2n+1}^{k} (-1)^{i} x_{i}\right), \quad n = 1, ..., (k-1)/2$$

if we substitute (10) in relation (8) we have

(11)
$$\gamma_n = \delta \exp\left(2c \sum_{i=2n}^k (-1)^i x_i\right), \quad n = 1, ..., (k-1)/2$$

and by replacing (10) and (11) in (7) we obtain

(12)
$$h(x) = \delta(\exp\left(2c\sum_{i=1}^{k} (-1)^{i} x_{i}\right) \mathbf{1}_{1-\infty,x_{1}\mathbb{I}}(x) + \sum_{n=1}^{(k-1)/2} \exp\left(2c\sum_{i=2n+1}^{k} (-1)^{i} x_{i}\right).$$
$$\mathbf{1}_{[x_{2n},x_{2n+1}\mathbb{I}]}(x) e^{cx} + \delta\left(\sum_{n=1}^{(k-1)/2} \exp\left(2c\sum_{i=2n}^{k} (-1)^{i} x_{i}\right) \mathbf{1}_{[x_{2n-1},x_{2n}\mathbb{I}]}(x) + \mathbf{1}_{[x_{k},+\infty\mathbb{I}]}(x)\right) e^{-cx}$$

Thus, in the case where p = q we get the functions h satisfying the equality in (1).

3. MINIMIZATION OF THE LOGARITHMIC INFORMATION OF DEGREE \boldsymbol{q}

In this part we define the logarithmic information of degree q of a random variable, the probability law of which is absolutely continuous with respect to Lebesgue's measure.

By using the result obtained in the previous part we get a density minimizing this information in a class of densities having a given mode.

Definition 1.3. Let q be a real number, q > 1. The logarithmic information of degree q of a random variable X with a probability density f(x) is defined by

(13)
$$H^{q}(f) = \int_{-\infty}^{+\infty} \left| \frac{\mathrm{d}\log f(x)}{\mathrm{d}x} \right|^{q} f(x) \,\mathrm{d}x$$

We suppose that the set E(f) of points where the density admits a maximum or a minimum is finite, and we note

$$E(f) = \{a_1, ..., a_k\}, k \in \mathbb{N}^*$$

We further suppose that f is positive and continuous for every $x \in \mathbb{R}$ and that it is differentiable on $\mathbb{R} - E(f)$.

We note, for every $x \in \mathbb{R}$, (14)

$$h(x) = q f(x)^{1/q}$$

From inequality (5) we obtain

(15)
$$\int_{-\infty}^{+\infty} \left| \frac{d \log f(x)}{dx} \right|^q f(x) \, dx \ge 2^q (\sum_{i=1}^k (-1)^{i+1} f(x_i)^q)$$

the equality holding, from (12), if and only if

(16)
$$f(x) = \left(\frac{\delta}{q}\right)^{q} \{ \left[\exp\left(2qc\sum_{i=1}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{1-\infty,a_{1}}\left[x\right] + \sum_{n=1}^{(k-1)/2} \exp\left(2qc\sum_{i=2n+1}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{\left[a_{2n},a_{2n+1}\right]}(x) \right] e^{qcx} + \left[\sum_{n=1}^{(k-1)/2} \exp\left(2qc\sum_{i=2n}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{\left[a_{2n-1},a_{2n}\right]}(x) + \mathbf{1}_{\left[a_{k},+\infty\right]}(x) \right] e^{-qcx} \}$$

where δ and c are arbitrary positive constants.

Since $\int_{-\infty}^{+\infty} f(x) dx = 1$, we get

$$\left(\frac{\delta}{q}\right)^{q} = \frac{qc}{2\sum_{i=1}^{k} (-1)^{i+1} \exp\left((-1)^{i+1} qca_{i}\right) \cdot \exp\left(2qc\sum_{j=i}^{k} (-1)^{j} a_{j}\right)}$$

Writing $qc = \lambda$ the equality holds in (15) if and only if

(17)
$$f(x) = \frac{\lambda}{A} \{ [\exp\left(2\lambda \sum_{i=1}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{1-\infty,a_{1}\mathbf{I}}(x) + \sum_{n=1}^{(k-1)/2} \exp\left(2\lambda \sum_{i=2n+1}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{[a_{2n},a_{2n+1}\mathbf{I}}(x)] e^{\lambda x} + \left[\sum_{n=1}^{(k-1)/2} \exp\left(2\lambda \sum_{i=2n}^{k} (-1)^{i} a_{i}\right) \mathbf{1}_{[a_{2n-1},a_{2n}\mathbf{I}}(x) + \mathbf{1}_{[a_{k},+\infty\mathbf{I}}(x)] e^{-\lambda x} \right] \right]$$

where λ is a positive constant and

(18)
$$A = \frac{1}{2\sum_{i=1}^{k} (-1)^{i+1} \exp\left((-1)^{i+1} \lambda a_i + 2\lambda \sum_{j=i}^{k} (-1)^{i+1} \lambda a_j + 2\lambda \sum_{j=i}^{$$

Let k be an odd number, $a_1 < \ldots < a_k$ real numbers and $\alpha_1, \ldots, \alpha_k$ positive real numbers such that, for every i = 1, ..., (k - 1)/2, $\alpha_{2i} < \min(\alpha_{2i-1}, \alpha_{2i+1})$. We denote by $\mathscr{F}\{a_1, \ldots, a_k, \alpha_1, \ldots, \alpha_k\}$ the set of probability densities such that, if f belongs to this set, then f is positive and continuous on \mathbb{R} differentiable on $\mathbb{R} - E(f)$, with $E(f) = \{a_1, ..., a_k\}$ and $f(a_i) = \alpha_i$ for every i = 1, ..., k.

We have the following result:

Theorem 1.3. Let k be an odd number, $a_1 < ... < a_k$ real numbers and $\alpha_1, ..., \alpha_k$ positive real numbers such that, for every $i = 1, ..., (k - 1)/2, \alpha_{2i} < \min(\alpha_{2i-1}, \alpha_{2i})$ α_{2i+1}). In the set $\mathscr{F}\{a_1, \ldots, a_k, \alpha_1, \ldots, \alpha_k\}$, the probability density given by formulas (17) and (18) by taking $\lambda = 2 \sum_{i=1}^{k} (-1)^{i+1} \alpha_i$, minimizes the logarithmic information of degree q.

Proof. From the previous results we have only to prove that $\lambda = 2 \sum_{i=1}^{k} (-1)^{i+1} \alpha_i$.

 a_i

The density f being continuous, it is easy to see that, for every i = 1, ..., k,

$$\alpha_i = \frac{\lambda}{A} \exp\left((-1)^{i+1} \lambda a_i + 2\lambda \sum_{j=i}^k (-1)^j a_j\right)$$

Therefore, from the value of A given by (18), we get

$$\lambda = \sum_{i=1}^{k} (-1)^{i+1} \alpha_i.$$

Particularly we have

Corollary 3.1. In the class of unimodal positive and continuous densities having a given mode *m*, differentiable in every point $x \neq m$, and the value of which equals α at the point *m*, the density

$$f(x) = \alpha \exp\left(-2\alpha |x - m|\right)$$

minimizes the logarithmic information of degree q.

REFERENCES

(Received March 26, 1985.)

- E. F. Beckenbach and R. Bellman: Inequalities. Second revised printing. (Ergebnisse der Mathematik und ihrer Grenzgebiete – New Folge Band 30.) Springer-Verlag, Berlin-Heidelberg- New York 1965.
- [2] B. Bouchon and F. Pessoa: Logarithmic information of degree q linked with an extension of Fisher's information. Kybernetika 21 (1985), 4, 346-359.
- [3] B. Nagy: Über Integralgleichungen zwischen einer Funktion und ihrer Ableitungen. Acta Sci. Math. Szeged 10 (1941), 64-74.

Dr. Franquiberto Pessoa, Departamento de Estatística e Matemática Aplicada da Universidade Federal do Ceará, Campus do Pici, C.P. 3013, 60.000 Fortaleza-Ceará. Brasil.