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SYMMETRIC MATRIX POLYNOMIAL 
EQUATIONS 

JAN JE2EK 

The linear symmetric matrix polynomial equation is investigated. It occurs in the synthesis of 
discrete quadratically optimal multivariable controllers in connection with the matrix spectral 
factorization problem. A new efficient algorithm for numerical solution is also presented. 

1. INTRODUCTION 

For problems of linear control system synthesis, an apparatus of polynomial 
equations (for single-variable case) and of matrix polynomial equations (for multi-
variable case) was successfully developed in recent times, cf. [1]. In connection with 
quadratic criteria, we are led to equations of special type, containing an operation of 
conjugation ah-* a* representing a(s) i-> a( — s) for continuous-time systems and 
a(d) t—>• a(d~1) for discrete-time ones, cf. [2], [3]. The key problem is solution of 
a quadratic polynomial equation x*x = b (b = b*, b > 0 on the boundary of sta
bility, x stable), known also as a spectral factorization problem. The solution can be 
found by iterating a linear equation a*x + x*a = 2b (a stable), see [4]. Such 
equations were investigated in [5]. 

In the matrix case, the conjugation operation includes matrix transpose: Ah-* A* 
means A(s) i-> AT(-S) or A(d) i-> A'r(d~1), the relevant equation is 

(1) A*X + X*A = 2B . 

An algorithm for matrix spectral factorization was reported in [6]. 

Understanding the structure of equation (1) and of its solution is fundamental for 
construction of efficient numerical algorithms. This papei aims at a rigorous and 
comprehensive theory of (1) as a natural generalization of two simpler cases: that of 
constant matrices and that of scalar polynomials. A new algorithm for numerical 
solution is also presented, superior to that previously published in [6]. 
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2. FIRST PRELUDE: THE MATRIX EQUATION 

Before tackling the general matrix polynomial equation, it is worth to note the 
special case of equation 

(2) ATX + XTA = 25 

where A, B, X are matrices of real numbers. A bit of terminology: real matrices 
with properties S = ST, Q = —QT are called symmetric, skew-symmetric; complex 
matrices with S = ST, Q = — QT hermitian, skew-hermitian. For hermitian matrices, 
R > S means R — S positive semidefinite, R > S means R — S positive definite. 
Principal minors of a square matrix are those obtained by selecting some subset of 
rows and the same subset of columns. Corner principal minors are those situated in 
the left upper corner. 

Theorem Ml . The homogeneous matrix-equation 

(3) AT* +XTA = 0 

where A is nonsingular, has the general solution 

(4) X = QA 

where Q is an arbitrary skew-symmetric matrix. Further, if A is upper triangular 
and if the same is required for X, then the equation has only trivial solution. 

Proof. Premultiplying (3) by A~T, postmultiplying by A~* and introducing the 
substitution 

(5) X=XA~l 

we obtain an equivalent equation 

(6) X + XT = 0 

whose general solution is evident: the symmetric part of X is zero, the skew-symmetric 
one is arbitrary. By the backward substitution, we get (4). 

Now, with A upper triangular, the triangularity is conserved by (5): X is triangular 
iff X is. So X must be triangular as well as skew-symmetric; the only such X is zero, 
and so is X. • 

Theorem M2. The matrix equation 

(7) ATX + XTA = 2B 

where A is nonsingular, B symmetric, is always solvable and its general solution is 

(8) X = XP + QA 

XP being a particular solution and Q an arbitrary skew-symmetric matrix. Further
more: 
a) If A is upper triangular then there exists the unique upper triangular solution. 
b) If B > 0 then every X is nonsingular. 
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c) If B > 0 and A upper triangular with positive diagonal entries then the upper 
triangular X has also positive diagonal entries. 

Proof. By multiplying A_T() A"1 and by (5) we get an equivalent equation 

(9) X +XT = 2B 

where B = A~TBA~i. Its general solution is 

(10) X = B + Q 

with an arbitrary skew-symmetric Q. 

With A upper triangular, X is taken (uniquely) as the triangular part of 25: xu = 
= 2$ij for i < j , xti = Bn. The uniqueness is conserved by (5). 

With B > 0, the same holds for B and every X is nonsingular according to Theorem 
Al, see Appendix A. The same is X. 

With Bu > 0, it is xu > 0, and with au > 0 we have xu > 0. • 

Theorem M2 abc) can be strengthened: 

Theorem M3. If B > 0 and A is nonsingular upper triangular then every solution X 
has nonzero principal minors. In that case, if A has positive diagonal entries then the 
mentioned minors are also positive. 

Proof. The X in (10) has positive principal minors, according to Theorem A2. 
see Appendix A. By the backward substitution, the minors remain nonzero and with 
a n > 0, they remain positive. • 

Theorem M3 has a converse: 

Theorem M4. If B > 0 and A has nonzero corner principal minors, then there 
exists the unique upper triangular solution X. If the mentioned minors are positive 
then the X has positive diagonal entries. 

Proof. The matrix A having nonzero principal corner minors can be decomposed 

(11) A = LU 

with L lower and U upper triangular. Use (11) in (7), multiply U"T() U~x and intro
duce the substitution 

(12) X = LfXU'1 

We get (9) with B = U'TBU~1 > 0. The unique triangular solution was proved 
to exist. 

If A has positive principal corner minors then L and U have positive diagonal 
entries. The entries xu = Bu are positive and so are xu. • 

Theorem M5. (Algorithm of solution.) 

The upper triangular solution X of equation (7) where A is nonsingular upper 
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triangular and B > 0, can be obtained by the recurrent formulas 

1 i _ 1 

(13) xu = — [bu - £ aHxH] i = 1, . . . , n 
au k=l 

1 i - i i 

(14) Xij - — [2by - X -*.̂ w ~ Z **.%] i «- 1, • •., » ; j = i + 1 » • 
a ; i t = i k = i 

Proof. Write (7) using subscripts: 
i 

(15) Z (akiXkJ + xkiakJ) = 26;j- i = l,...,n, j = i,...,n . 
k=l 

For the diagonal entries 

(16) Z0*.**. = fo» i = L-... «• 
< c = l 

In (15), isolate the last term in the first sum, in (16) the last term in the sum. From 
that, we obtain (13), (14); aa + 0 as A is nonsingular. • 

3. SECOND PRELUDE: THE POLYNOMIAL EQUATION 

As a second preparatory stuff, we shall deal with properties of an equation 

(17) a*x + x*a = 2b 

where a, b, x are polynomials with real coefficients, b — b* (in the discrete-time case, 
b is a 'two-sided polynomial'). A related equation 

(18) a*x + y*b = c + d* 

is also dealt with. Proofs are omitted as they can be easily derived from [5] where 
the equations are investigated under general assumptions. Here we limit our attention 
to the case most important for control theory, especially for the spectral factorization 
problem: that of stable polynomials a, b in (18). Stability is meant here in the strict 
sense: a(s) + 0 for Re s = 0 in the continuous case and a(d) + 0 for |d| g 1 in the 
discrete case. With stable polynomials, a*, b in (18) are coprime and their absolute 
terms a0, b0 + 0 (the latter property plays a role only in the discrete-time case). 
By that, the structure gets simpler. 

The discrete-time case and the continuous-time one are somewhat different. It is 
caused by different properties of conjugation operation a(s) \-^-a(~s) and a(d) h-> 
t-> a(d'1). The general solution of continuous-time equations contains polynomials 
of arbitrarily high degrees unlike the discrete-time equations where the degrees of 
solution are bounded, see [5]. To obtain mutually corresponding results, we must 
add assumptions and requirements for degrees. 

Theorem PI . The homogeneous polynomial equation 

(19) a*x + x*a = 0 
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where a is stable (in the continuous-time case with requirement deg x g deg a) has 
only trivial solution. 

Theorem P2. The polynomial equation 

(20) a*x + x*a = 2b 

where a is stable (in the continuous-time case with assumption deg b ^ 2 deg a 
and with requirement deg x 5S deg a) is always solvable and has unique solution. 

Theorem P3. If a in (20) is stable and if b > 0 on the boundary of stability then the 
solution x is also stable. In the discrete-time case, if the absolute coefficient a0 > 0 
then x0 > 0. In the continuous-time case, deg b = 2 deg a implies deg x = deg a 
and if the leading coefficient aH > 0 then xH > 0. 

P roof is based on properties of harmonic functions of the complex variable, 
see [4]. 

Theorem P4. The homogeneous polynomial equation 

(21) a*x + y*b = 0 

where a, b are stable (in the continuous-time case with requirements deg x <; deg b, 
deg y 5i deg a) has the general solution x = qb, y = —qa where q is an arbitrary 
number. 

Theorem P5. The polynomial equation 

(22) a*x + y*b = c + d* 

where a, b are stable (in the continuous-time case with assumption deg (c + d*) g 
^ deg a + deg b and with requirement deg x :g deg b, deg y 5£ deg a), is always 
solvable and its general solution is x = xP + qb, y = yP — qa where (xP, yP) is 
a particular solution and q an arbitrary number. 

With an additional requirement y0 = 0 (i.e. the absolute term zero) in the discrete-
time case, or deg y < deg a (i.e. the leading term zero) in the continuous-time case, 
the solution is unique. 

The above mentioned equations can be solved numerically using the Euclidean 
algorithm. In [4], [5], such algorithms are presented which conserve the symmetry 
during the process. It causes savings in computational operations. 

4. THE MATRIX POLYNOMIAL EQUATION 

Now we are ready to tackle equation (l) where A, B, X are real matrix polynomials. 
Again, only equations with stable matrix polynomial A are investigated, i.e. those 
with det A stable. Note that stability includes nonsingularity (det A 4= 0). 
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The discrete-time case and the continuous-time one are treated in a unified way; 
relations between degrees are replaced by properness of polynomial fractions: 
deg x ^ deg a iff xa~1 is proper, deg b S 2 deg a iff a~*ba~1 is proper. Similarly, 
deg x = deg a iff xa ~1 is biproper (proper together with an inverse). 

Theorem MP1. The homogeneous matrix polynomial equation 

(23) A*X + X*A = 0 

where A is stable (in the continuous-time case with requirement XA ~ 1 = proper) has 
the general solution 

(24) X = QA 

where Q is an arbitrary constant skew-symmetric matrix. 
Proof. Denote A = adj A, a = det A. Multiply (23) by A*() A getting an equi

valent equation 

(25) a*XA + A*X*a = 0 

By substitution XA = X we get an equation 

(26) a*X + X*a = 0 

Properness of XA'1 is equivalent to that of Xa'1. We have not yet proved equi
valence of (23) and (26): for every X satisfying (23) there exists X = XA satisfying 
(26) but from the other side, for every X the expression X = XA ~x is not evident 
to be a polynomial. That we shall prove later. 

The general solution of (26) can be found elementwise. For diagonal entries we 
have 
(27) a*xu + x*Ha = 0 , l - l n . 

As a is stable, (27) has only trivial solution according to Theorem PI. For non-
diagonal entries: 

(28) a*xtJ + x*fl = 0 , i = 1, . . . , n ; j = i + 1, ..., n . 

According to Theorem P4, the general solution is 

* y - = qua, Xji= -qi}a, 

where qu are arbitrary numbers. It can be written X = aQ with a skew-symmetric Q. 

Now, for every X we see that X = XA ~x = QA is a polynomial. It proves the 
equivalence of (23), (26) and the theorem. . • 

Theorem MP2. The matrix polynomial equation 

(29) A*X + X*A = IB 

where A is stable, B = B* (in the continuous-time case with assumption A~*BA~X = 
= proper and with requirement XA~X = proper) is always solvable and its general 
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solution is 
(30) X = XP + QA 

where XP is a particular solution and Q an arbitrary constant skew-symmetric matrix. 

Proof. The form of the general solution is evident from Theorem MP1; only the 
existence of XP remains to be proved. 

Like in Theorem MP1, we convert (29) to 

(31) a*X + X*a = 2B 

where B = A*BA, the properness of A~*BA~1 being equivalent to that of a~*Ba~1. 
We shall prove equivalence of (29), (31), i.e. we prove that for every X satisfying (31), 
X = XA~X = XAJa is a polynomial. Multiply (31) by A: 

a*XA + X*aA = A*Ba 

The right-hand side is divisible by a, so is the term X*aA and so must be the first 
term. But a is stable, a, a* are coprime, XA must be divisible by a. So XAJa is 
polynomial and the equivalence is proved. 

Solve (31) elementwise. For diagonal entries: 

(32) a*xii + x*Ha = 2bii, i=l,...,n. 

The fraction a~*Biia~1 is proper, (32) is solvable according to Theorem P2. For 
non-diagonal entries: 

(33) a*xi} + x%a = 2bi}, i = 1, ..., n ; j = i + l,...,n . 

The fraction a~*Bi}a"i is proper, (33) is solvable according to Theorem P5. The 
solvability of (29) is proved. • 

To establish a matrix polynomial analogy of Theorems M2abc) and P3, we need 
more on properness of matrix polynomial fractions. We define column degrees of A 
as p} = col deg ai} = max deg ai}. Then we define a columnwise-leading matrix AH 

i 

as a matrix whose ;th column contains p ;th coefficients of ai}(s). It can be expressed 
as AH = lim A(s) diag (s~Pj). Assuming AH nonsingular (i.e. A(s) column-reduced), 

X A - 1 is proper iff coldegjZ = col deg; A for all ;'. Assuming both AH and XH 

nonsingular, col deg; X = col deg,- A means XA"1 biproper. 

For symmetric matrix polynomials, we have diagonal degrees q} = deg b}} and 
a diagonalwise-leading matrix BH whose (i,j)th entry is the %(qt + ^y)th coefficient 
of bi}(s) multiplied by ( —1)"/2. It can be expressed as 

BH = lim diag ( ( - s ) - 9 ' ) . B(s). diag ( s - ^ ) . 
s^a> i j 

Theorem MP2. Under the assumptions of Theorem MP2, let the absolute matrix A0 

(in the discrete-time case) or the columnwise-leading matrix AH (in the continuous-
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time case) be upper triangular. In the continuous-time case, we also assume AH 

nonsingular, i.e. A(s) column-reduced; in the discrete-time case, A0 is always non-
singular when A is stable. Then there exists the unique solution with X0 or Xn upper 
triangular (in the latter case, Xn is defined via the column degrees of A). 

Proof. Let XP be a particular solution, from (30) we have 

(34) X0 = Z P 0 + QAo or XH = XPH + QAH . 

Given A0, XP0, we look for such Q which makes X0 upper triangular. Write (34) using 
subscripts: 

(35) 0 - { t f - 5 : « « « w . i = 2 , . . . , n ; j = 1, . . . . i - 1 . 
k=i 

It can be easily seen that the unique solution of system (35) is given by the recurrent 
formula 

1 J ' - 1 

(36) qjt = — (tij - X 4tAj) • D 
XjJ f l 

Theorem MP4. If the matrix B in (29) satisfies B > 0 on the boundary of stability 
then every X is stable. In that case, if A0 or AH is upper triangular with positive 
diagonal entries and if A-*5A-1 is biproper (in the continuous-time case only) then 
the solution with X0 or XH upper triangular has also positive diagonal entries of 
these matrices. In the continuous-time case, this Z A - 1 is biproper. 

Proof. For the discrete-time case, multiply (29) by A-*() A-1: 

(37) XA'1 + A~*X* = 2A~*J3A -1 . 

As A is stable, F = Z A - 1 is an analytic function of complex variable d for \d\ <; 1. 
The function 

(38) G(d) = i[F(d) + F\d)] = i[X(d) A- \d) + A=\d) X\d)\ , 

as its hermitian part, is harmonic in that region, see Appendix B. For \d\ = 1, 

F^Jd) = ET(d-1) holds, hence it is here 

G = i(F + F*) = A-*5A-1 > 0 . 

For \d\ < 1 it must also hold G > 0, otherwise the function G would attain a mini

mum inside the region, an impossible thing for a harmonic function. So it is F + 

+ Fr > 0, and according to Theorem Al, F is nonsingular for \d\ ^ 1. Hence 

det X 4= 0 for \d\ <, 1, X is stable. 

Consider the absolute terms. For d = 0, (38) leads to 

AoX + XT
0A0 = 2A5 G(0) A0 > 0 . 

This is an equation of type (7); according to Theorem M2, the diagonal entries of X0 

are positive. 
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For the continuous-time case, the region of analyticity of F is bounded by the 
imaginary axis and the right half circle with radius R. As it can be arbitrarily large, 
X is stable. To consider the leading terms, note that XA_1 is proper, E(oo) finite, 
l imX(s)A_ 1(s) = XHAH\ As A~*BA~1 is bipioper, G(oo) = AH~1BHA~1 is finite 

and >0. For s -> oo, we obtain 

AHZH + XHAH = 2AH G(oo) AH > 0 

and the diagonal entries of XH positive. So col deg,- X = col degj A and, as XH is 
nonsingular, XA'1 is biproper. • 

5. THE ALGORITHM 

The idea of the proof of Theorem MP2 — conversion of the original matrix equa
tion (29) into a scalar form (31) can be used as a computational algorithm [6]: 
a) a = det A, A = adj A are computed 
b) B = A*BA is transformed 
c) equations (31) are solved for each ij. For a nondiagonal entry, a choice is made 

to select a particular solution, possibly the simplest one 
d) the backward substitution is performed 
e) when the solution with triangular X0 is needed, the fitting of Q is performed, see 

the proof of Theorem MP3. 
The scheme works well and the computation complexity is reasonably low. But the 
need to compute a matrix polynomial adjoint is something not to be too happy 
with. The another disadvantage is the necessity of the fitting e); it would be better 
to obtain the triangular solution directly. 

In the discrete-time case, we can transform matrix polynomial A to an upper 
triangular matrix polynomial A by a unimodular U from the right: 

(39) Ä = AU. 

Аpplying it to (29) we obtain 

(40) Â*X + X*Â = 

where 

(41) B = U*BU 

and 

(42) X = U"1!. 

As a unimodular substitution has a polynomial inverse, (29) and (40) are equivalent. 
Moreover, from A~0 = A0U0 we see that U0 is triangular and X0 is triangular together 
with X0. Equation (40) can be solved in a way resembling Theorem M5: 

Theorem MP5. (Algorithm of solution.) The solution of equation (40) with X0 
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upper triangular can be obtained by recurrent solving of polynomial equations 
(omitting the " ) : 

; - i 

(43) a*iXn + xnan = 2bn - £ (akixki + xkiaki), i = 1,. . . , n 
k = l 

i - 1 J - l 

(44) afiXij + x*,a.jj = 2btj - £ a*x,y - £ x j a w , 
t = i i t = i 

i = 1, ..., « ; j = i + 1, . . . . n 

where in (44), the solution with the absolute term of Xj{ equal to zero is selected. 

Proof. Write (40) using subscripts: 
• i 

£ atiXkJ + £ x*kiakj = 2bu . 
k=l k=l 

Isolating the last terms in sums we get (43) and (44). • 

The computational scheme is evident. The transformation (39) is realized as a se
quence of elementary transformations U = f|U;t. For every Uk, it is easy to con-

k 

struct U*, so (41) can be performed by elementary steps as well. Moreover, U_1 = 
= n^ /T 1 (in reverse order); every Uk

x is easily constructed and U"1 can be stored 
k 

as a matrix polynomial or as a coded sequence of elementary operations. It waits 
for the backward run (42). 

The algorithm was implemented with Fortran on IBM 370/135 computer using 
double precision format. In comparison with the previous algorithm, number of 
operations was significantly reduced. Another advantage more was noted: when 
operating with polynomials, it may happen due to round-off errors that degrees of 
actually computed polynomials are greater than the theoretical ones, the 'leading' 
terms being e.g. 10"~13 times less than the true ones. It is difficult for an algorithm 
not to generate these parasitic terms; this case occurs in the computation of an adjoint. 
In the new algorithm when only elementary unimodular transformations are used, 
this unwanted effect is greatly reduced. 

Unfortunately, no continuous-time version of the algorithm is known to the author. 
The cause is in (39) — A cannot be made upper triangular and in the same time 
column-reduced (needed for selecting the proper solution). 

6. CONCLUSIONS 

The symmetric matrix polynomial equation was investigated to the extent needed 
for the matrix spectral factorization problem. No attempt was made to cover the 
general case of A singular or not stable. Although not urgently demanded from control 
problems, this case would deserve a further study from the mathematician's point 
of view. Another theme is generalizing symmetric equations for other algebras than 
those of matrices and polynomials. 
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APPENDIX A: SOME PROPERTIES OF MATRICES 

In this section, two theorems concerning properties of matrices are proved which 
cannot be found in standard matrix algebra books. 

Theorem Al. Let A be a complex matrix, let its hermitian part S be positive definite. 
Then A is nonsingular. 

Proof. By contradiction: let A be singular, then a vector u + 0 exists satisfying 
Aw = 0, wTAM = 0, Re uTAu = $ur(A + AT) u = uTSu = 0. But for positive de
finite S, it must be uTSu > 0. • 

Theorem A2. Let A be a real matrix, let its symmetric part S be positive definite. 

Then 

a) all eigenvalues of A have positive real parts 

b) all principal minors of A are positive. 

Proof. Let a be an eigenvalue of A (complex in general), u a corresponding 
eigenvector (also complex). Write A = S + Q with symmetric S and skew-symmetric 
Q and consider 

/ = uTAu = uTSu + uTQu . 

The expression uTSu is real positive as it can be thought as a hermitian form. The 
expression uTQu is imaginary as it can be thought as a skew-hermitian form. So we 
have R e j > 0, / = i7TAu = a||"||2, Re a > 0. 

As a real matrix, A has all eigenvalues real or pairwise complex conjugated. The 
det A, as a product of eigenvalues, satisfies det A > 0. All principal corner sub-
matrices SrJ being positive definite, det Su > 0 must hold for all principal corner 
minors. Finally, every principal minor can be permuted into the corner position 
without loss of positive definiteness. • 

Note. For a complex matrix A, only the part a) of Theorem A2 holds. 

APPENDIX B: MATRICIAL HARMONIC FUNCTIONS 

In this section, properties of harmonic function of complex variable are generalized 
to a matrix case, especially to hermitian positive semidefinite matrices. We begin 
with recalling the scalar case: 

A real function u{x, y) of complex variable z = x + ly is called harmonic in 
a region if it satisfies Laplace equation 

^ + ^ = 0 
8x2 dy2 

there. For every analytic function /(z), its real part w'z) and imaginary part v(z) 

29 



are harmonic, they are related by Cauchy-Riemann equations 

du _ dv du _ Bv 

dx dy dy dx 

In a singly connected region, each of the functions u, v is determined by the other 
uniquely up to an additive constant. 

The maximum theorem: if u(z) + const is harmonic in a closed region then u(z) 
cannot attain its maximum (nor minimum) at an internal point. 

Similarly to the decomposition of a complex number into the real and imaginary 
parts, a complex square matrix F can be decomposed into the hermitian part G and 
the skew-hermitian part H: 

G = _F + F ) , H = i(E - F). 

Each of the matrices G, H contains n2 real entries. 
If F(z) is a matricial analytic function then G(z) and H(z) are harmonic, i.e. all 

their entries are harmonic. From the other side, given n2 harmonic functions 
Gih 9ij — Uij + ify (i = I,..., n; j = i + 1, . . . , n) in a singly connected region, 
all functions ftJ are determined uniquely up to an additive skew-hermitian constant. 
They are given by an integrable partial differential equation system consisting of the 
Cauchy-Riemann equations as well as the decomposition equations. 

Exactly as in the scalar case, the maximum theorem can be proved, the maximum 
being in the sense of comparison of hermitian positive semidefinite matrices. 

(Received September 3, 1984.) 
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