KYBERNETIKA -- VOLUME 21 (1985), NUMBER 3

REPRESENTABLE P. MARTIN-LÖF TESTS

LUDWIG STAIGER

In some recent papers [2, 3] the problem of representability of P. Martin-Löf tests [5] by Kolmogorov's concept of program complexity [4] has been considered. Here we derive some simple combinatorial properties of representable P. Martin-Löf tests which enable us to solve several problems which remained open in [3]. Moreover by the help of these conditions we rederive and generalize some statements (theorems) of [2] and [3] in a manner which makes them more transparent and avoids cumbersome constructions.

1. PRELIMINARIES

Let $\mathbb{N} = \{0, 1, 2, ...\}$ denote the set of natural numbers, and let $\mathbb{N}_+ =_{df} \{1, 2, ...\}$. For any finite alphabet X, card $X = p \ge 2$, let X^* be the set of words on X including the empty word e. For $v, w \in X^*$ their concatenation is denoted by vw, and |w| is the *length* of the word w.

Throughout this paper let

$$x_1^{(0)} = e, \quad x_1^{(1)}, \dots, x_n^{(1)}, \quad x_1^{(2)}, \dots, x_{n^2}^{(2)}; \quad x_1^{(3)}, \dots, x_{n^3}^{(3)}; \quad x_1^{(4)}, \dots,$$

be a quasilexicographic ordering of X^* . Consequently $x_1^{(n)}, \ldots, x_{p^n}^{(n)}$ is a lexicographic ordering of $X^n = \{w : w \in X^* \& |w| = n\}$.

According to [5] we introduce the following notion.

A subset $V \subseteq X^* \times N_+$ is called P. Martin-Löf test (M-L test) provided

(1) for all
$$m \in \mathbb{N}_+$$
, $V_{m+1} \subseteq V_m$, where $V_j =_{df} \{ w : (w, j) \in \mathbb{V} \}$, and

(2)
$$\operatorname{card} V_m \cap X^n \leq \frac{p^{n-m}-1}{p-1}$$

In particular, we have

(3)

$$V_m \cap X^n = \emptyset, \text{ if } m \ge n$$

$$\operatorname{card} V_{n-1} \cap X^n \le 1, \text{ and}$$

$$\operatorname{card} V_{n-2} \cap X^n \le p+1.$$

Since $V_1 \supseteq V_m$ for all $m \in \mathbb{N}_+$, and $V_m \cap X^n = \emptyset$ for $m \ge n$, the function

$$\boldsymbol{m}_{V}(w) =_{df} \begin{cases} \max\left\{m : w \in V_{m}\right\}, & \text{if } w \in V_{1} \\ 0, & \text{otherwise} \end{cases}$$

is well-defined, and it is referred to as the critical level function of the test V.

As a further function connected with M-L tests we introduce the *extent* β_{γ} of the test $V \subseteq X^* \times \mathbb{N}_+$:

(4)
$$\boldsymbol{\beta}_{\mathcal{V}}(m,n) =_{\mathrm{df}} \mathrm{card} \left\{ w : w \in X^n \,\&\, \boldsymbol{m}_{\mathcal{V}}(w) = m \right\}.$$

Since $w \in V_m$ iff $m_V(w) \ge m$. we obtain

(5)
$$\operatorname{card} V_m \cap X^n = \sum_{i=m}^{n-1} \beta_V(i, n).$$

A particular case of M-L tests are the *recursive* tests V investiged in [3], i.e. tests $V \subseteq X^* \times \mathbb{N}_+$ for which an algorithm deciding whether $(w, m) \in V$ exists.

Lemma 1. Let V be an M-L test. Then the following conditions are equivalent:

(a) V is recursive subset of $X^* \times N_+$.

(b) m_V is a recursive function.

(c) β_V is a recursive function.

Proof. (a) \rightarrow (b) is shown in [3].

(b) \rightarrow (c) is easily verified by the defining equation (4).

(c) \rightarrow (a) In view of Eq. (5) an algorithm deciding $(w, m) \in V$ is described as follows. Compute n = |w| and enumerate V up to $\sum_{i=m}^{n} \beta_{V}(i, n)$ distinct pairs (v, m) with |v| = n appear. Check, whether (w, m) appeared in the enumeration.

We define still another subclass of M-L tests. An M-L test V is called *weakly* recursive provided the set

$$\mathfrak{C}_{V} =_{\mathrm{df}} \{ (w, \boldsymbol{m}_{V}(w)) : w \in V_{1} \}$$

is recursively enumerable. \mathfrak{C}_{V} is the graph of the partial critical level function

$$\boldsymbol{m}_{\boldsymbol{\nu}}'(w) =_{\mathrm{df}} \begin{cases} \max\left\{m : w \in V_m\right\}, & \mathrm{if} \quad w \in V_1 \\ \mathrm{undefined}, & \mathrm{otherwise}. \end{cases}$$

Hence an M-L test V is weakly recursive iff its partial critical level function m'_{V} is partial recursive. Clearly, every recursive M-L test is also weakly recursive.

2. REPRESENTABLE M-L TESTS

To the concept of M-L test one can relate in some sense the concept of Kolmogorov program complexity, though both concepts are not equivalent [7, 8].

For a partial recursive function $\varphi: X^* \times \mathbb{N} \to X^*$ the Kolmogorov complexity function [4] K_{φ} induced by φ is defined by

$$\mathbf{K}_{\varphi}(w/n) =_{dt} \begin{cases} \min\left\{ |\boldsymbol{\pi}| : \boldsymbol{\pi} \in \boldsymbol{X}^* \And \varphi(\boldsymbol{\pi}, n) = w \right\}, & \text{if } |w| = n \And \exists \boldsymbol{\pi}(\varphi(\boldsymbol{\pi}, n) = w) \\ \text{undefined }, & \text{otherwise }. \end{cases}$$

If $w = \varphi(\pi, |w|)$, the word π is referred to as a program computing w when given |w|. Since there are at most p^k programs of lengt k, we have

(6)
$$\operatorname{card} \{w : |w| = n \& \mathbf{K}_{\varphi}(w/n) = k\} \leq p^{k}$$

For every partial recursive function $\varphi: X^* \times \mathbb{N} \to X^*$ the set

(7)
$$V(\varphi) =_{df} \{ (w, m) : w \in X^* \& m \in \mathbb{N}_+ \& m < |w| - K_{\varphi}(w/|w|) \}$$

is an M-L test (see Example 10 of [1]).

As in [2] we call a Martin-Löf test $W \subseteq X^* \times N$ representable over X provided there is a partial recursive function $\varphi : X^* \times N \to X^*$ such that $W = V(\varphi)$. If $W = V(\varphi)$ is a representable Martin-Löf test then its critical level function m_W and the Kolmogorov complexity function K_{φ} induced by φ are strongly related via

(8)
$$\boldsymbol{m}_{W}(w) = |w| - \boldsymbol{K}_{\varphi}(w/|w|) - 1 \quad \text{for} \quad w \in W_{1},$$

i.e. to every $w \in W_1$ there is a shortest program π of length $|w| - m_w(w) - 1$ for which φ computes w when given |w|.

From Eqs. (6) and (8) we obtain the following necessary condition (cf. also Theorem 3 of [3]).

Proposition 2. If W is an M-L test representable over X, $m \in \mathbb{N}_+$, then

(2')
$$\beta_W(m, n) \leq p^{n-m-1}$$
 for all $m, n \geq 1$.

Eq. (2') explains also Example 2 of [2] where it is shown that the Martin-Löf test $V = = \{(000, 1), (010, 1), (111, 1)\}$ is not representable over $X = \{0, 1\}$. The condition (2'), however, is not sufficient for a Martin-Löf test $V \subseteq X^* \times \mathbb{N}_+$ to be representable over X.

Before proceeding to a counterexemple, we mention the following easily derived property of representable Martin-Löf tests.

Proposition 3. If $W = V(\varphi)$ is an M-L test representable over X and $\beta_V(m, n) =$ = card $\{w : w \in X^n \& m_W(w) = m\} = p^{n-m-1}$ for some $n, m \in \mathbb{N}_+$ then φ maps $X^{n-m-1} \times \{n\}$ in a one-to-one manner onto $\{w : w \in X^n \& m_W(w) = m\}$.

Proof. Since $W = V(\varphi)$ is representable over X, to every $w \in X^n$ with $m_W(w) = m$

there is a program π of length n - m - 1 for which φ computes w when given n. But there are exactly p^{n-m-1} programs of length n - m - 1.

Example 1. (A nonrepresentable M-L test.) Let $M \subseteq N_+$ (1, 2, $\notin M$) be a non-recursive recursively enumerable set.

Define $V \subseteq X^* \times \mathcal{N}_+$ via $V_1 \cap X = V_1 \cap X^2 =_{df} \emptyset$,

$$V_{n-1} \cap X^n =_{\mathrm{df}} \begin{cases} \{x_1^{(n)}\}, & \text{if } n \in M \\ \emptyset, & \text{otherwise}, \end{cases}$$

and for $n \ge 3$

$$V_{n-2} \cap X^n = \dots = V_1 \cap X^n =_{df} \begin{cases} x_1^{(n)}, x_2^{(n)}, \dots, x_{p+1}^{(n)} \end{cases}, & \text{if } n \in M \\ \{x_1^{(n)}, x_2^{(n)}, \dots, x_p^{(n)} \}, & \text{otherwise} \end{cases}.$$

Clearly, V is a P. Martin-Löf test which satisfies (2'). Moreover card $\{w : w \in X^n \& m_v(w) = n-2\} = p$ for all $n \ge 3$.

If $V = V(\varphi)$ for some partial-recursive $\varphi : X^* \times \mathbb{N} \to X^*$ by Proposition 3 to each $w \in X^n$ with $m_r(w) = n - 2$ there is a program π of length 1 for which φ computes w when given n. Hence

$$\varphi(X, \{n\}) = \begin{cases} \{x_2^{(n)}, \dots, x_{p+1}^{(n)}\} & \text{if } n \in M \\ \{x_1^{(n)}, \dots, x_p^{(n)}\} & \text{if } n \notin M \end{cases}.$$

Define for $n \ge 3$

$$f(n) =_{\mathrm{df}} \begin{cases} p + 1, & \mathrm{if} \ \exists x (x \in X \& \ \varphi(x, n) = x_{p+1}^{(n)}) \\ 1, & \mathrm{if} \ \exists x (x \in X \& \ \varphi(x, n) = x_1^{(n)}). \end{cases}$$

Since φ is partial recursive and either $x_{p+1}^{(n)} \in \varphi(X, \{n\})$ or $x_1^{(n)} \in \varphi(X, \{n\})$, the thus defined function f is recursive. Now, $M = f^{-1}(p+1)$ is also recursive which contradicts our assumption.

Though Eq. (2') is not sufficient for the representability of an M-L test V, an additional assumption on the test V will make it representable when satisfying Eq. (2').

Theorem 4. If $V \subseteq X^* \times N_+$ is a weakly recursive M-L test satisfying Eq. (2') then V is representable over X.

Proof. We describe an algorithm computing a function φ such that $V = V(\varphi)$. Let be given the inputs π and n. If $|\pi| \ge n - 1$ then output $\varphi(\pi, n) =_{df} \pi$.

For $|\pi| \leq n-2$ estimate the position $g(\pi)$ of π in the lexicographical ordering of $X^{|\pi|}$ i.e. $\pi = x_{g(\pi)}^{(|\pi|)}$. Then enumerate \mathbb{C}_V up to $g(\pi)$ distinct elements of the form (w, m) with $m = n - |\pi| - 1$ appear (if $\beta_V(m, n) < g(\pi), \varphi(\pi, n)$ remains undefined), and output the first component of this ith element.

Since (w, m), $(w, m') \in \mathbb{C}_{V}$ implies m = m', by the above construction to every word w belongs at most one program π of length $|\pi| \leq |w| - 2$ for which π computes

w when given |w|. Moreover, this very program π satisfies

 $|\pi| = |w| - m_{\nu}(w) - 1$, hence $m_{\nu}(w) = |w| - K_{\varphi}(w/|w|) - 1$

whenever $\mathbf{K}_{\varphi}(w/|w|) \leq |w| - 2.$

Finally, the condition (2') $\beta_{V}(m, n) \leq p^{n-m-1}$ guarantees that to every w with $m_{V}(w) \geq 1$ (i.e. $(w, m_{V}(w)) \in \mathbb{C}_{V}$) there is a program π of length $|w| - m_{V}(w) - 1$ such that $\phi(\pi, |w|) = w$.

Corollary 5. Not every M-L test is weakly recursive, and not every weakly recursive M-L test is recursive.

Proof. The first assertion follows immediately from Example 1 and Theorem 4, and the second one is readily seen by the example

$$V =_{df} \{ (x_1^{(n)}, 1) : n \in M \}$$

where $M \subseteq \mathbb{N}_+$ $(1, 2 \notin M)$ is a nonrecursive recursively enumerable set.

For recursive M-L tests we obtain the following strengthening of the Theorems 3 and 9 in [3].

Corollary 6. Let $V \subseteq X^* \times N_+$ be an M-L test. Then V is recursive and satisfies Eq. (2') if and only if there is a recursive function $\varphi : X^* \times N \to X^*$ such that $V = V(\varphi)$.

Proof. Let V be recursive. We proceed as in the proof of Theorem 4. Since β_V is also recursive, the condition $\beta_V(m, n) < g(\pi)$ can be checked, and if $\beta_V(m, n) < g(\pi)$ we set $\varphi(\pi, n) =_{\text{af}} \pi$.

Conversely, let $\varphi: X^* \times \mathbb{N} \mapsto X^*$ be recursive. Then the condition $K_{\varphi}(w/|w|) \leq k$ is equivalent to $\exists \pi(|\pi| \leq k \& \varphi(\pi, |w|) = w)$ and is recursively decidable. Now, Eq. (7) yields $(w, m) \in \mathcal{V}(\varphi)$ iff $K_{\varphi}(w/|w|) \leq |w| - m - 1$, which proves the assertion. \Box

3. EMBEDDING OF M-L TESTS

In [3] (cf. Theorem 2) it has been shown that every recursive M-L test $V \subseteq X^* \times X \otimes V_+$ is embeddable into an M-L test $V(\varphi)$ representable over X satisfying $(w, 1) \in V$ iff $(w, 1) \in V(\varphi)$. In fact, studying the results of [3] more thoroughly, one could even prove the following assertion: For every recursive M-L test $V \subseteq X^* \times N_+$ there is a recursive M-L test W representable over X such that $V \subseteq W$ and $(w, 1) \in V$ iff $(w, 1) \in W$.

In this section we solve that question which remained open in [3] whether an arbitrary M-L test $V \subseteq X^* \times \mathbb{N}_+$ can be embedded into a representable one.

To this end we derive the following auxiliary result.

Proposition 7. Let $W \subseteq X^* \times N_+$ be an M-L test such that

card
$$W_m \cap X^n = \frac{p^{n-m}-1}{p-1}$$

for some $m, n \in \mathbb{N}_+$. If there is a partial recursive function $\varphi : X^* \times \mathbb{N} \to X^*$ such that $W \subseteq V(\varphi)$, then φ maps the set

$$\{(\pi, n): |\pi| \leq n - m - 1\}$$

in a one-to-one manner onto $W_m \cap X^n$.

Proof. Since $W \subseteq V(\varphi)$ we have $m_W(w) \leq m_{V(\varphi)}(w) = |w| - K_{\varphi}(w/|w|) - 1$ for all $w \in W_1$. Hence for every $w \in W_m \cap X^n$ (i.e. $m_W(w) \geq m$) there is a program π_w of length $|\pi_w| \leq n - m - 1$ such that $\varphi(\pi_w, n) = w$. Since there are at most $\sum_{i=0}^{n-m-1} p^i = (p^{n-m}-1)/(p-1)$ programs of length $\leq n - m - 1$ and since card $V_m \cap X^n = (p^{n-m}-1)/(p-1)$, the assertion follows.

Now we can construct an M-L test $V \subseteq X^* \times N_+$ which cannot be embedded into any M-L test representable over X.

Example 2. (A nonembeddable M-L test.) Let $A, B \subseteq \mathbb{N}_+$ $(1, 2 \notin A \cup B)$ be a pair of recursively inseparable sets (cf. [6]), i.e. a pair of disjoint recursively enumerable sets such that any function $f : \mathbb{N} \mapsto \mathbb{N}$ satisfying $A \subseteq f^{-1}(1)$ and $B \subseteq f^{-1}(2)$ is not recursive.

We define our M-L test $W \subseteq X^* \times N_+$ as follows:

$$\begin{split} & W_m \cap X^n = \emptyset , \quad \text{if} \quad n \leq 2 \\ & W_{n-2} \cap X^n = \dots = W_1 \cap X^n = \left\{ x_1^{(n)}, \dots, x_{p+1}^{(n)} \right\}, \quad \text{if} \quad n \geq 3 , \end{split}$$

and

$$W_{n-1} \cap X^n =_{df} \begin{cases} \{x_1^{(n)}\}, & \text{if } n \in A \\ \{x_2^{(n)}\}, & \text{if } n \in B \\ \emptyset & \text{otherwise} \end{cases}$$

Since card $W_{n-2} \cap X^n = p + 1$, Proposition 7 implies that $\varphi(e, n)$ is defined for all $n \ge 3$ if $W \subseteq V(\varphi)$ for some partial recursive function φ . In this case, according to the definition of W_{n-1} , we have $\varphi(e, n) = x_1^{(n)}$ if $n \in A$ and $\varphi(e, n) = x_2^{(n)}$ if $n \in B$. Set

$$f(n) =_{df} \begin{cases} i, & \text{if } \varphi(e, n) = x_i^{(n)} \text{ and } n \ge 3\\ 0, & \text{otherwise} \end{cases}$$

Then, since $\varphi(e, n)$ is defined for all $n \ge 3$, the function f is recursive and satisfies $f^{-1}(1) \ge A$ and $f^{-1}(2) \ge B$, a contradition to our assumption.

The test of Example 2 can be shown to be not weakly recursive. Thus, it is an open problem whether weakly recursive M-L tests can be embedded into representable ones. We conjecture that the following more general (cf. Theorem 4) statement be true.

Conjectured statement. Let $W \subseteq X^* \times N_+$ be a weakly recursive M-L test. Then there is a weakly recursive M-L test $V \subseteq X^* \times N_+$ satisfying Eq. (2') such that $W \subseteq V$.

4. A SUFFICIENT CONDITION

In this section we explain why we have stressed the term representability over X. In [2], (cf. Theorem 3) it has been shown that every M-L test $V \subseteq X^* \times N_+$ is representable over a larger alphabet $Y \supset X$, i.e. if we admit a larger quantity of programs of every length ≥ 1 .

A slight modification of the proof of Theorem 4 yields a simple combinatorial explanation of the above quoted fact and moreover, yields some interesting consequences.

Lemma 8. Let W be a P. Martin-Löf test over X which satisfies

$$(2'') \qquad \qquad \text{card } W_m \cap X^n \leq p^{n-m-1}$$

Then W is representable over X.

Proof. We describe an algorithm computing a partial recursive function $\varphi : \mathbf{X}^* \times \mathbf{N} \to \mathbf{X}^*$ representing \mathbf{W} .

The algorithm computing φ operates as follows:

Given a program π and an output-length *n* it estimates $m = n - |\pi| - 1$ and the position $g(\pi)$ of π in the lexicographic ordering of $X^{[\pi]}$. Then it enumerates W_m up to $g(\pi)$ distinct elements of length *n* appear, and outputs this $g(\pi)$ th element.

From (2^n) it follows that every word $w \in W_m \cap X^n$ has a program π of length n - m - 1 for which φ computes w when given |w| = n, and by construction only a word $w \in W_m \cap X^n$ can have a program π of length n - m - 1 for which φ computes w when given |w| = n.

The condition of Lemma 4 is however not necessary. To this end consider *full* P. Martin-Löf tests (cf. [3]), i.e. tests satisfying Eq. (2) with equality. Consequently, a full P. Martin-Löf test V also satisfies Eq. (2') with equality, i.e. $\beta_V(m, n) = p^{n-m-1}$, hence V cannot satisfy Eq. (2") unless n = m + 1. Thus, according to Lemma 1 every full P. Martin-Löf test is recursive and by Corollary 6 also representable over X.

An example of a full M-L test V is the following:

$$V_m \cap X^n =_{\mathrm{df}} \left\{ x_j^{(n)} : 1 \leq j \leq \frac{p^{n-m}-1}{p-1} \right\}.$$

Although being an easily derived sufficient condition for representability, Lemma 8 gives simple explanations why an increase of the program resources (cf. Theorem 3 of [2]) or a limitation of the set to be tested makes Martin-Löf tests representable: Since

$$\frac{p^{n-m}-1}{p-1} = \sum_{i=0}^{n-m-1} p^i \leq (p+1)^{n-m-1},$$

every Martin-Löf test $V \subseteq X^* \times N_+$ will satisfy Eq. (2") when we regard V as a Martin-Löf test over a larger alphabet $Y \supset X$. This yields Theorem 3 of [2].

Corollary 9. Let $V \subseteq X^* \times N_+$ be an M-L test over X. Then for any larger alphabet $Y \supset X$ the set V is an M-L test representable over Y.

Define for $u \in X^*$ and a set $V \subseteq X^* \times \mathbb{N}$ their concatenation $uV =_{df} \{(uv, m) : : (v, m) \in V\}$. Clearly, if V is a Martin-Löf test over X and $u \in X^*$ then uV is also a Martin-Löf test over X.

Corollary 10. Let $u \in X^*$, $|u| \ge 1$. Then uV is an M-L test representable over X whenever $V \subseteq X^* \times N_+$ is an M-L test over X.

Proof. Since $k =_{df} |u| \ge 1$, we have

$$\operatorname{card}(\mu V_m \cap X^n) = \operatorname{card} V_m \cap X^{n-k} \leq \frac{p^{n-k-m}-1}{p-1} \leq p^{n-m-1},$$

and the assertion follows from Lemma 8.

It is interesting to note that Corollary 10 yields the well-known (cf. [5]) relation

(9)
$$\boldsymbol{m}_{\boldsymbol{V}}(w) \leq |w| - \boldsymbol{K}(w/|w|) + c_{\boldsymbol{V}} \text{ for all } w \in \boldsymbol{X}^{*}$$

between the critical level function of a Martin-Löf test V and a universal Kolmogorov complexity function K (cf. [4]) not utilizing the existence of a universal Martin-Löf test. Let V be a Martin-Löf test over X, and let $u \in X$. Following Corollary 10, there is a partial recursive function φ such that $uV = V(\varphi)$. Consequently

(10)
$$\boldsymbol{m}_{uv}(uw) = |uw| - \boldsymbol{K}_{\varphi}(uw/|uw|) - 1$$

whenever $uw \in uV_1$, i.e. $w \in V_1$. Clearly,

(11)
$$\boldsymbol{m}_{w}(uw) = \boldsymbol{m}_{v}(w)$$
, for all $w \in X^{*}$.

Since **K** is a universal Kolmogorov complexity function, there is a c_{φ} depending only on φ such that

(12)
$$\mathbf{K}_{\varphi}(w/|w|) \ge \mathbf{K}(w/|w|) - c_{\varphi} \text{ for all } w \in X^*.$$

Moreover (cf. [8]), there is a *c* satisfying

(13)
$$\mathbf{K}(uw/|uw|) \ge \mathbf{K}(w/|w|) - c - 2\log|u|$$

for all $u, w \in X^*$.

Now, substituting Eqs. (11), (12) and (13) into Eq. (19) and utilizing |u| = 1 we get

(9')
$$\boldsymbol{m}_{\boldsymbol{V}}(w) \leq |w| - \boldsymbol{K}(w/|w|) + c_{\varphi} + c$$

for $w \in V_1$, where $c_{\varphi} + c$ depends only on V. If $w \notin V_1$, $m_V(w) = 0$ and (9') is trivially satisfied.

(Received March 23, 1984.)

REFERENCES

- C. Calude and I. Chitescu: Random strings according to A. N. Kolmogorov and P. Martin-Löf - Classical approach. Found. Control Engrg. 7 (1982), 73-85.
- [2] C. Calude and I. Chitescu: On the representability of P. Martin-Löf tests. Kybernetika 19 (1983), 42-47.
- [3] C. Calude and I. Chitescu: Representability of recursive P. Martin-Löf tests. Kybernetika 19 (1983), 526-536.
- [4] A. N. Kolmogorov: Three approaches to the quantitative definition of information. Problems of Inform. Transmission 1 (1965), 1-7.
- [5] P. Martin-Löf: The definition of random sequences. Inform. and Control 19 (1966), 602-619.
- [6] H. Rogers Jr.: The Theory of Recursive Functions and Effective Computability. McGraw-Hill New York 1967.
- [7] C. P. Schnorr: Zufälligkeit und Wahrscheinlichkeit. (Lecture Notes in Mathematics 218.) Springer-Verlag, Berlin 1971.
- [8] A. K. Zvonkin and L. A. Levin: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Soviet Math. Survs. 25 (1970), 83-124.

Dr. Ludwig Staiger, Zentralinstitut für Kybernetik und Informationsprozesse der Akademie der Wissenschaften der DDR, DDR-1086 Berlin, Kurstraße 33, PF 1298. German Democratic Republic.