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REPRESENTABLE P. MARTIN-LOF TESTS

LUDWIG STAIGER

In some recent papers [2, 3] the problem of representability of P. Martin-Lof tests [5] by
Kolmogorov’s concept of program complexity [4] has been considered. Here we derive some
simple combinatorial properties of representable P. Martin-Lof tests which enable us to solve
several problems which remained open in [3]. Moreover by the help of these conditions we
rederive and generalize some statements (theorems) of [2] and [3] in a mannecr which makes
them more transparent and avoids cumbersome constructions.

1. PRELIMINARIES

Let N = {0, 1,2, ...} denote the set of natural numbers, and let N, =, {1,2,...}.
For any finite alphabet X, card X = p = 2, let X* be the set of words on X including
the empty word e. For v, w e X* their concatenation is denoted by ow, and |1v[ is the
length of the word w.

Throughout this paper let
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P
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be a guasilexicographic ordering of X*. Consequently x{", ...,x;,"n) is a lexico-
graphic ordering of X" = {w twe X*& lw] = n}.

According to [5] we introduce the following notion.

A subset ¥V = X* x N, is called P. Martin-Léf test (M-L test) provided

0) V is recursively enumerable ,

(1) forallmenN,_, V,

[

ey © Vi, where V=, {w:(w,j)eV}, and

(2) card V,, n X" £ prr-t
. . PR



In particular, we have
“ VN X"=0, if m=n
3) cardV,_, n X"= 1, and
card V,_, n X" < p + 1.

Since V, 2 V¥, for all me N, and V,, n X" = 0 for m = n, the function

my(w) = o max {m:w e Vop, if weV,
0, otherwise
is well-defined, and it is referred to as the critical level function of the test V.
As a further function connected with M-L tests we introduce the extent . of the
test V= X* x N,
(4) o Bm,n) =4 card {w:we X"&m,(w) = m} .
Since w € V,, iff my(w) 2 m. we obtain

n—1
(5) card V,, n X" =Y By{i, n).

i=m

A particular case of M-L tests are the recursive tests ¥ investiged in [3], i.e. tests
V < X* x N, fot which an algorithm deciding whether (w, m) e V exists.

Lemma 1. Let ¥ be an M-L test. Then the following conditions are equivalent:
(a) W is recursive subset of X* x N,.
(b) my is a recursive function.
(c) By is a recursive function.
Proof. (a) — (b)is shown in [3].
(b) - (c) is easily verified by the defining equation (4).
(c) - (a) In view of Eq. (5) an algorithm deciding (w, m) e ¥ is described as follows.
Corhpute n= lw] and enumerate ¥ up to Y, By(i, n) distinct pairs (v, m) with M =n

i=m

appear. Check, whether (w, m) appeared in the enumeration. O

We define still another subclass of M-L tests. An M-L test ¥ is called weakly
recursive provided the set

€y =4 {(w, my(w)) Twe Vl}
is recursively enumerable. € is the graph of the partial critical level function

my () = max{m:weV,}, if wel,
VAT T df lundefined , otherwise .

Hence an M-L test ¥ is weakly recursive iff its partial critical level function mj, is
partial recursive. Clearly, every recursive M-L test is also weakly recursive.
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2. REPRESENTABLE M-L TESTS

To the concept of M-L test one can relate in some sense the concept of Kolmogorov
program complexity, though both concepts are not equivalent [7, 8].

For a partial recursive function ¢ : X* x N — X* the Kolmogorov complexity
function [4] K, induced by ¢ is defined by

Ky(w[n) =g {

Ifw= (p(n, ]w]), the word = is referred to as a program computing w when given lw|
Since there are at most p* programs of lengt k, we have

min {jn[ ime X*& o(m, n) =w}, if |w{ = n & In(p(x, n) = w)
undefined , otherwise .

(6) card {w: |w| = n& K,(w/n} = k} < p*.

For every partial recursive function ¢ : X* x N — X* the set

(M V(p) =g f(w,m) swe X*&me N, &m < |w| — K (w/|w])}
is an M-L test (see Example 10 of [1]).

As in [2] we call a Martin-Lof test W = X* x N representable over X provided
there is a partial recursive function @ : X* x N — X* such that W = ¥(¢). If W =
= V(@) is a representable Martin-Lof test then its critical leve] function m,, and the
Kolmogorov complexity function K, induced by ¢ are strongly related via

8) my(w) = [w| = K,(w/|w]} — L for weWw,,

i.c. to every w € W, there is a shortest program = of length iw| — mw(w) — 1 for which
¢ computes w when given 1w|.
From Egs. (6) and (8) we obtain the following necessary condition (cf. also Theorem

3 of [3]).
Proposition 2. If W is an M-L test representable over X, m e V_, then

2) Bw(m,n) < p'~"" ' forall mmnx1.

Eq. (2') explains also Example 2 of [2] where it is shown that the Martin-L&f test ¥ =
= {(000, 1), (010, 1), (111, 1)} is not representable over X = {0, 1}. The condition
(2), however, is not sufficient for a Martin-Lof test ¥ < X* x N to be represent-
able over X.

Before proceeding to a counterexemple, we mention the following easily derived
property of representable Martin-L6f tests.

Proposition 3. If W = ¥(p) is an M-L test representable over X and B,{m, n) =
= card {w:we X"&my(w) = m} = p"" ™! for some n,meN, then ¢ maps
X""m~1 x {n} in a one-to-one manner onto {w : we X" & my(w) = m}.

Proof. Since W = V() is representable over X, to every w e X" with my(w) = m
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there is a program z of length n — m — 1 for which ¢ computes w when given n.
But there are exactly p" "™~ ! programs of lengthn — m — 1. O

Example 1. (A nonrepresentable M-L test.) Let M < N, (1,2, ¢ M) be a non-
recursive recursively enumerable set.

Define ¥ < X* x N, via Vin X =V, nX* =,0,

(n) H
Vo AX = {xl}, if neM
not e, otherwise ,
and forn = 3
Vo nX o — VX {0, X, L x80), if neM
n2 T TR0 T M} otherwise
X1 s X275y Xp f s .

Clearly, V is a P. Martin-Lof test which satisfies (2'). Moreover card {w:we
e X"& my{w) =n — 2} = pforallnz3.

If ¥ = V() for some partial-recursive ¢ : X* x N — X* by Proposition 3 to each
we X" with m(w) = n — 2 there is a program = of length 1 for which ¢ computes
w when given n. Hence

{(x$, . x0, ) if neM

X, { = .
o(X. {n) {{x(l"’, L xPY0f ngM.
Define forn = 3

f(n) = p+ L if 3x(x e X& o(x, n) = xU,)
e, if 3x(x e X & o(x, n) = x{V).

Since ¢ is partial recursive and cither xJ7 | € (X, {n}) or x{” € ¢(X, {n}), the thus
defined function f is recursive. Now, M = f~'(p + 1) is also recursive which con-

tradicts our assumption. O

Though Eq. (2') is not sufficient for the representability of an M-L test ¥, an
additional assumption on the test ¥ will make it representable when satisfying Eq.

2)-

Theorem 4. If ¥ = X* x N, is a weakly recursive M-L test satisfying Eq. (2')
then ¥ is representable over X.

Proof. We describe an algorithm computing a function ¢ such that ¥ = ¥(¢p).

Let be given the inputs z and n. If |n] 2 n — 1 then output ¢(z, n) =4 m.

For |n| < n — 2 estimate the position g(m) of = in the lexicographical ordering
of X!"lie. n = x{™). Then enumerate €, up to g(m) distinct elements of the form
(w, m) withm = n — lni — 1appear (if B(m, n) < g(m), ¢(n, n) remains undefined),
and output the first component of this ith element.

Since (w, m), (w, m’)eki,, implies m = m’, by the above construction to every
word w belongs at most one program = of length lﬂl = Iw] — 2 for which = computes

238



w when given |w‘). Moreover, this very program = satisfies
[a] = [w| = mw) = 1, hence my(w) = |w| — K, (w]|w]) — 1
whenever K, (w/|w]) < |w| — 2.
Finally, the condition (2') B,{(m,n) < p"~™ ' guarantees that to every w with
my(w) = 1 (ie. (w,m{w))eC,) there is a program = of length !wl —my(w) — 1
such that ofm, |w]) = w.

Corollary 5. Not every M-L test is weakly recursive, and not every weakly recur-
sive M-L test is recursive.

Proof. The first assertion follows immediately from Example 1 and Theorem 4,
and the second one is readily seen by the example

V=4 {(x{", 1) :neM]
where M = N, (1, 2 ¢ M) is a nonrecursive recursively enumerable set. O

For recursive M-L tests we obtain the following strengthening of the Theorems 3
and 9 in [3].

Corollary 6. Let ¥ = X* x N, be an M-L test. Then V is recursive and satisfies
Eq. (2') if and only if there is a recursive function ¢ : X* x N — X* such that ¥ =
= V(o).

Proof. Let ¥ be recursive. We proceed as in the proof of Theorem 4. Since B
is also recursive, the condition By(m, n) < g(x) can be checked, and if p,(m, n) <
< g(m) we set ¢(m, n) =4 =

Conversely, let ¢ : X* x N+ X* be recursive. Then the condition K,(w/|w]) < k
is equivalent to 3n(|n| < k& ¢(x, |w|) = w) and is recursively decidable. Now, Eq.
(7) yields (w, m) e V(o) iff K,(w/|w]) < |w| — m — 1, which proves the assertion. []

3. EMBEDDING OfF M-L TESTS

In 3] (cf. Theorem 2) it has been shown that every recursive M-L test ¥ < X* x
x N, is embeddable into an M-L test ¥'(p) representable over X satisfying (w, 1) &
e Viiff (w, 1) € ¥(p). In fact, studying the results of [3] more thoroughly, one could
even prove the following assertion: For every recursive M-L test ¥ < X* x N,
there is a recursive M-L test W representable over X such that ¥ < W and (w, 1)e
eViff (w, 1)e W.

In this section we solve that question which remained open in [3} whether an
arbitrary M-L test ¥ < X* x N, can be embedded into a representable one.

To this end we derive the following auxiliary result.

Proposition 7. Let W < X* x N, be an M-L test such that
nem 4
card W, n X" =2 "~
p—1
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for some m, ne N . If there is a partial recursive function ¢ : X* x N — X* such
that W < ¥(¢), then ¢ maps the set

{(m, n): [n] <n—m-—1}
in a one-to-one manner onto W,, n X"

Proof. Since W < V(@) we have my(w) < my,(w) = |w| — K, (w/]w|) — 1 for all
we W,. Hence for every weW, n X" (i.e. my(w) = m) there is a program =, of
length Inw| <n— m— 1 such that ¢(m,, n) = w. Since there are at most ¥ p' =

i=n
n—m

=(p"™ - 1)/(p — 1) programs of length < n—m — | and since card V,, n
A X"=(p" ™ — 1)J(p — 1), the asscrtion follows. 0

Now we can construct an M-L test ¥ < X* x NV, which cannot be embedded
into any M-L test representable over X.

Example 2. (A nonembeddable M-L test.) Let 4, B = N, (1,2¢ A U B) be a pair
of recursively inseparable sets (cf. [6]), i.e. a pair of disjoint recursively enumerable
sets such that any function f: N+ N satisfying 4 < f (1) and B = f~!(2) is not
recursive.

We define our M-L test W = X* x N, as follows:

W,nX"=0, if n£2

W, onX'=..=WnX"={x". ., x0}, if nz3,
and
{x{}, if ned
Wy n X" =< {x{"}, if neB
0 otherwise .

Since card W,_, n X" = p + 1, Proposition 7 implies that ¢(e, n) is defined for all
n 2 3 if W< V() for some partial recursive function ¢. In this case, according
to the definition of W,_,, we have ¢(e, n) = x{" if ne 4 and ¢(e, n) = x{" if n e B.
Set

_ fi, if e(e,n) =x" and nz3
J) =ar {0, otherwise .

Then, since ¢(e, n) is defined for all n = 3, the function f is recursive and satisfies
f71(1) 2 4 and f7'(2) 2 B, a contradition to our assumption. O

The test of Example 2 can be shown to be not weakly recursive. Thus, it is an open
problem whether weakly recursive M-L tests can be embedded into representable
ones. We conjecture that the following more general (cf. Theorem 4) statement be true.

Conjectured statement. Let W < X* x N, be a weakly recursive M-L test.
Then there is a weakly recursive M-L test ¥ = X* x N, satisfying Eq. (2) such
that W < V.
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4. A SUFFICIENT CONDITION

In this section we explain why we have stressed the term representability over X.
In [2], (cf. Theorem 3) it has been shown that every M-L test ¥ = X* x N, is
representable over a larger alphabet ¥ o X, ie. if we admit a larger quantity of
programs of every length = 1.

A slight modification of the proof of Theorem 4 yields a simple combinatorial
explanation of the above quoted fact and moreover, yields some interesting conse-
quences.

Lemma 8. Let W be a P. Martin-Lof test over X which satisfies
(2//) Card Wm A Xn g Pn/m*l .
Then W is representable over X.

Proof. We describe an algorithm computing a parttial recursive function ¢ : X* x
x N — X* representing W.
The algorithm computing ¢ operates as follows:

Given a program = and an output-length n it estimates m = n — 17:[ — 1 and the
position g(n) of = in the lexicographic ordering of Xi®l. Then it enumerates W,
up to g(=) distinct elements of length n appear, and outputs this g(n)th element.

From (2") it follows that every word we W,, n X" has a program = of length
n — m — 1 for which ¢ computes w when given M = n, and by construction only
a word we W,, n X" can have a program x of length n — m — 1 for which ¢ compu-
tes w when given Iw, = n. [

The condition of Lemma 4 is however not necessary. To this end consider full
P. Martin-Lif tests (cf. [3]),1.e. tests satisfying Eq. (2) with equality. Consequently,
a full P. Martin-Lof test ¥ also satisfies Eq. (2') with equality, i.e. §,(m, n} = p"™™" ',
hence ¥ cannot satisfy Eq. (2”) unless n = m + 1. Thus, according to Lemma 1
every full P. Martin-L6f test is recursive and by Corollary 6 also representable
over X.

An example of a full M-L test ¥ is the following:

pem
Knmx"=df{xfr’”):1§j§£ """""" }

Although being an easily derived sufficient condition for representability, Lemma 8
gives simple explanations why an increase of the program resources (cf. Theorem 3
of [2]) or a limitation of the set to be tested makes Martin-Lof tests representable:
Since

pom n—m=1 o
£ E g,
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every Martin-Lof test ¥ = X* x N, will satisfy Eq. (2") when we regard ¥V as
a Martin-L&f test over a larger alphabet ¥ o X. This yields Theorem 3 of [2].

Corollary 9. Let V' < X* x N, be an M-L test over X. Then for any larger
alphabet ¥ o X the set ¥ is an M-L test representable over Y.

Define for ue X* and a set ¥ < X* x N their concatenation ul =4 {(uv, m) :
: (v, m)eV}. Clearly, if ¥ is a Martin-Lof test over X and u e X* then uV is also
a Martin-Lof test over X.

Corollary 10. Let u € X¥, |u] = 1. Then u¥ is an M-L test representable over X
whenever ¥V < X* x N, isan M-L test over X.
Proof. Since k =4 Iul > 1, we have

nk-m __

card (uV,,n X*) = card V,, n X" 7* < ?

" -1
and the assertion follows from Lemma 8. O
It is interesting to note that Corollary 10 yields the well-known (cf. [5]) relation

) my(w) £ |w| — K(w[|w]) + ¢, forall weX*

between the critical level function of a Martin-Lof test ¥ and a universal Kolmogorov
complexity function K (cf. [4]) not utilizing the existence of a universal Martin-Lof
test. Let ¥V be a Martin-Lof test over X, and let u e X. Following Corollary 10,
there is a partial recursive function ¢ such that u¥ = ¥(¢). Consequently

(10) m,(uw) = |uw| — K, (uwf|uw]) — 1
whenever uw e uVy, i.e. we V. Clearly,
(11) m,(uw) = m,(w), forall we X*.

Since K is a universal Kolmogorov complexity function, there is a ¢, depending
only on ¢ such that

(12) K, (wiw]) = K(w/|w|) — ¢, forall weX*.
Moreover (cf. [8]), there is a ¢ satisfying
(13) K(uw/iuw]) = K(w/lwl) —c - 2!0g|u1

for all u, we X*.
Now, substituting Egs. (11), (12) and (13) into Eq. (19) and utilizing |u| = 1 we get

(9) my(w) < |w| — Kw/|w]) + ¢, + ¢

for we V,, where ¢, + ¢ depends only on ¥. If w ¢ V;, my(w) = 0 and (9') is trivially
satisfied.
(Received March 23, 1984.)
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