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NUMERICALLY STABLE ALGORITHM FOR POLE 
ASSIGNMENT OF LINEAR SINGLE-INPUT SYSTEMS 

PĚTKO HR. PETKOV, NIKOLAID. CHRISTOV, MIHAIL M. KONSTATINOV 

An efficient computational algorithm for pole assignment of linear single-input systems is 
presented. It is based on orthogonal reduction of the closed-loop system matrix to upper (quasi) 
triangular form whose 1 X 1 or 2 X 2 diagonal blocks correspond to the desired poles. A detailed 
numerical analysis of the algorithm is made which shows that it is unconditionally stable. The 
number of computational operations is approximately 6n3, the necessary array storage being 
2n2 + 6n working precision words, where n is the order of the system. 

1. INTRODUCTION 

In recent years great attention has been paid to the development of reliable and 
efficient numerical methods for analysis and design of linear control systems. How
ever one of the important problems of the synthesis of linear systems — the pole 
assignment problem is not solved yet satisfactorily from computational point of view 
[1]. Most of the existing methods for pole assignment are numerically unstable 
and computationally expensive. For example, the methods based on reduction of the 
system into phase-variable or Luenberger canonical form are unstable since the 
Frobenius form of a matrix can not be obtained by stable similarity transformations 
[2]. The methods using the characteristic polynomial of the open-loop system are 
also unsatisfactory due to the absence of a reliable method for finding the character
istic polynomial of a matrix. From similar disadvantages are suffering the methods, 
based on reduction to Jordan canonical form. 

Recently three efficient numerical methods for pole assignment have been proposed 
in [3], [4] and [5]. These methods exploit the (quasi) triangular (Schur) form of the 
closed-loop system matrix, which is preferable from computational point of view 
since it may be obtained by orthogonal transformations only. Unfortunately it is 
not know under which conditions these methods are numerically stable and that is 
why the problem is still far from its final solution. 

In this paper a new efficient computational algorithm for pole assignment of 
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linear single-input systems is presented (a brief version of the algorithm was given 
in [6]). It is based also on orthogonal reduction of the closed-loop system matrix 
to upper (quasi) triangular form whose 1 x 1 or 2 x 2 diagonal blocks correspond 
to the desired poles. The main feature of this algorithm is that it is unconditionally 
stable which makes it applicable to ill-conditioned and high order problems. The 
numerical stability is considered in the sense that the upper (quasi) triangular form 
obtained has the desired eigenvalues on its diagonal, and it is the exact (quasi) 
triangular form of a matrix which is close to the closed-loop system matrix. This 
quarantees that the gain matrix obtained is true for a problem near to the given one. 
Note however that this does not ensure small errors in the computed gain matrix 
and closeness of the eigenvalues of the closed-loop system matrix to the desired 
poles. The errors in the gain matrix obtained depend on the conditioning of the pole 
assignment problem which is not well studied and is still an open question [3]. 

The paper is organized in the following way. This section is concluded with some 
notations used throughout the paper. A brief statement of the problem is given in 
Section 2. Section 3 contains the main result — the determination of the gain matrix 
by orthogonal reduction of the closed-loop system matrix into (quasi) triangular 
form. The numerical properties of the algorithm are considered in Section 4. An 
example is given in Section 5 and some conclusions are made in Section 6. 

Notations will be as follows. We use upper case for matrices and lower case for 
vectors and scalars. ff"Xm is the space of n x m real matrices (ff"xl = R"), AT is 
the transposed matrix A, 0(n) cz W"x" is the group of orthogonal matrices, | ' | | 
denotes the Euclidean norm of a vector or a matrix. 

2. PROBLEM STATEMENT 

Consider the completely controllable time-invariant single-input linear system 

(1) *(*) = Ax(t) + bu(t) , 

where x(t) e R", u(t) e R1 and A e Rn x", b e ST. The system (1) will be identified with the 
matrix pair (A, b) e LS(n), where LS(n) <= R"x" x R" is the set of matrix pairs 
(A, b) with A cyclic and b a generator for R" relative to A. 

It is necessary to find a gain matrix ke Rlx" such that the control law u(t) = — kx(t) 
preassigns the spectrum spect (Ac) of the closed-loop system matrix Ac = A — bk: 
spect (Ac) = s, where s = (sit..., s„) is a given set of n pair-wise complex conjugate 
numbers. 

It is well known that for each s there exists a solution to the pole assignment 
problem iff the system is completely controllable [7]. In the case of a single-input 
system this solution is unique. 

In every algorithm for pole assignment the gain matrix k is obtained as a solution 
of a system of linear algebraic equations. The construction of this system depends 
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on the method used and may in turn deteriorate the solution. The algorithm described 
in the following section avoids the difficulties related to the solution of the pole 
assignment problem due to the construction and solving the equations for the ele
ments of the gain matrix. 

A preliminary step of the algorithm proposed is the reduction of the pair (A, b) 
to the orthogonal canonical form (A, B) = (PrAP, PTb), P e 0[n), where 

A = 

\bu 

b = 

In view of the complete controllability of (A,b) we have bl0 =t= 0, ai;-y +- 0, 
i = 2,...,n. 

Algorithms for obtaining the form (A, b) based on singular value decomposition 
have been proposed in [8] — [10], This form may be obtained efficiently using n — 1 
Householder reflections [11], [12] similarly to the reduction of a general matrix 
to its Hessenberg form [2]. The corresponding algorithm is numerically stable: 
it can be shown that the computed orthogonal canonical form (A, b) is exact for 
a pair (A + 8A, b + db) which is close to (A, b) — 

(2) \\3A\\ ^ eps(6ra2 + const. «) | A | , 

\\db\\ = eps(6n + const) ||b|| , 

where eps is the relative machine precision of the computer used. 
The number of the floating point operations (FLOPS) for this algorithm is ap

proximately 5rc3/3 (1 FLOP « 1 addition + 1 multiplication), the necessary array 
storage being In1 + 2n working precision words. 

3. DETERMINATION OF THE GAIN MATRIX 

The pole assignment algorithm presented in this section is based on the following 
idea. Since the open-loop and closed-loop system matrices A and Ac are in Hessen
berg form and differ only in their first rows it is possible, by setting a desired pole, 
to find an eigenvector of the matrix Ac before computing k. Using sequences of plane 
rotations, belonging to the group of orthogonal transformations, all but the first 
elements of the eigenvector may be annihilated. Then by necessity the first column 
of the transformed matrix Ac will have zero elements below the first one which 
must be equal to the desired eigenvalue. This gives an equation for the first element 
of the transformed gain matrix. The key observation here is that after the transforma
tion the matrices A and Ac remain in Hessenberg form which permits to work by 
the same way at the next step. At each step the algorithm works with a subsystem 
of decreasing order and the plane rotations are determined by the subsystem eigen-
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vector. Since the subsystem matrices are in Hessenberg form their eigenvectors may 

be computed by solving triangular systems of linear equations. 

Let the pair (A, b) is preliminary reduced to the orthogonal canonical form (A, b) 

and let the set of desired poles be 

s = (sj, ..., sr, pi + iq i ,pi - iqu...,pm - iqm) ; i 2 = - 1 , 

m = (n — r)j2. 

The n elements of the gain matrix k can be computed by the following algorithm. 

Step 1. The eigenvector of Ac corresponding to sx is vt = Pvt, where 

(3) Acvt = i; 1S1 , 

Ac = A-bk, k = kP. 

The matrices A, A"c are in Hessenberg form with non-zero subdiagonal elements, 

and differ only in their first rows. That is why the eigenvector v1 may be determined 

from 

(4) Tvt = vlSl - /.< , 

where 

(5) Si = [»u.»ai,...,^i]T-R1-]-[~-]; Si.Sieff-1 

and the matrix A is partitioned as 

" x x 
A = 

J i jlti 

with Tt e jfj(»-i)x("-i) being a non-singular upper triangular matrix ( [ x ] denotes 

non-referenced elements). Note that in view of the inequalities „ M _ t 4= 0, i = 2,..., n 

the element vnl must be non-zero and hence is chosen equal to 1 in (5). 

The linear triangular system of equations (4) may be solved by back substitution. 

However the elements of the eigenvector may be computed simultaneously with 

the transformation of this eigenvector exploiting the fact that some of the previous 

elements are already annihilated. This reduces the number of the computational 

operations and improves the accuracy of the eigenvector. That is why the following 

strategy is proposed. 

Step 1.1: Compute the eigenvector elements vn_11 and (if n > 2) t>„_2,i from 

» . - - U " ( » l - - - l ) » . l / - M - l . 

---2.1 = ((si - fl.-l,«-lK-l,l - -«-l.-»-l)/-.-M-_. 

where a(J are the corresponding elements of A". 

Construct a plane rotation 

«.- diag (,._,.[4ЭД.0M 
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in the (n — 1, w)-plane such that R1v1 = v\, where 

v\ = [ x , . . . s x , . . _ 2 > 1 ) .„__,_, 0 ] T . 

The numbers c_ and __ are determined by Cj = .)„__ _/_, „_ = - n l /z , where 

Z = (*>„-!,! +V2
ai)

112, C2 + _ 2 = l , &„__,, = Z . 

Since ynl = 1 this implies v„_lA S_ 1. It follows from (3) 

(6) RjAcR
Ti)l = ._s_. 

The form of the matrices R_A"RT and RxAcRl is illustrated by the following 4th 
order example 

X X X X 

X X X X 

0 X X X 

0 X X X 

If n > 2 this transformation does not affect the vector 5. 

Step 1.2: If n > 3 compute the eigenvector element y„_3>1 from 

»»-3.I = ((Sl - flB-2,„-a) y »-2, l - «» -2 ,» - l B„-1 ,1)/fl„-2,„-3 , 

where a;j are the ij elements of £1._CRT and hence of R^ARj. 
Construct a plane rotation R2 e O(n) in (n — 2, n — l)-plane which annihilates 

the (n - 1) element of v\, i.e. R2v\ = v\, 

v\ = [ x , . . . , x , » , _ 3 , l f .„__,_, 0, 0 ] T . 

Since BB_l,1 > 1 and the norm of [yn-2tl, vn^1AY is preserved, it follows that 

-2,1 -? . „ _ , , > ! . From 

(7) R.RiA.RlR^2 = .2s_ . 

Returning to the 4th order example it may be observed that matrices R2R1ACR]R1^ 
and R2R1AR]RT

2 have the form 

x x x x 

0 ® x x 

Now it is easily verified that the (n, n — 2) — (encircled) elements of the above 
matrices must be zero. In fact the last equation in (7) yields a„,,,-2^1-2,1 = 0, where 
a„„_2 is the (n, n — 2)-element of R2R±AZR\RT

2, and since t>„_2>1 # 0 this implies 
an,n-i = 0 . The (n, n — 2) — element of R2R1A

WRTRT also must be zero because it 
is not affected by the gain matrix. 

Step 1.3: Using similar technique to annihilate the (n — 2)-element of v\ 
one obtains the matrices R3R2R1ACRTRIR3 and R3R2R1ARTR2R3 whose (n - 1, 
n — 3)-elements are zero. For the example of 4th order this means that after Step 1.3 
the matrix R^^^RjRlRl is again in Hessenberg form. 
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Step 1. (« — 1): As a result of computations similar to those in 1.1, ..., 1 . (« - 2) 
one obtains the equation 

(8) Q R S i f i " 1 = » i _ 1 s i 

where Qt = R\R\ ... RT_t, v\~l = [£, , , 0, ..., 0]T, 0 U S 1. The matrix Q\AQX 

may be represented as 

~a , 

QUQi = 

x x . . . x 

J(2, 

where A(2) e ff(" 1 ) x (" 1} is in Hessenberg form. 

At this step the matrix 5 is reduced to 

~B 
b 
0 Qìь~ = 

Һ: 
Џ2i 

With regard to (8) the transformed closed-loop system matrix is to be in the form 

(9) eRd = sИ-
where A(2) e ff("_1)X("_1) is a Hessenberg matrix. Since the closed-loop system is 

also completely controllable it follows that the element b2 must be non-zero. Thus 

the matrices A~(2) and A"c

2) differ in their first rows only. 

The relation (9) yields 

(10) S.fc, = an - s l s 

(11) S2ki - «21 . 

where fct is the first element of the row vector /cQi- The equations (10) and (11) are 
algebraically consistent but in some cases (10) may be a zero identity. That is why 
it is reasonable to determine kt from 

fci = (flu - sO/fi, , if |S, | ^ \b2\ , 

l<i = "21/^2 , if \bi\ < \B2\ • 

In this way as a result of Step 1 one element of the transformed gain matrix is 
obtained and the problem is reduced to a problem of dimension n — 1. Since the 
matrices A(2) and A(2) of the (n - l)-order subsystem are in Hessenberg form it is 
possible to proceed further in the same way. 

Steps 2, ..., r. The next r — 1 elements of the gain matrix are determined. Every 
eigenvector is obtained as a solution of a three-diagonal system of linear equations 
and the number of necessary plane rotations decreases with 1 at each step. Note that 
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the column transformations are to be performed on the whole n x n matrix.However 
they do not affect the elements of the gain matrix already computed. 

Denoting the transformations at Steps 2, ..... r with Q2,..., QTe 0(n) one obtains 
the matrices 

о ^ . . . о т 2 д 1 . . . о г = 

0 
X jJV+D 

<£•••& = [x, . . - , x ,£ r + 1 ,o , . . . ,o ] T , 

where A(r+1> e ft0--1x("->-) j s a Hessenberg matrix. 

The closed-loop system matrix has the form 

x . . . 

QT
r-..Q

T
1AcQi...Qr== 

s2 i x 

and A(r+1)
 e,fj("- r»x("-'-I i s a i s o a Hessenberg matrix. In view of the complete 

controllability of the system the subdiagonal elements of the matrices A(r+1), A(r+1) 

and the element br+, must be non-zero. 

It is clear that using complex plane rotations the above technique may also be 
applied to determine the elements of the gain matrix in the case of complex conjugate 
poles. However it is possible to solve the problem with slightly complicated technique 
using real arithmetic only. As a result the transformed closed-loop system matrix 
will have 2 x 2 blocks on its diagonal. This technique is described in the following 
double step. 

Steps (r + 1), (r + 2). The computation of the real x. and the imaginary yx 

parts of the complex eigenvectors Xj + iyu x. - iyt of the matrix A(r+1), corre
sponding to the poles p, + iqu pt — iqu may be performed by the equations 

(12) rr+1[xj | h] = P i | li] st - [K+l i hr+1], 
where 

«.-tw,.,.j--^]-ri 
Уi 

(13) 

-ь-.-̂ -И-Ш1 

s«-[-î,î] 
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and the matrix A>+D j s partitioned as 

Av+i) _ [*__*_._.•__.._• __] 
i~Tr~;~ ] i ~ j 

with Tr+1 e B ( " ~ r " 1 i , ! ( " - ' - 1 ' being non-singular upper triangular matrix. 

The examination of equation (12) shows that in the case of small imaginary parts 
of the poles the vectors xt and yv will tend to be linearly dependent which will 
deteriorate the solution. For this reason equation (12) must be modified by taking 

(14) 
L~đî PiJ 

instead of (13). The matrices (13) and (14) have the same eigenvalues; however 
using (14) the vectors xx and yr will be linearly independent even if qt = 0. In this 
case ) \ will be determined as a generalized eigenvector. This simple device permits 
to avoid difficulties when the complex conjugate poles are close to the real axis. 

Now two elements of the transformed gain matrix may be determined simultane
ously applying plane rotation to annihilate appropriate elements of x1 and yt. 

Similarly to the real case the element of the eigenvector may be computed simultane
ously with the annihilation of previous elements thus reducing the number of the 
necessary operations. 

Step (r + 1). 1: Compute the elements x „ _ 1 1 , y„_ L A a n d (if n > 2) x „ _ 2 1 , 

}'n-2A frorn 

*„-i, i = ((Pi - «„„) x„j - fliJ'„i)/a„,„-i, 

y'n-1,1 = (*«1 + (Pi - fl„„)>'„l)/fl„,„-l » 

*«-2,l = ((Pi ~ fl„~l,„-l)*„-l,l - On-l,nXn\ - ih'n-l,i)/fl„-l.»-2 , 

y.-2.. = ( x»-i,i + (PI - <*«-i,«-i)yn-i,i - «„-i,,j'„i)/fl„_i,„-2 • 

Construct a plane rotation Ux in the (n — 1, n)-plane such that UjXi = x\, where 
x[ = [ x , . . . , x , x„_2, x„_i < 1 ; 0] T . This transformation must be applied on the 
vector J V Let for example A£r+1) be a 4 x 4 matrix. Then U1A^r+1)UT will have the 
form 

X X X X 

X X X X 

0 X X X 

0 X X X 

Step (r + 1). 2: If » _> 3 compute the elements x„_3 r l , y _3 v Construct 
a plane rotation U2 such that U2x\ = x1 ; where x] = [ x , . . . , x , x 1; x„_2>i,0,0]T. 
This transformation must be also applied on ) \ . 
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After this step the matrix U2U1A^+ ^Uf U_ in the 4th order example takes the form 

0 x 

Step (r + 2). 1; Construct a plane rotation Vt in (« — 1, n)-plane to annihilate 
the element ynl, i.e. V1y1 = y\, where y\ = [ x , . . . , x , ? „ _ , , , 0 ] r . This trans
formation does not affect the transformed vector x t . The matrix VlU2U1Q

r+1)U] . 
• ^2V

T wiH have the form 
X X X X 

X X X X 

X X X X 

X X X X 

Step (r + 1). 3: Construct a plane rotation U3 e 0[n - r) to annihilate the 
element x„_2 |1 and apply this transformation to yv This will not destroy the form 
Of yt. For our example the matrix UiVlU2U1I[

r+,)Ur
lU

T
2Vju] will look as 

X X X X 

X X X X 

X X X X 

® X X X 

where the (encircled) n 1-element must be zero. 

Step (r + 2) . 2: Compute a plane rotation V2 to annihilate the element .v,.-i,i-
Then the matrix 

V2U3V1U2UlA
l
c
r+1)Ur

íU
T

2V?UT
3V2

r 

will take the form 

X X X 

® x x 

where the (encircled) elements in positions (n, n — 2) and (n - l , / i - 3) must be 
zero. Thus the transformed open-loop and closed-loop system matrices will be again 
in Hessenberg form. 

This process may be continued until the elements x r + 2 and yr+3 are annihilated. 
The strategy of annihilation may be illustrated as 

and it preserves the Hessenberg form of the system matrices. 
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The above process clearly may be considered as OR-decomposition of the vectors 
x , v Since these vectors are linearly independent one obtains 

.15) W^^JГ^r+1, + 2 

x
r+í Ўr+1 
0 i> + 2 
0 0 

0 0 

* r + i Л + i 

0 }~r+2 

0 0 

0 0 

S i 

where Wr+1 r + 2 e 0{n — r) are the orthogonal transformations accumulated at the 
double step (r + 1), (r + 2). Note that x r + 1 , v r + 2 ^ 1. The equation (15) may be 
written as 

(16) 

where 

(17) 

í f r + 1 , + 2^ rM)^r+1 ,r+2 

Гl 01 "1 01 
0 1 0 1 
0 0 = 0 0 

ß 0. _o o_ 

Šl, 

e _[*r+i )v+il[ ví Í l p r + 1 yr+iTl
 = 

6 l ~ L 0 -V r+2JL-?1 PlJL 0 .Vr+2J 

__j^i/(xr+l_V+2)] 
lyr+ilK+1 y 

pí - ~2yr+ilK+i K+ilPr+2 H-
- q\yr+i\K+\ Pi + q 

Denoting Qr+1 , r+2 = diag(L , Wr+Ur+2) e 0(n) it follows from (16) that the 
transformed closed-loop system matrix is to be in the form 

(18) 0T
+ l ir + 2 - - - e T A . Q l -Qr+l.r + 2 = 

5r X X X . . X 

X . . X 

st X . . X 

I Ara) 

where A<r+3) is a Hessenberg matrix. The vector [Br+1, 0,..., 0]Te R"~r is reduced 
to [x , br+2, br+3, 0, ..., 0]T and the complete controllability ensures that p r + 3 + 0. 

Now the equation (18) may be used to determine the elements fer+1, ^r+2 of the 
transformed gain matrix fcQj ... Qr+ l i r + 2 . As a result one obtains 

(19) b"r+2K+i = a r+2, r+i + q2yr+2lxr+i, 

K+2K+2 = flr+2,r+2 - Pí - q2Jr+ilK+i 
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and 
(20) br+3kr+l = a r + 3 t r + 1 , 

*>r+3fcr+2 = «r+3.r+2 . 

where ar+i r+J: i = 2,3, / = 1 , 2 are the corresponding elements of the transformed 
open-loop system matrix 

QJ+l.r+2 •••GlAQ . . . .e r+l . r+2-

The equations (19) and (20) are algebraically consistent and can be solved as 
in the real case. 

It may be observed that at this step the real and the imaginary parts of the eigen
vector are obtained as a solution of a four-diagonal system of linear equations. 

In this way the complex conjugate poles are treated in a similar manner as the 
real poles at the cost of a small increase of the number of computational operations 
(an additional subdiagonal of the open-loop system matrix is used). 

The next steps are performed in the same way. At steps (n — 1), n the vector 
xm e R2 is transformed only once. No element of ym e R2 is to be annihilated. The 
elements k„-u kn may be obtained from equations of type (19) which cannot be zero 
identities since the closed-loop system must be completely controllable. 

Finally one obtains 
S = QJACQ = QJPJACPQ = 

S r . X X X . . X 

Ši 
X . . X 

n X . . X 

k = [/q, .,., k„] <2T and k = kPJ, where 

6 = 6162- . . Gr+l,r + 2 - - Qn-Un-

4. NUMERICAL CONSIDERATIONS 

The algorithm presented in the previous section has many common with the 
deflation techniques [2], [13] used to eliminate a known eigenvalue from an eigen
value problem. One of these techniques is of particular interest here. If an approxim
ated eigenvector is known it is possible 10 construct an orthogonal transformation 
in order to produce a matrix of order one less than the original matrix that does 
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not contain the eigenvalue corresponding to the known eigenvector. It is shown in [2] 
that this technique is very stable, although the approximate eigenvector may be far 
from the accurate one. This is because the errors in the transformed matrix depend not 
on the errors in the eigenvector v: but on the residual Au; — u;s; which may be very 
small even if the eigenvector is not very accurate. 

In this section it will be shown that our algorithm has also very good numerical 
properties due to the fact that the computation of an eigenvector, its transformation 
and the determination of a gain matrix element correspond to a small residual in the 
equation for this eigenvector. In this way it will be proved that the subdiagonal 
elements of the triangular form obtained are negligible and since it is exact for 
a matrix which is close to the closed-loop system matrix, this leads to the numerical 
stability of the algorithm. 

Denote with • any of the basic arithmetic operations + , - , x , /. Further on we 
shall assume that in floating point arithmetic _ = fl (x • y) = x • v(l + e), \e\ ^ eps. 
Fn the derivation of the error bounds the second and higher order terms in eps will 
be neglected. 

Consider for simplicity the case of real poles only. At the step /; i = 1, ..., n the 

computed elements DB_1>; and C„_2 ; of the eigenvector vt satisfy 

(21) 

K-ui = (si - ajtj\ + *!)/(_„,„_t(l + e2)), 

v„-2,i = ((«. - a„-i ,„-i) 0--.,,,(l + e3) - an_Unvni(l + e,))/(fl„-1,„-2(l + _ , ) ) , 

where a;j are the corresponding elements of the open-loop subsystem matrix A(,), 
v„i = 1 and |e,|, |e4| :g 2 eps; \e2\, \e5\ ;g eps; \e3\ S 3 eps. 

The equations (21) show that the elements 0„_ i ; , D„_2>; may be considered as 
exact for a matrix A(,) + Eu where 

HE,! ^ 3 eps ( ( « - / + [)l/2|s,.| + |T ( n | ) 

^3eps(« 1 ' ' 2 | s ; | + | |A | | ) . 

Hence the equation for the unknown part /c(;) of the gain matrix may be represented 

as 

(22) (A(i) - b(i' k(i} + E,) D; = D |Si, 

where b{i) = [_„ 0, ..., 0]T, 0, = [ x , . . . , x , 0B_2>;, D„_1>;, t)„;]
T. 

Further on a plane rotation Rj is implemented to annihilate the element dni. 
Denote 

v\ = R1ti = [ x , ..., x,/)B_2>1., t5„_i;, 0 ] T , 

v\ = fl(-.ie,) = [ x , . . . , x,fi„_2>;, y„_ l t i, 0 ] T , 

where R1 is the computed plane rotation and 

5--i,« = (-_-i., + 6„,)1/2. 
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Following [2] it may be shown that 

(23) _ - _ = _ . . + Y1} ||Y.|| S 3(2)''2 eps, 

tVu = "»-i,.<l + ee)> 
where |e6 | __ 6 eps. 

The transformed matrix of the open-loop subsystem satisfies the equation 

(24) A[!) = fl (Rj^Rj) = RjWRj + F, . 

The matrix Al'* differs from Hessenberg form by the nonzero element in the position 
(n, n - 2). 

The analysis made in [2] shows that | E , | g 12 eps | A | . 

Note that this bound takes into account the errors, made during the column trans
formation of the whole matrix A. 

If n - i > 1 it follows from (22) that 

(25) (A[!) - b^k(!) + _?. - F.) -1 = e.s,, 

where k[!) = fc(i)RT, E, = R.EjRT, fli.,! = | | £ . | . Since i~„_i,; = C„_lj;(l + e7), 
|e7 | S 6 eps, using a nonsingular transformation with the matrix diag(l, ..., 1, 1 + 
+ e7, 1), the equation (25) may be represented as 

(26) (A[!) + G_ - (_™ + 9l) k[!) + Et- F.) D,1 = t? l
S i . 

Here tfl = [e7£„ 0, ..., 0]T, ||_,.|| ^ 6 eps | 5 | , Udfl g 6eps |A | | . 

The element 0„_3,; is computed so that 

(27) e„_3, ; = ((s; - «„__,„_2) .„_2r,(l + e8) -

- «_-2,„-ii'_-i,;(l + e9))/(a„-2,„-3(l + e1 0)), 

where a,-7- are now elements of _l_° and |e8 | :g 3 eps, |e9| :§ 2 eps, |e1 0 | :£ eps. The 
next operation is the annihilation of v„_t ,• by the plane rotation R2. This leads 
to the equation 

(4° + G1+G2- (5™ + g1+ g2) £
(i) +£,+£,-?,- F2) v\2) = 0?\, 

where 
A2

!) = fl (R2A[l)Rj) = R2A
(i>RT + E2 , k(i) = k[!)RT

2 , 

v\2) = [x , . . . , x,fi._3>„ y„_2,;, 0,0]T, 

^-2, , = fl((e2,, + ^2-i , ,) i / 2 , 

| 5 1 | = | |G 1 | | , | |G 2 |g6eps |_r | J |M|_S6eps | f i | , 

I N =||I?i||,||I?_| ^ 3 eps (^2|s,.| + «A«), 

l^ill = 1^1,1^11 ^ 1 2 eps ||_rfl 

and R2 is the computed plane rotation. 
The matrix A(;> differs from Hessenberg form by the nonzero elements « „ - t - _ 3 
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and a„p„_2. Since vn_2yi + 0 it follows that the (n, n - 2)-element of the matrix 

Al) + G1 + G2- (B(i) + g_ + g2) k
(i) +£1+E_-F_-F2, 

which has the same form as A"2'
),must be equal to zero. This element is not affected 

by the gain matrix and that is why 

|a„,„_2| < | | 5 . + G2 + £t + E2 - F_ - F2\\ rg 

< 6eps n1 /2 |s ; | + 42 eps ||A|| . 

The last inequality shows that the element a„„_2 is negligible for any reasonable 
|s,|. It may be shown in the same way that after the next step it will be possible to 
neglect the element a„_ l i n _ 3 and so on, i.e. the transformed matrix keeps its Hessen-
berg form. It must be noted that this is valid independently from the fact that the 
eigenvector itself may be not very accurate — the cause is that this approximate 
eigenvector at "every step satisfies equation of the type (26) for slightly perturbed 
matrices A(i) and b(,). 

After n — i transformation the vector B(,) is reduced to 

(28) B(" = ft (Rn-ib
(i)) = Rn-ib

(i) + f(i), 

where 6(i) = [$,, bi+1, 0,..., 0]T , R„_;6
(i) = \bt, bi+1, 0,..., 0]T, 6. = bt(l + e„ ) , 

Bi+1 = bi+1(l + e,2); | e , , | , \e__\ _i 6eps , / ( i ) = [e1_bl,el_bl+1,0,...,0Y, | | / ( 0 | _. 
< 6eps| |g ( i ) | | . 

Extending this procedure and combining the resulted equations one gets 

(29) (A(i) - (B(i) - f(i) + g(i)) ft'l, + E(i) - E(i) + G(i)) «J- ' = vr'si, 

where Afi) = QjA^Qt + F(i) is the reduced open-loop subsystem matrix, £ (_ ; = 
= k(i)Qh Q; = RT...RT_;, «?"' = [ x , 0 , . . . , 0]T and 

||a(i)|| < 6 ;n - i ) exp | | ( 5 ( i ) | | , 

||E(i)l < 3 ( n - i ) e p s ( n j / 2 | s ; | + | | A | ) , 

||E(i)|| < 12(n - i)eps ||A|| , 

| |G ( - | |< 6 ( n - 0 e p s | | A - | | . 

The computed product of the plane rotation implemented satisfy 

(30) Ql = Qt + Y(i), \\Y(i)\\ < 6(n - i) n1'2 eps . 

Suppose that \Bt\ _S |fii+i| (similar results may be obtained for the case |£,| < 
< |S i + i | ) . Then the computed element of fe(_; satisfies 

(31) £, = fc;(l + e13) , 

where kt = (aH — st)jBh |e13 | < 2 eps and aH is the corresponding element of Au). 
The (i, i)- and (i + 1, j')-elements of the first column of the transformed closed-

loop subsystem matrix are obtained as follows. Instead of computing fl (a ; ; — B,fc,) 
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the (i, ()-element is set equal to s;. The (i + h i)-element satisfies 

fl(af+1>1 - S; + ]fc;) = fl1+i,i - S;+ifc; + fci" 

= C I + I , I - S;+ifc,- + «(2°, 
where 

«i° = «i+i,^1 5 - S ;+1fc/e14 + Cis), 

n(20 = Ai+i.e^is - l3; + ifc;(ei3 + <?i4 + els); \e14\, |e15 | g eps 

and since &;+1fc; = bi+1(an - s;) (1 + e13)/2>. it follows that 

|/i ( i ) | g 2 e p s ( n 1 / 2 | 5 ; | + I A D , 

|h (
2 '>U4eps(n 1 / 2 |S i | + HA!). 

Denote fc(2; = [fc;, x , . 
The matrix A~(,) satisfies 

:] , £(0; = [h x,..., x]. 

(32) 

where 

A ( i ) = fl(A(i) - 5 ( i )fc (2 ;A) = л' ( í ) - 5(i>fc(2; + я ( i ) 

= A(І>- ê ( i )fc (2 ; + я ( í ) , 

я ( i ) = 

- S ; f c > r 

ft(i> 
o 

o 

я ( i ) = 

From (29) and (32) 

(33) ( j ( , ) + M( i>)er i = or's,-. 

where M ( i ) = E(i> - E(i> + G ( i ) - H ^ + ( j ( i ) - o ( i )) fc(2;. The vector / ( i ) - a(i> 
has the form j ( i ) — gw = £>;&

(,), where the elements of Di have modules less than 
6(n — i + 1) eps. 

Let the matrix A('> is represented as 

ÅГ '> = 

Then from (33) one obtains ||r,|| = | |E ( i ) | | + | |E ( i ) | | + |G ( i>|| + \h^\ + ||£>;5
(i>fc;||. 

Since \D^k\ = 6(n - i + 1) eps (n1/2 |s ; | + | | J | ) it follows that 

(34) | |r ; | = (9(n - i) + 10) n1/2 eps |s ;| + (27(n - i) + 10) eps ||A fl . 

The bound (34) shows that the subdiagonal elements of the matrix A"('> may be 
considered as negligible for any reasonable desired eigenvalue s;. Ususall |s,| does 
not exceed PA"||. 

s; X . . X 

тт . X 

r ; 

X . • x_ 
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Combining these results for i = 1, 2 , . . . , n it may be proved that 

"s, 

S + M = 

where S is the reduced closed-loop system matrix, 

IN^ |K | + N|+. . .+ ||r„|| 
= (4-5n5/2 + 5'5n3/2) eps |smax | + (13-5n2 - 3-5n) eps ||A~|| 

and smax is the eigenvalue with maximal module. Hence the computed form of the 
closed-loop system matrix is almost upper triangular. It should be noted however 
that the eigenvalues of S are not necessarily close to su ..., s„. 

In the next part of the analysis it will be shown that the matrix Q§QT is dose 
to the matrix A — bk, where k is the computed gain matrix and Q is the product 
of exact orthogonal transformations. 

It follows from (32) that for i = 1,. . . , n 

(35) i ( i ) = QJ(A^ - 6(°£<'2,-eD Qi + T(i) > 

where T(i) = F ( 0 + H[n - fwki'lt. Hence 

(36) § = QT{I - bkQT) Q + T+U, 

where ||T|| ^ 8n3/2 eps |smax | + (6n5/2 + 2n) eps ||A|| and the term U, ||U|| = 

= 2 eps ||A — SfceT||> takes into account the errors made in the computation 
of the elements « y — Sfij for i = 1 , . . . , / — 1; j — 2,..., n. 

In accordance with (30) the computed transformation matrix satisfies 

(37) e = e + Y, 

where ||Y|| = 3(n5/2 - n 3 / 2 ) e p s . 

The gain matrix is computed as 

(38) /c = fl (fceT) = k{QT + Z), |Z| | ^ n eps . 

From (37) and (38) 

(39) HQT = k~{I„ - V), ||V|| = || YT + Z\\ ^ (3n5/2 - 3n3/2 + n) eps . 

Hence 

(40) S = e V - bk + W) Q , 

where 

(41) \\W\ = ITU + HUH + I^VH ^ (3n5/2 - 3n3/2 + n + 2) eps ||A - bk\\ + 

(9n5/2 - 3n3/2 + 3n) eps | | 1 | | + 8n3/2 eps |smax | . 

The equation (40) and the bound (41) show that the upper triangular form obtained 
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is exact for a matrix which is close to A — bk~, i.e. the algorithm is stable with respect 
to the determination of the gain matrix. 

Similar results may be obtained for the case of complex conjugate desired poles. 
The following remark to the above analysis can be made. Since the effect of round

ing errors was overestimated several times the bounds obtained (although quite 
satisfactory) tend to be very pessimistic especially for higher n. It is not possible, 
however, to obtain more precise bounds without significant complication of the 
analysis. 

The analysis of the accuracy of the computed gain matrix is related to the condition
ing of the pole assignment problem which may be stated in the following way. The 
pole assignment problem is well-conditioned if small perturbations in A, b and s 
lead to small changes in k. It is evident that if the problem is well conditioned the 
bounds obtained guarantee that the computed gain matrix will be close to the accur
ate one. 

This section will be concluded with an approximative operation count for the 
algorithm (as usual only the terms of order n3 are considered). 

OPERATIONS 
2n3/3 
4«3/3 
2n3 

1. Row transformation of A 
2. Column transformation of A 
3. Accumulation of the transformations 

Total 4H 3 

Adding to this figure the number of necessary operations for reducing the system 
into orthogonal canonical form one can find 17ra3/3 operations. With respect to the 
array storage the algorithm requires 2n2 + 6n working precision words. 

5. AN EXAMPLE 

In this section an example is given in order to illustrate the implementation of the 
algorithm and its numerical properties. 

The computations were carried out on a VAX 11/780 using VAX-11 FORTRAN 
V2-0 —2 and single precision arithmetic (the relative machine precision is eps = 

= 2~24 x o-6. nr 7 ) . 
Consider a 10th order system with matrices 

A = 

1 
1 1 0 

1 1 

1 1 

b = 

and all desired poles equal to —01. 
The controllability matrix of the system is upper triangular with units on the 

diagonal. Its condition number, estimated by the subroutine STRCO from LINPACK 
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[14] is x 1-75.105. This shows that approximately five significant digits may be lost 
if the controllability matrix is used in the reduction of the system. 

Using the algorithm proposed the following gain matrix is obtained (all results 
axe rounded to six decimal digits) 

k = [11-000, 54-4500, 159-720, 307-461, 405-849, 372-028, 

233-846, 96-4616, 23-5795, 2-59370] . 

The elements of the first row of the matrix S = QTACQ are 

-0-100000, -0-417867, -0-448388, -0-977623, -1-52878, 

-3-22388, -7-17335, -19-2290, -64-1255, -309-039. 

The correctness of the results was checked by using double precision arithmetic 
(in this case eps = 2~5 6 x 0-14. 10"16) and comparing both gain matrices. Their 
elements coincided up to five digits, the norm of the difference being 1-08 . 10~4. 

To demonstrate the stability of the method it will be shown that the problem is 
ill-conditioned. In fact, a perturbation 10~3 in the element a1 0 , i0 leads to the gain 
matrix 

k = [11-0010, 54-4610, 159-775, 307-621, 406-157. 

372-434, 234-219, 96-6958, 23-6762, 2-61739] 

whose elements are correct again up to five digits. Hence a perturbation of 10"3 

in the data leads to a change in the gain matrix of a norm x 0-702. This shows that 
the effect of the errors, introduced by the algorithm is equivalent to perturbations 
in the data of order much less than 10"3 , i.e. the algorithm does not increase the sen
sitivity of the problem. 

Compare now the results with the bounds predicted by the numerical analysis. 
The bound for the subdiagonal elements is 

||r,.| ^ 0-68 . 10"4 

and the norm of the matrix Ft7 must satisfy 

||~r"|| = 0-52 . 10"4 | |A - bk\\ + 0-17 . 10"3||A|| + 0-15 . 10~7 x 

x 0-52 . 10"4 | |A - bk~\ , 

since ||A|| < 10~ 3 |A - bk~\ . 

The actual norms are 
| | - j | | S 0-23 . 10~6 

and 
\W\ g O - 1 . 1 0 " 6 | | A - bk\ 

which confirms that the a priori bounds are pessimistic. 
The algorithm was also tested with various examples of order between 2 and 50 

with real and complex, distinct and multiple poles. In all examples it was observed 
that ||JF||/||AC|| was of order n eps and the subdiagonal elements of S were of the 
•order of the machine precision. 
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6. CONCLUSIONS 

An efficient computational algorithm for pole assignment of linear single-input 

systems, based on an orthogonal triangularization of the closed-loop system matrix, 

is presented. The algorithm is numerically stable with respect to the determination 

of the gain matrix and performs equally well with real and complex, distinct and 

multiple desired poles. It is applicable to ill-conditioned and high order problems 

and may be used for synthesis of continuous as well as discrete time systems. The 

algorithm is implemented as a FORTRAN program which is used for solving 

various problems of different orders. (Received February 1, 1985.) 
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