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A GENERALIZATION OF ENTROPY EQUATION: 
HOMOGENEOUS ENTROPIES 

BHU DEV SHARMA, R. P. SINGH 

In the present communication, we propose a generalization of Kaminski and Mikusihski's 
entropy equation, and characterize what may be called homogeneous entropies of degrees 1 
and/?. 

1. INTRODUCTION 

Shannon's entropy has been characterized in several ways. Kaminski and Mikusih-
ski [5] simplified Fadeev's [3] approach by considering, what they called the entropy 
equation: 

(1.1) H(x, y, z) = H(x + y, 0, z) + H(x, y, 0) , 

(x ^ 0 , y ^ 0 , z > 0 , xy + yz + zx > 0) . 

A general continuous symmetric solution of (1.1) given by 

(1.2) H(x, y, z) = (x + y + z) log (x + y + z) — x log x - y log y — z log z , 

was obtained by Kaminski and Mikusinski [5] under homogeneity of degree 1, viz. 

(1.3) H(Xx, Xy, Xz) = X H(x, y, z), X > 0 . 

Aczel [ l ] solved (1.1) under weaker regularity conditions. Sharma and Singh [6] 
relaxed (1.3) in two different ways: 
(i) by considering homogeneity of degree /?, given by 

(1.4) H(Xx, Xy, Xz) = Xp H(x, y, z), 

X > 0 , p> 0, j S + 1 , 

and (ii) by 'bi-homogeneity' of degree (a, 0) given by 

(1.5) H(Xx, Xy, Xz) = A Xx Ha(x, y, z) + B X" Hp(x, y, z), 

X> 0, a* p, P >0, a * 1 , j S * 1 , 

where A and B are arbitrary constants, and obtained the generalized solutions of 
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(1.1), viz. 

(1.6) H(x, y, z) - C[(x + > + zY - x' - y" - z*] 

and 
(1.7) 
H(x, y, z) = C[(x + y + zf - x* - y* - z"] + D[(x + y + £f - x" - / - z ' ] 

respectively in the two cases. 
In the present paper, we propose a generalization of (1.1). We consider equation 

in //, a homogeneous function of three variables, satisfying a certain difference 
relation containing change in two variables, the difference being free from the variable 
held fixed. 

The generalized entropy equation, that we propose, is taken up in Section 2. 
In solving the equation, method of Kaminski and Mikusihski [5] has been adopted. 
It is possible to relax the regularity condition of continuity and work out the solution 
on the lines of Aczel [ l ] . Two solutions arise by considering homogeneity of order 1 
and different from 1. In Section 3, entropy of a discrete probability distribution is 
defined in terms of these solutions. Under an additional boundary condition, these 
jointly characterize Shannon's entropy and type-/? entropy of Havrda and Charvat 

W-

2. THE GENERALIZED ENTROPY EQUATION 

Let H(x, y, z) be a homogeneous function of degree /? (i.e. (1.4)) in the domain 2>: 
{(x, y, z), x, y, z g 0, xy + yz + zx > 0} satisfying 

(2.1) H(x, y, z) - H(x + y, 0, z) = G(x, y) , 

where G(x, y) is also defined in <?. The function G(x, y) is obviously homogeneous 
of degree /?. 

Equation (2.1) is a generalization of (1.1) in so much so that it involves two func
tions, one of two variables and the other of three variables. 

In what follows, homogeneous degree J? (>0) functions H(x, y, z) i.e. (1.4) in 2, 
which satisfy (2.1) in region 3>°: {(x, y, z) : x, y, z lg 0, x + y + z = 1} have been 
obtained. As is done by Kaminski and Mikusihski [5], to avoid the restriction 
of twice differentiable functions, the solutions of (2.1) are sought in the class of distri
butions. Thus we consider H(x, y, z) as a distribution defined in an open set 0 
including £?. The theorem may be stated as follows: 

Theorem 1. If H(x, y, z), a distribution defined in an open set & including 2, is 
symmetric, homogeneous of degree ft in <?° and satisfies (2.1), where G(x, y) is a distri
bution in <S, then H can have two forms viz. Hl(x, y, z) when /? = 1, and Hp(x, y, z) 
when ft + 1, where 

H*(x, y, z) = a[(x + y + z) log (x + y + z) - x log x - y log y - z log z] + 

(2.2) + b(x + y + z), 
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and 

(2.3) H"(x, y, z) = c(x + y + zf - d(xp + y» + z?) , p + \ , 

a, b, c, d being arbitrary constants. 

Note: The values of G(x, y) corresponding to two solutions are Gx(x, y) and G"(x, y) 
simply given by 

(2.4) Gl(x, y) = a[(x + y) log (x + y) - x log x - y log y] 
and 

(2.5) G"{x, y) = d[(x + yy - x " - / ] . 

Proof. Differentiating (2.1) with respect to z, we get 

(2.6) Hz(x, y, z) = Hz(x + y, 0, z) 

where Hz denotes the distributional derivative of if with respect to z. Next differentiat
ing (2.6) with respect to x and then with respect to y, we obtain 

(2.7) Hzx(x, y, z) = Hzx(x + y, 0, z) 
and 
(2.8) Hzy(x, y, z) = Hzy(x + y, 0, z ) . 

These give Hzx = Hzy. 

Also invoking symmetry of H(x, y, z), we get 

(2.9) Hxy = Hxz = Hyx = Hyz = Hzx = Hzy = H" (say) 

which means that H"(x, y, z) is also symmetric. Thus from (2.7) and (2.8), we get 

(2.10) H"(x, y, z) = H"(x + y, 0, z) = H"(y + z, 0, x). 

Now, in view of Lemma 1 of Kamiiiski and Mikusihski [5], there exists a distribu
tion M' of one variable such that 

(2.11) H"(x, y, z) = M'(x + y + z) 

since H" can be taken as Hyz(x, y, z) or Hxz(x, y, z). On integrating these with 
respect to y and x respectively, we get 

Hz(x, y, z) = M(x + y + z) + p(y, z) 
and 

Hz(x, y, z) = M(x + y + z) + q(x, z) 

where M is a primitive distribution of M' and p, q are distributions of y, z and x, 
z respectively. On comparing these we find that p(y, z) and q(x, z) have to be same. 
Thus p(y, z) = q(x, z) = - N(z) say, so that 

Hz(x, y, z) = M(x + y + z)~- N(z) . 
Similarly 

Hx(x, y, z) = M(x + y + z) - N(x) 
and 

Hy(x, y, z) = M(x + y + z) - N(y). 
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Now using Euler's theorem for homogeneous distributions, (c.f. [2], pp. 71, 
(4.L9)), we have 

p H(x, y, z) = x Hx(x, y,z) + y Hy(x, y,z) + z Hz(x, y, z), 

i.e. 

(2.12) p H(x, y, z) = (x + y + z) M(x + y + z) - x N(x) - y N(y) - z N(z). 

Next step in the proof is to determine the distributions M and N of single variable. 
There arise two cases. 

Case 1. When 0 * 1: 

From homogeneity of degree P of H(x, y, z) we get 

(2.13) H(x, y, z) = (x + y + z) A1"" M(X(x + y + z)) - x X1'" N(Xx) -

- yXi-'!N(Xy)- zX1'llN(Xz). 

Differentiating (2.13) with respect to X and then simplifying, we get 

(2.14) (x + y + z) [(1 - ff) M(X(x + y + z)) + (x + y + z) M'(X(x + y + z))] = 

= x[(l - P)N(Xx) + xN'(Xx)] + y[(l - j8) N(Xy) + y N'(Xy)] + 

+ z[(l- (})N(Xz) + zN'(Xz)-}. 

Setting x, y, z for Xx, Xy, Xz and then x, y, z for x, y and z in (2.14), we obtain 

(1 - P) (x + y + z) M(x + y + z) + (x + y + z)2 M'(x + y + z) = 

= x(l - p) N(x) + x2 N'(x) + y(l - p) N(y) + y2 N'(y) + 

+ z(l - P) N(z) + z2 N'(z) , 
or 

(2.15) g(x + y + z)= f(x) + f(y) + f(z) 

where 

(2.16) f(x) = (1 - fi) x N(x) + x2 N'(x) 

and 

(2.17) g(x) = (1 - p) x M(x) + x2 M'(x) . 

Now differentiating (2.15) with respect to x and y, we get 

g'(x + y + z)= f'(x) 
and 

g'(x + y + z) = f'(y). 
From these it follows that, 

f'(x) = f'(y) = a (constant) (say) -
Giving 

(2.18) f(x) = ax + b 

where b is an arbitrary constant. 
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From (2.16) and (2.18), we then get 

x2 JV'(x) + (1 - P) x N(x) = ax + b 

which, as /? =f= 1, is a linear differential equation of first order and first degree whose 
solution is 

(2+9) iV(x) = dx"-1 - - x - 1 + ~^—, 

where d is an arbitrary constant. 

Next (2.15), in view of (2.18) gives 

g(x + y + z) = a(x + y + z) + 3b , 

which on setting x = x + y + z, y = y, z = z and then x = x gives 

g(x) = ax + 3b . 

With this expression for g(x), (2.11) reduces to a differential equation of first order 
and first degree in M(x), whose solution is 

(2.20) M(x) = ex""1 - — x ' 1 + — — , 

where c is an arbitrary constant. 

For the expressions of M(x) and N(x) obtained in (2.19) and (2.20), fi H(x, y, z) 
in (2.12) is just Hp(x, y, z) as given in (2.3). 

Case 2. When j? = 1: 

This case is largely similar to what has been handled by Kamihski and Mikusinski, 
proceeding as there, we get 

f(x) = ax + b 

N(x) = a log x - (bjx) + c 

M(x) = a log x - (3bIx) + d 

and then from (2.12) H(x, y, z) = Hl(x, y, z) with d - c replaced by b in the final 
result. 

This completes the proof of the theorem. • 

3. MEASURES OF HOMOGENEOUS ENTROPY 

Let us consider a discrete random variable x taking finite number of values 
xux2,...,xn with an associated probability distribution P = (pu p2,..., p„), 

; = i 

The homogeneous entropy H„(pu p2,..., p„) of the distribution P = (pu p2,... 
..., p„), may now be defined in terms of H(x, y, z) and G(x, z) as follows: 
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Definition. For n = 2 

(3.1) H2(Pl, p2) = G(pi, p2) . 

Forn = 3 

(3.2) H3(Pl, p2, p3) = H(pu p2, p3). 

For n 1 4 

(3.3) #„(Pi, P2, • - ,?„) = #„- i (Pi + P _ , P - , ••• ,?„)+ G(p 1 ,p 2 ) . 

The last recurrence relation may be used to express the homogeneous entropy 
in terms of H(x, y, z) and G(x, y) in the following way: 

(3.4) Hn(Pl,p2,...,pn) = H(s„_2,p„_i) +"iG(si,Pi+1) 
; = i 

where s; = p t + P2 + • • •+ Pi-
Corresponding to the two solutions obtained in Theorem 1, we have then the two 

forms of the homogeneous entropy. 

Theorem 2. The homogeneous entropy of a generalized probability distribution 
P = (Pl, p2,..., p„), (^jPi __ l) as defined above, can be only of one of the following 
forms: 

(3.5) Hl(Pu ..., p„) = -a £ pt log -2L. + b J Pi 
; = i v ; = i 

LPi 
; = i 

with b = 0 for n = 2, or 

(3.6) H'n(Pl,..., p„) = c(£ Piy - d £ p ? , • p + 1 
; = 1 i = 1 

where a, b, c, d are arbitrary constants. 

The results follow immediately from definition of homogeneous entropy and the 
two sets of H and G functions in (2.2), (2.4) and (2.3), (2.5) respectively. 

Note. The measures (3.5) and (3.6) clearly do not satisfy the condition 

(3.7) H„(l,0, . . . ,0) = 0 . 

In fact 
__;(_, o , . . . ,o) = b 

and 
Hj ( l , 0 , . . . , 0 ) = c - d. 

However if (3.7) is taken to hold, then the entropy has to be of only of one of the 
following two forms: 

fl_(Pi, • • • • - - ) - - « Z P ; l o g ^ -
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and 

H^1,...,p„) = c[(XPiy'-Epn. i» + -. /^>° 
where a and c are arbitrary constants. 

When YiPi — L these are in fact Shannon's entropy and type-/? entropies. By 
defining the unit suitably, constants a and c can be specified further. 

(Received March 3, 1983.) 
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