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Some results achieved by Kolmogorov, Chaitin, Solomonoff, Martin-Lof, Schnorr and others 
proved the high degree of coincidence between the sequences or strings of symbols, which are 
of high algorithmic complexity and those sequences which are "true-random" in the sense that 
they satisfy some empirical or theoretical tests of randomness. Some difficulties of this approach 
are caused by the fact that the algorithmic complexity of a sequence, defined by the length of the 
shortest program which generates the sequence in question, is not an effectively computable 
function of this sequence. In the presented paper the definition of algorithmic complexity is 
modified with respect to a theoretical computer (universal Turing machine) which works within 
time and space limitations. This modification makes the conditions, which a sequence is to 
satisfy in order to be taken as pseudo-random, weaker but effectively (recursively) decidable. 
The aim of this paper is to investigate, in which degree the desirable properties of sequences with 
high algorithmic complexity are preserved under this modification. 
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1. INTRODUCTION - PROBLEM FORMULATION 

The papers and works dealing with pseudo-random sequences (strings) of numbers 
or other symbols can be divided, with respect to their motivation and orientation, 
into two main groups which are not quite disjoint. The first group is oriented rather 
technically and practically. It tries to use pseudo-random sequences'as an appro
priate replacement of physical (true random) generators of random inputs, which 
are necessary in many methods of statistical estimation of unknown parameters, 
hypothesis testing of various kinds or approximations of some computational and 
decision procedures which are not effective in the theoretical or practical sense. 
The advantage of pseudo-random generators consists in their high speed and low 
costs, if compared with physical (true random) generators, with which pseudo
random sequences can be generated, including the possibility to use computers for 
these sakes. The quality of pseudo-random generators is classified just with respect 
to explicitly utiliary criteria, i.e. with respect to the measure in which the results, 
obtained when using pseudo-random inputs, satisfy some statistical tests of quality, 
appropriately deduced from the specific features of the statistical decision or com
putation problem in question. These papers do not pose and do not solve questions 
of ontological character, i.e. from the fact that such and such pseudo-random gene-
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rator has been or can be used with success in order to solve such and such problem 
no conclusions are drawn as far as the possibility to reduce the notation of ran
domness to some other, may be more primitive notions, is claimed or refused. 

The second group of papers dealing with pseudo-random sequences consists 
of those ones for which just this ontological aspect is substantial, and which try 
to penetrate as deeply as possible into the nature of randomness. This effort dates 
from the very beginnings of mathematical probability theory and mathematical statis
tics (let us remember, just as an example, the studies of von Mises) and has not been 
fully abandoned neither after the Kolmogorov axiomatic probability theory having 
come successfully into scene. This axiomatic approach apriori abandons the problem 
how to classify particular sequences of results into "random" and "non-random" 
ones and proclaims such a question to be illegitimate. As a matter of fact, he was 
Kolmogorov himself who admitted, later, that the question about the randomness 
of particular sequence is justified and legitimate, moreover, he proposed a way how 
to construct an appropriate criterion of randomness for finite sequences. 

In this paper we uphold the viewpoint which is situated somewhere between the 
two extremal positions as stated above. The outcome of our explanation is given 
by a model which has been conceived with the aim to explain the notion of ran
domness by its reduction or transformation into the notion of high algorithmic 
complexity. Nevertheless, we shall try to modify this model in such a way that it 
satisfies some at least theoretical effectivity criteria (i.e. an effective computability 
of values necessary in order to decide about the randomness of the sequence in ques
tion). Moreover, we shall confront the resulting notion of pseudo-random sequence 
with the possibility of its use in Monte-Carlo methods, i.e. we shall be very near 
to the position occupied by practical user of pseudo-random generators, as mentioned 
above. 

A number of authors have investigated the idea to measure the complexity of a finite 
or infinite sequence of symbols by the length of the shortest program, by the use 
of which an a priori fixed universal Turing machine is able to generate the sequence 
in question. Then, the sequence is proclaimed to be random, if its complexity is not 
substantially less than its length, i.e., if these is no substantially shorter way how 
to define the sequence in question than to write it simply down. It has been shown, 
that the sequences which are random in this sense can play very well the role of ran
dom inputs, when some estimations using the Monte Carlo methods are to be made. 
Moreover, the results obtained in this way are qualitatively better than in the case 
of true-random inputs, hence, rather the true random inputs should be taken for 
a not quite satisfactory approximations of sequences with high algorithmic com
plexity than vice versa. The difficulties of this approach consist in principal theoretic
al limitations as far as our possibilities are concerned to decide the validity or non-
validity of assertions dealing with the algorithmic complexity of sequences. In other 
words the algorithmic complexity of a sequence is not a recursive function of this 
sequence (in the case of a finite sequence we may take its Godel number). Hence, 



in general we are not able to verify, effectively, the validity of conditions which the 
complexity of a sequence is to satisfy in order that the sequence in question could be 
used as a pseudo-random input. 

In this paper we shall try to weaken the criterion of randomness, derived from the 
algorithmic complexity, in such a measure that the predicate of pseudo-randomness 
would become effectively decidable under the condition that the possibility to use 
such pseudo-random sequences as inputs in the Monte-Carlo methods were preserved 
in the most possible degree. The originally defined algorithmic complexity and the 
concept of pseudo-randomness derived on its base will then play some absolute 
or limit role. I. e., they will be able to be approached or approximated arbitrarily 
by an appropriate choose or modification of parameters and by an appropriate in
creasing of the time and space computational complexity. Our main goal will be to 
assure that the conditions posed on pseudo-random sequences were effectively 
decidable at least in the theoretical sense. Even in the cases when we shall obtain 
some explicit expressions or upper bounds for the time and space complexities of 
the investigated computational and decision procedures, we shall not study the possi
bilities of their practical implementations. These questions can be and should be 
subjected to a further investigation connected with this paper and proceeding in its 
direction. 

Let us start, now, by the building up a formal apparatus necessary for our further 
considerations. 

2. ABSOLUTE AND RELATIVE ALGORITHMIC COMPLEXITY AND 
PSEUDO-RANDOMNESS 

Let us start with a finite set A which will be called alphabet; elements of A are 
called letters. Our investigation will be oriented toward finite and infinite sequences 
(strings) of letters from A. Such sequences can be joined using the concatenation 
operation, denoted by an asterisk (*). The length of a sequence is denoted by / and 
is defined by the number of occurences of letters in the sequence. So we have A" = 

00 

= {x : l(x) = «}, A°° = {x : l(x) — oo}, we set A* = (J A" = {x : l(x) < oo}, 
n = 0 

where A0 = {A} contains just the empty sequence A. The inequality card (A) = 
= C(A) ^ 2 is supposed to be valid throughout this paper. 

As an apparatus by the mean of which the sequences of letters will be investigated 
and handled we shall use the universal Turing machine (UTM) over the alphabet A 
and with one tape, as presented by Davis ([1]) in the case of the binary alphabet 
{0, 1}. Machines with more than one tape are not mentioned below. Informally said, 
a Turing machine of this type consists of one tape which is infinite in both the direc
tions and which is divided into an infinite but countable number of boxes, and 
of a head, which is always situated over just one of the boxes and which is able 
to move to the neighborhood boxes, either to the left or to the right. Finally, Turing 



machine contains a finite number of instructions. By the set of instructions we mean 
a finite set of quadruples of the form (gjSyS,^,), where qb q, are the so called internal 
states of the Turing machines, Sj is either a letter from A or the symbol B which 
denotes the blank (the box in which no letters is inscribed), finally Sk is either a letter 
from A or B, or one of the two auxiliary symbols R, L; we always suppose that 
A n {B, R, L} = 0. The quadruple <<ZjS/S*#i> represents the following instruction: 
if the Turing machine is in the internal state qi and if the box just below the head 
(i.e. the box which is just being read by the head) contains the symbol Sj (if this 
box is empty, in case Sj = B), then the machine changes its internal position into 
qt and executes the following operation: it inscribes Sk into the read box supposing 
that Sk e A (Sj is erased); it erases S,-, supposing that Sk = B; it changes the position 
of the head one box to the left (if Sk = L) or to the right (if S,£ = R), leaving S,-
unchanged. The Turing machine continues to operate until there is an applicable 
quadruple in the set of instructions, i.e. such a quadruple (qiSjSkq{) that q{ corres
ponds to the "actual internal state of the machine and S; corresponds to the symbol 
just being read. The set of instructions is supposed to be consistent in the sense that 
there are no two instructions {^SySj-.g,), <^5SjS^J) such that qt = q\, Sj = Sj, but 
Sk 4= S'k or q, #= q\. 

As can be shown, there exist so called universal Turing machines which are able 
to simulate the work of an arbitrary Turing machine supposing that the correspond
ing input is joined with an appropriate code of the Turing machine which is to be 
simulated, e.g., with a code of its Godel number. Clearly, each Turing machine is 
fully determined by the set of its instructions together with the conventions which 
is the initial state and from which box the reading begins. Hence, it is, after all, 
a finite description, the intuitive notions of tape and moving could be eliminated 
in favour of a more formal, but less intuitive notions of instantaneous description. 
There is an infinite number of universal Turing machines over the alphabet A, let 
us fix one among them, which will be denoted by U or U(A), when the role of A is to 
be underlined. We have to accept the unpleasant fact, that the greatest part of the 
results presented below will be parametrized, more or less, by this choice of U(A). 

Let us consider sequences p, S e A*, x e A* u A°°. The description U(p, S) = x 
has the following meaning: if the concatenation S * p (in this order and separated 
by one blank) is inscribed on the tape of the machine U, if the machine is posed 
into the initial state (defined by an appropria:e convention), and if the head reads 
the leftmost symbol in S * p, then either the machine stops after a finite number 
of steps (i.e., after a finite number of applications of instructions) and there will 
be just the sequence x inscribed on the tape (it is the case when x e A*), or the machine 
U will never stop, but for every initial segment x±x2 ... x„ of x there exists a finite 
number of steps after execution of which xxx2 ... x„ will be written on the tape and 
will not be changed by later steps (it is the case when xeA°°) . In what follows 
the notation U(p, S) = x will be used almost always for finite sequences x. J/" = 
= {0, 1,2,...} denotes the set of all non-negative integers. 



Definition 1. Let U be a universal Turing machine over a finite alphabet A, let 
p, SeA*, x e A * u i " be sequences of letters from A. The absolute algorithmic 
complexity KU(A)(x]S) of the sequence x under the condition S is defined by the 
length of the shortest program p, which, concatenated with S, makes the machine U 
to generate x, i.e. 

(1) KU(A)(x]S) = min {/ : / e Jf, I = l(p), p e A*, U(p, S) = x} , 

for the empty set 0 we set min {0} = oo. If S = A e A0 (the empty word over A), 
we write KU(A)(x) instead of Kv(A((x]A) and omit the expression "under the condi
tion S". 

The adjective "absolute" as used in Definition 1 is to distinguish the just intro
duced complexity measures from its modified variant which will be defined below 
as a "relative" complexity measure. Both the adjectives will be omitted supposing 
that no misunderstanding menaces. 

Three basic properties of the absolute algorithmic complexity Kv(A)(x]S) are 
introduced in the following theorem. In spite of the fact that the corresponding 
proofs can be found in references, they are introduced below as well, as they can 
serve as an appropriate illustration of the way of reasoning used in the argumentation 
dealing with the algorithmic complexity. 

Theorem 1. 

(2) (a) (3c e Jf) (Vx G A* u A") (VS e A*) (KV(A)(x]S) ^ l(x) + c). 

(b) If U^A), U2(A) are two universal Turing machines over the alphabet A 
then 

(3) (3c(U1; U2) e Jf)(Vx, S e A*)(\KUl(A)(x]S) - KUl(A)(x]S)\ g c(Ut, U2)), 

(4) (c) (VTe Jf, T ^ 0) (Vn eJf,n£ T) (3x e A") (KU(A)(x]l(x)) ^ n - T) . 

Proof, (ad a) There exists a program pu which works, when concatenated with 
arbitrary x, S e A*, in such a way that it erases S and pu leaving just x on the tape. 
Hence, for p = p, * x, U(p, S) = x, so KU(A)(x]S) ^ l(p) = /(p.) + l(x) = l(x) + 
+ c. Clearly, c depends on U, but this will be the case for all other constants occurring 
below and we shall not always mention this dependence explicitly. 

(adb) If Uj, U2 are two universal Turing machines over A, than there exists a 
fixed program of a fixed length which enables to rewrite programs of Ut into pro
grams for U2 which are equivalent as far as the results are concerned, and vice versa. 
Hence, each program for Ut can be used as program computing the same sequence 
on U2 supposing the program is extended by the mentioned translating program. 
It follows, that for an appropriate c = c(Uu U2) the two inequalities hold: 

(5) KVl(A)(x]S) g KVl(A)(x]S) + c(U1; U2) , 

(6) KVl(A)(x]S) S KVl(A)(x]S) + c(U1; U2), 



and from this the assertion (b) immediately follows. Hence, this assertion proves 
that the dependence of the function Kv^A)(x.]S) on the choice of U is of limited 
character and that the results are independent of this choice "if not taking into 
consideration additive constants". 

(ad c) Programs are finite strings of letters, so there are at most (C(A))' programs 
of the length i and there are at most 

(7) "~T£\c(A)y = (C(Arr - 1) (C(A) - I)"1 < (C(A))-r 

i = 0 

programs of the length shorter than n — T. However, there are (C(A))" sequences 
of the length n, so there must be at least one x e A" for which, given Z(x), no program 
exists which would be shorter than n — T, hence, ^ ( ^ ( x ) ) ^ n — T. • 

The assertion (c), which we have just proved, assures the non-triviality of the 
following definition. 

Definition 2. Let TeN,xeA*, then the sequence x is called T-random. if 

M # ) ) ^ '(*) - T-
May be, we could also use the terms "pseudo-random with parameter T" or 

"absolutely T-random". Of course, the first idea coming into mind is to try, in which 
measure true-random sequences can br replaced by T-random ones, e.g. as side 
random inputs in Monte-Carlo methods and such investigations has been actually 
performed. The object of such investigations was a sequence x ; 1 x2, ... of sequences 
from A*, satisfying the two following conditions: 

(a) for all i e Jf, Z(x;) = i, i.e., x ; e A'', 

(b) for all i e Jf and for aTeJf a priori fixed, X[y(^l)(x;/Z(x;)) ^ i - T. 

The existence of such a sequence of sequences follows from the assertion (e) of 
Theorem 1, the well-known assertion proved by Martin-L6f (cf. [2]) yields, that 
x ; cannot be initial segments of one infinite sequence (the mentioned Martin-Lof's 
theorem claims, that there is no infinite sequence x = x1x2x3 ... e {0, l}"3 and no 
TeJf such that the inequality KV([0tl))(x1x2 ... x„]n) > n — Tholds for all n e Jf 
and this result can be easily generalized to the case of another finite alphabet A). 
The sequence x1 ; x 2 , . . . of sequences then possesses the following properties: 

(1) If m eJf, m > 0, if a = axa2 ... am 6 Am is an m-tuple of letters, then the 
relative frequency of occurrences of a in x ; tends to (C(A))_m, i.e., to the inverted 
value of the total number of such letters (of course, x ; must be considered as a se
quence of letters from Am with the overflous letters from A possibly erased). Parti
cularly, for m = 1, the relative frequency of occurrence of each letter a e A in x ; 

tends to (C(A)Y1, in both the cases it is a convergence for i -* co. Cf. [5] for more 
details. 

(2) Suppose that E <= <0, 1> is a Borel measurable set of reals which is a union 
of semi-open intervals and the Borel measure of which is /i(E). Then we may use 



X( with i large enough in order to sample reals from <0, 1> in such a way that the 
relative frequency of those points which belong to E differs from n(E) by a value 
smaller than an a priori given e > 0 (of course, the "large enough" i depends on E). 
Moreover, let the characteristic function of E be recursive in the sense that the mem
bership of a real x e <0, 1> to the tested set E can be effectively decided using a finite 
initial segment of the binary (decadic, C(A)-adic) expansion of x. Then for an i large 
enough the relative frequency obtained by x ; just equals 1.1(E) (the "large enough" 
i depends on the computational complexity of the algorithm which computes the 
characteristic function of the set E). Cf. [3] and [4] for more details. 

Hence, the absolute T-randomness would seem to be a satisfactory approximation 
of physical randomness (true randomness) or rather true randomness seems to be 
an insufficient approximation of T-randomness due to the fact that the limit asser
tions obtained on the ground of the T-randomness are stronger than the usual laws 
of large numbers. The problem, however, lies in the fact that because of non-recursi-
vity of the function Kv(x]S) no algorithm exists which would generate a sequence 
Xj, x 2 , . . . of sequences with the properties requested above. Even in case an external 
oracle were able to offer such a sequence, we would not be able to verify algorithmic-
ally, that it is a sequence with the demanded properties. Our aim, in what follows, 
is to weaken the demands inposed to the sequence x l s x2, ... in such a way that such 
a sequence were, at least in the theoretical sense, effectively constructible. We shall 
try, meanwhile, to preserve certain continuity with the function KU(A)(xjS) in the 
sense that the case based on absolute algorithmic complexity were approchable to as 
small distance as given a priori, supposing that the time and space complexity of the 
corresponding computational and decision procedures increases. 

Probably the most intuitive idea is to abandon some idealizations which distin
guish an abstract universal Turing machine from an actual, technically realizable 
computer, as a theoretical counterpart of which universal Turing machine was 
conceived. From the one side, these idealizations enable to abstract from the technical 
details and parameters of an actual computer, from the other side, however, these 
idealizations imply the potential non-effectivity of some operations on a universal 
Turing machine. Namely, we shall abandon the assumption that the machine has 
at its disposal an infinite tape and that it is allowed to make an unlimited number of 
operations during a single computation. Hence, we shall suppose that there exists 
an external oracle 0, which watches the work of the universal Turing machine U 
over an input sequence and which stops the machine if either (a) the number of steps, 
i.e. the number of applications of not necessarily different operations, exceeds an 
a priori given n e J/~, or (b) if the computation needs more than meJ/~ boxes of the 
tape, not including the boxes occupied by the input sequence at the beginning ol the 
computation, i.e. if the computation needs more than m boxes which were empty 
at the beginning; again, m is given a priori. If the machine stops before the inter
vention of the oracle, the oracle does not intervene at all and the work as well as 



the result of the universal Turing machine does not differ, in this case, from the ideal 
case as investigated above. By O(«, m) we shall denote the oracle & with parameters 
n, m; the expression &v(n,m...x) = l ( = 0, resp.) means that the universal Turing 
machine is (is not, resp.) stopped by an external intervention oi the oracle &(n, m) 
when working over an input sequence x e A* u A". If p, S,xe A*, n, me J/" = 
= {0, 1, 2,...}, we write U(p, S; (n, m » = x as an abbreviation of the conjunction 
(U(p, S) = x) & (&v(n, m, S * p) = 0). So it means, that using the input sequence 
S * p the machine U constructs the sequence x and needs not more than n applica
tions and not more than m boxes which were empty at the beginning of the computa
tion. 

Definition 3. Let 6 be an oracle, let p, S, x be as in Definition 1, let n, m eJf. 
The relative algorithmic complexity KV(A)(xJS, <n, m » of the sequence x under 
the condition.S and with respect to the oracle 6(n, m) is defined by the length of the 
shortest program which makes, joined with S, the universal Turing machine U to 
generate x without the oracle &(n, m) intervention, i.e., using at most n steps and at 
most m boxes not containing the program and S. In symbols, 

(8) K*(A)(xJS, <«, m » = min {I : I eJf, I = l(p), p e A*, U(p, S; <«, m>) = x } , 

where min {0} = oo and for S = A the same convention holds as in Definition 1. 

Definition 4. Let T, m, n eJf, xe A*, then the sequence x is called (T,n,m)-
random (relatively (T. n, m)-random, pseudo-random with parameters T, n, m), 
if K*(A)(xJl(x); <n, m » 2: l(x) - T 

In the following chapter we shall study some basic properties of the relative com
plexity and randomness. 

3. BASIC PROPERTIES OF RELATIVE COMPLEXITY AND 
RANDOMNESS 

As shown in the foregoing chapter, the main reasons for which we have introduced 
the notion of relative algorithmic complexity instead of its original absolute version 
consists in the fact that the function Kv(A)(xjS) is not effectively computable. So it 
seems to be quite natural to investigate, first of all, whether and in which measure 
this difficulty is overcome when introducing the relative variant. Let us define, for 
this sake, the notion of conditional recursiveness of a function with respect to an 
oracle. 

Definition 5. Let nejf, n > 0, let / , g be two functional, in general partial, defined 
in Jf" and taking their values in Jf. We say that the function / is conditionally 
partially recursive with respect to the function g, if / belongs to the minimal class 
of functions taking Jf" into Jf, containing all partially recursive functions together 

10 



with the function g and closed with respect to the oprations of composition, primitive 
recursion and minimalization (i.e. with respect to the usual operations which define 
the class of partially recursive functions). If / is defined onJfn, it is called conditionally 
totally recursive with respect to g (if a is a partially recursive function, the same 
is / ) -

Theorem 2. The relative algorithmic complexity K* ( i l )(x/S; <n, m » is a condi
tionally totally recursive function with respect to the oracle & and takes its values 
in the set J/" u {oo}. (More correctly said, instead of arguments x and S we should 
use their Godel numbers, using an appropriate one-to-one mapping between A* and 
J/', instead of (9 we use the function (9V). 

Proof. The proof will be given in the constructive way, i.e., we construct an algo
rithm which computes the function K%(A)(x]S; <n, m>) given x, S, n and m. The 
construction will be given in details in order to be useful for further deductions 
concerning the time and space computational complexities of the function K*. 

Let p0 be a program of the length cy with this property: if the concatenation 
S * p0 * X is written on the tape, then U erases p0 and S and stops, leaving x un
changed, hence, U(S * p0 * x) = x. To do this, the machine will need a certain 
number of steps, independent of x, which can be written in the form c2 + 1(S). 
Moreover, the machine will not need any boxes besides those occupied by S, p0 and 
x. Hence, for all n > c2 + 1(S), m > 0, we have 

(9) K*UiA)(x]S; <n, m » ^ l(Po) + l(x) = Z(x) + c. > oo , x e A* . 

Because of the fact that the oracle 6(n, m) stops the run of the program after n steps, 
it suffices, in order to compute K*(A)(x]S; </7i, n>) under the condition that n >. 
2: c2 + 1(S), to exhaust all the sequences over A of the lengths 0, 1, 2, ..., l(x) + c' 
as potential candidates to the demanded shortest program for x. The relation (9) 
assures that such a search will be successful. There are 

(C(A)Z(*> + C' + 1 - 1 ) ( C ( A ) - I ) " 1 

sequences over A with the lengths not greater than /(x) + c1. Using each of these 
sequences as potential candidate for the shortest one, the machine will not make 
more than n steps, as it would be stopped by the oracle in the opposite case. Hence, 
when n >, c2 + l(S), the universal Turing machine needs at most n(C(A)r(x> + Cl + 1 — 
— 1)(C(A) — l ) _ 1 steps in order to compute K*^A)(x]S; (n, m » . 

Now, let n<c2 + 1(S), let p e A* be such that l(p) > l(x) + n. Then U(p, S; 
<n, m>) + x, as l(p * S) > l(x) + n, hence, x differs from S * p in more than n 
places and no procedure, neither the simple erasing, can give x from S * pin n steps. 
Hence, it suffices to overlook exhaustively the sequences p e A* with l(p) S Z(x) + 
+ n < l(x) + 1(S) + c2. If there is one p which gives, together with S, the sequence 
x without an intervention of the oracle &(n, m), than the length of the shortest p with 
this property defines K*{A)(x]S; <n, m » . If there is no p with this property and such 
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that l(p) < l(x) + l(S) + c2, we may be sure that K*(A)(x]S; <n, m » = oo. Using 
the same way of reasoning as above we can see that the number of steps necessary 
to compute K*U)(x]S, <n, m>) is case when n > c2 + /(S) does not exceed 

(C(A) 'W + ; ( S ) + C2 - 1)(C(A) - l ) " 1 . 

The condition n > c2 + /(S) is recursively decidable, and from this fact the condi
tional recursivity of the function K* with respect to the oracle &(n, m) follows. • 

Theorem 3. The time complexity tc and the space complexity sc of the computation 
of the function K*(A)(x]S; <n, m » given the oracle & satisfy the following relations: 

(a) There exists a constant K1 e „V such that for all x, S e A* and for all n,me Jf, 

(10) tc(K\A)(x]S; in, m » ) ^ n(C(AV(*)+*' + '(S) - 1) (C(A) - l ) " 1 . 

(b) There exists a constant K2 e Jf such that, for all x, S e A* and for all n, m e Jf, 

(11) sc(K*(A)(x]S; <n, m » ) g m + Z(x) + l(S) + K2 . 

Proof. The assertion (a) has been proved, in fact, during the proof of Theorem 2, 
the only which rests is to set Kt = max (c«, c2). The longest programs taken into 
consideration when K*U)(x]S; <n, m » computed are of the length l(x) + c t (if 
n ^ c2 + /(S)), or of the length c2 + /(S) - 1 (if n > c2 + /(S)). Hence, setting 
K3 = K1 = max (c l5 c2) we obtain, that ( l l ) holds. • 

Let us recall the fact that the assertion (9) in the proof of Theorem 2 is nothing 
else than a relativized version of the relation KV(A)(x]S) = l(x) + const, which has 
been proved in Theorem 1 for the case of the absolute algorithmic complexity. 
The following three theorems show that, and in which sense, K*,(A)(x]S; <n, m>) 
plays the role of a monotonneous approximation for KV(A)(x]S). 

Theorem 4. For all n, n', m, m' eJf, n' 2: n, m' >. m, and for all x, S e A* the 
following holds: 

(12) Kt,iA)(x]S; <n, m » = K*(A)(x]S; <n', m ' » . 

Proof. IfK*,(A)(x]S; (n, m> = oo, the assertion is trivial. If K*^A)(x]S; <n, m » = 
= / < oo, then there exists p e A* such that l(p) = /, and U(p, S, <n, m » = x. 
But in such a case also U(p, S, <n', m ' » = x, so p e {p' : U(p', S, <n', m ' » = x}, 
hence, / j> min {/':/' = /(p), U(p, S, <n', m ' » = x} = X* u ) (x /S; <n', m ' » . D 

Theorem 5. For all n,mejf and for all x, S 6 A* the following holds: 

(13) KtiA)(x]S; in, m » ^ KV(A)(x]S) , 

so that we could also write that Ku(A)(x]S) = K*U)(x]S; <co, oo». 

Proof. As can be easily seen, 

(14) {/ : / = l(p), U(p, S) = x} = U {I • KP), U(p, S; <n, m » = x} , 

<n,m>eIVxJV 
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so 

KU(A)(x]S) = min {/ : / = l(p), U(p, S) = x} g min {/ . / = l(p), U(p, S, <n, m » = 

= x} = KU(A)(x]S; in, m » for all n,meJf . • 

Theorem 6. There exist n,meJf such that, for all «', m' e . /F, n' > n, m' j£ m, 
the following relation holds: 

(15) KU(A)(x]S) = Ku(A)(x]S; <n', m ' » . 

Proof. If KV(A)(x]S) = oo, and this possibility can occur if x e A 0 0 , then clearly 
KU(A)(x]S; in, m » = oo for all n, me Jf. If KU(A)(x]S) < oo, then there is peA* 
such that U(p, S) = x. Let n be the number of steps performed by the machine U 
when computing x from given sequences p and S, let m be the number of boxes 
on the tape which were used during this computation and which were not occupied 
by S or p in the initial state. Then U(p, S; <rc, m » = U(p, S) = x, hence 
K*(A) (x/S; <n, m » = KU(A)(x]S); according to Theorems 4 and 5 this must hold 
for all n' >. n, m' >, m as well. • 

Now, we shall introduce some auxiliary notions in order to be able to state the 
basic assertion dealing with the possibility to use absolute T-random sequences as 
pseudo-random inputs. Then we shall formulate and prove an analogy of this basic 
assertion for the case of the relative T-random sequences. 

Let x = x1x2 ... x„e A", let m e Jf, m > 0. Set 

(16) B(m, x) = {{Xl ...xm}, {xm+1 ... x2m},.... {x(k_1)m + 1 ... xkm}} , 

where km ^ n < (k + 1) m, so B(m, x) e (Am)* <= (Am)*. In other words B(m, x) 
is a word or string over a new alphabet A"', obtained by grouping the letters in x 
into blocks of the length m (and by neglecting the last n — km letters, if n is not 
divisible by m). The property of the absolute T-randomness can be defined, using 
the universal Turing machine U, also for sequences from (A"')*, as we may define 
KV(Am)(x]S) by KU(Am)(B(m, x)]B(m, S)). As can be shown, the absolute T-random
ness is, in a sense, invariant with respect to the replacement of A by Am, i.e. x and S 
by B(m, x) and B(m, S). 

Theorem 7. There exists cteJf such that, for all absolutely T-random x e A* 
and for all mejf, m > 0, B(m, x) is absolutely T'-random for T = T + cu in 
symbols, 

(17) Ku(A)(xll(x)) ;> Z(x) - T=* KV(Am)(B(m, x)]lAm(B(m, x))) ^ 

^ U * ) - T~ci 

If l(x) is divisible by m, (17) holds for c. = 0. 

Proof. Cf. the proof of Theorem 2 in [5]. 
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Theorem 8. Let Sf = {S1; S2, S3, ...} be an infinite sequence of sequences from A* 
such that, for all ieJf, l(S,) = i and S; is absolutely T-random, i.e. KViA)(Siji) > 
> i — T. Let fr*(a, S,) denote, for a 6 A, the total number of occurrences of the 
letter a in S;, set fr(a, St) = i'1 fr*(a, St). Then, for all a e A, lim fr(a, S;) exists 
and, moreover, :~~'~ 

(18) lim/7-(a, S,-) = (card (A))'1 . 

Proof. In spite of the fact that the proof is given in [5], we repeat it here as well, 
in a modified form, because of the fact that it contains a construction to which we 
shall refer several times in the rest of this paper. Write c = C(A) and suppose, 
in order to arrive at a contradiction, that lim fr(a, S„) either does not exist, or its 

equals to a value c' 4= c"1 . In the latter case a e A may be chosen in such a way 
that c' < c - 1 , or if the relation limjr(a, S„) = c'a > c _ 1 held for all a e A, with 

sharp inequality holding for at least one as A, then we would obtain ~~ lim/r(a , S„)> 1 

and this is not possible. So we may assume that there exist a e A and e > 0 such 
that 0 <.fr(a, S„) < c - 1 — e for infinite number of n's from Jf. Let us fix an 
a e A, e < c _ 1 and one S„ for which this relation holds. 

Setting (' = fr*(a, S„), we obtain i < c~xn — en. The sequence S„ can be described 
by giving these two objects: 

(1) a string of the length n — i over the alphabet A — {a}, it is the element of the set 
(A — {a})"~1 which results when all occurrences of a in S„ are erased. 

(2) an j-tuple of natural numbers, not exceeding n and giving the indices of the 
places in S„ where the occurrence of a are situated. 

A simple fixed program, the length of which will be denoted by k, constructs then 
S„, given the two objects above. There are (c — l)" - 1 ' words of the length n — i 
over the alphabet A - {a}, hence, a word of the length Int (logc (c — 1)""') + 1 
over A suffices in order to encode the original word of the length n — i over A — {a}. 

There are ( . ) different i-tuples of different positive integers not exceeding n, hence, 

a word of the length Int I logc I . 11 + 1 over A suffices in order to encode such 

an z-tuple. Combining these results we obtain 

(19) KVU)(S„Jn) <, Int (logc (c - l)"- ;) + 1 + Int 6 °Sc ( "Y) + 1 + * = 

< logc (c - I)""1' + logJ n J + k', k' = fe + 2 . 

In order to close the proof by contradiction it is sufficient, now, to show that 
the right side of the inequality (19) is smaller than n — T for i < c~xn — en and 
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for n sufficiently large. The relation 

(20) logc(c - 1)""'' + log.V j + k' < n ~ T 

holds if, and only if: 

(21) ( c - i r ' ( ^ ' < C . c - T 

and this relation holds, for n sufficiently large, if 

(22) lim c~"(c - 1)"" ' ' (") = 0 . 

The well-known criterion sounds, that (22) holds, if the ratio of the two subsequent 
members of the series could be majorized by a value smaller than 1, at least for n 
large enough. An easy computation yields 

( c _ . » + ! - . / '» + l \ c - - l 
1 > v I 7 _ (c- A (_ + ______ _______ t + 2) = 

(c-l)-Y")c-" V C j n ( n - l ) ( „ - 2 ) . . . ( n - f + l) 

c - l \ / 1 + 

« — i 

As i < c"xn — en and e < c ~ \ we obtain 

v V c 7 \ n — c xn + £H + 1 

c - 1\ / n + 1 \ _ / cen + 1 

n - c 'и + єn + 1 / V ( c - 1) (» + 1) 

C£ 1 - C£ ^ - " 1 1 

= 1 + + < < 1 . c - 1 (c + 1) (n + \)J 1 + e 

This inequality completes the proof. • 

Theorem 9. Let the notations and conditions of Theorem 8 hold, let mejf, m > 0, 
be given, then for all a e A"', lim fr(fi, B(m, S,,)) exists and, moreover, 

(23) lim/r(a, B(m, S,,)) = (card A)'"'. 

Proof. The assertion immediately follows from Theorems 7 and 8. Theorem 7 states 
that each S,„ which satisfies the conditions of Theorem 8, is an absolutely T'-random 
sequence over the alphabet A'" and for T' = T + const. Hence, Theorem 9 follows 
when Theorem 8 applied to the sequence {B(m, S_), B(m, S2),...} of sequences over 
the alphabet A"'. • 
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Now, let us re-formulate and prove the Theorems 8 and 9 to the case of the relative 
complexity. Let us postpone a discussion concerning the meaning and the importance 
of such an assertion till the end of its proof. 

Theorem 10. Let Sf = {S1; S2,...} be a sequence of sequences from A* such that 
1(S{) = i. Then there exist functions f,g :J/"->Jf with the following property: 
if each S; is relatively <T ri, m'>-random, i.e. if 

(24) KuiA)(Sili; {ri, m ' » ^ i - T, 

for some ri 3; j(i), m' 3; g(i), then for each m e / , m > 0 and each a e A , 
limjr(a, B(m, S;)) exists, moreover, 

(25) limjr(a, B(m, S,)) = (card A)~m . 

Proof. Let iejf, denote by p;&A* the shortest program which generates S; 

given i and using universal Turing machine U (p; is one of such programs supposing 
there are more of the same minimal length). So it holds 

(26) U(Pi, i) = S„ l(Pi) = KU(A)(Sili). 

Denote by f(i) the number of steps performed by the machine U when generating 
S; from pi and i, denote by g(i) the number of boxes on the tape used during this 
computation but not occupied by p; or i at the initial state. When defining j and g 
in this way and when applying Theorem 4, we obtain, that for each ri 3: f(i), m' 2; 
2; g(i) the relation 

(27) KuiA)(Sili; {ri, m ' » = Ka<4{Sji) 

holds, hence, the condition (24) is equivalent to the condition of the absolute T-ran-
domness of the sequence S;, i ejf. In this way, the assumptions of Theorems 8 and 9 
are satisfied and it is why also their assertions hold (here we present just the generalized 
variant of Theorem 9, the assertion equivalent to Theorem 8 lollows as a special 
case when setting m = 1). Q 

The consequences deduced in Theorems 9 and 10, are, formally spoken, the same 
and they are also intuitively acceptable, as the convergence of relative frequencies 
of particular letters or strings of letters to the uniform distribution is considered 
to be a necessary condition to admit the sequence of letters in question as a good 
approximation of the realization of a true random sequence of independent samples 
from the uniform (equiprobable) distribution over the set A. As far as the premises 
are considered, both of them are non-effective in the sense that their validity cannot 
be algorithmically checked. Neither can be algoritmically generated a sequence S 
satisfying these premises. There is, however, a difference between the condition 
of absolute T-randomness and the condition (24). When knowing the functions / and 
g and supposing that they were recursive, the condition (24) would be algoritmically 
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decidable for all / eJ/~. Moreover, it would be possible to generate arbitrary initial 
segment of the sequence y satisfying the conditions of Theorem 10 (in the worst 
case, by a blind exhaustive searching in the sets A" with n increasing and by testing 
whether they are or are not </(<), g(i), T)-random where i denotes the length of the 
investigated sequence). In other words, it is just the fact that the functions / and g 
are not constructively defined which causes the condition (24) not to be effectively 
decidable, as we have obtained our definitions for / and g by an argumentation 
which is substantially based on the axiom of choice. In fact, the relation (27) has been 
obtained by the process of skolemization applied to the formula 

(28) (V.) (3n) (3m) (K*M)(5 (/i; <n, m » = KU(A)(S.Ji)), 

even if this assertion has not been explicitly mentioned; here / ang g are Skolem 
functions corresponding to the existential quantifiers in (28). It follows, that if it were 
possible to define / and g in an effective and constructive way and if they were re
cursive, it would be possible to verify effectively the validity of premises of Theorem 
10. Hence, it would be able to construct an arbitrary initial segment of such a se
quence y = {Su S2, •-.} e(A*)00, that using y instead of true-random sequences 
would assure the convergence of relative frequencies of letters and their strings to the 
uniform distribution over the corresponding Cartesian product of A. Moreover, 
the obtained convergence would be that in the usual mathematical sense, i.e. stronger 
convergence than that offered by statistical laws of large numbers. In what follows 
we shall try to find, in a constructive way, recursive functions / and g satisfying 
the demands of Theorem 10. 

Consider a sequence p e A* which, taken as a program, generates a word w' e A*, 
using the quadruple <;', a, w, n> which satisfies certain conditions, and proceeding as 
follows. Formally, we can write U(p * i * a * w * n) ~ w' and U can be also con
sidered as a partial mapping which takes the corresponding Cartesian product into A*. 

(1) The program p verifies, first of all, whether 

(a) i is the expression for a positive integer, written in the alphabet A, 

(b) a is a letter of the alphabet A, i.e., a e A, 

(c) w e U (A - {a})J, i.e. w is a word of the length at most i over the alphabet A 
j=o 

which does not contain the letter a, 

(d) n is a positive integer which satisfies the inequality n = I , J and which is 
written in the alphabet A. \ \ '/ 

All these conditions can be effectively verified, and if at least one of them is not 
satisfied, then U(p * / * a * w * n) is not defined. Let the conditions (a)-(d) hold, 
then the program p proceeds in this way: 

(2) It compares i and /(w), if i = l(vt), then U(p * i * a * w * n ) = w and 
the work of the program p terminates. 
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(3) Let /(w) < ;', then there are ( . _ J = I , 1 possible (;' - /(w))-

tuples <fcl5 kz,..., /c,_I(w)> of positive integers without repetitions. There exists 
a uniquely defined ordering of these (/ — /(w))-tuples with respect to a supposed 
and uniquely defined alphabetical ordering of the letters from A. Program p generates 
(or finds) the nth of these (i — /(w))-tuples, say <fcj, k2, ..., fc;_/(w)>, this step can 
be effectively performed. 

(4) Program p generates a sequence w' = <w'«, w2, ..., w',> in this way: if 
j e {fcj,/c2, . . . , / c ,_ ; ( w ) } , then w) = «, the other /(w) positions in w' are occupied 
by the symbols from w in the same order as in w. In other words, program p inter
polates the occurrences of the letter a in the original word w in such a way that the 
indices of the occurrences of the letter a in the resulting word w', Z(w') = ;', were 
just kuk2,..., /c,_,(w). 

(5) Program p terminates its "work, so U(p * i * a * w * n) = w'. Clearly, p 
is the program the existence of which assures the validity of Theorem 8. 

Let us denote, now, by tc(i, a, w, n) the number of steps performed by the machine 
U when generating the word w' = U(p * i * a * w * n) and by sc(i, a, w, n) the 
number of boxes on the tape used during this computation and not occupied by the 
concatenation p * i * a * w * n in the initial state. Set tc(i, a, w, n) = sc(i, a, w, n) = 
= 0, if U(p * i * a * w * n) is not defined. From the fact that the conditions for w 
and n, under which U(p * i * a * w * n) is defined, are recursively decidable, and from 
the way in which program p proceeds, it follows immediately, that tc and sc are 
totally recursive functions of their arguments and they could be specified in more 
details when given the alphabet A and the universal Turing machine U. Set, now, 
for ; e Jir, 

(29) E(/) = max max max {__•(;', a, w, /?)} , 
a__ weW(a.i) »«( i ,w) 

(30) G(i) = max max max {sc(i, a, w, _)} , 
aeA wsW(a.i) nSK(i.w) 

where W(a, i) = U (A - {a})1, K(i, w) = (' . ) . For each ieJf the sets W(a, i) 

and {n : n :£ K(i, w)} are, clearly, finite because of the finiteness of the set A. Hence, 
even E and G are totally recursive functions defined on the set of natural numbers 
and taking it into itself. Let us try to show, now, that the just generated functions E 
and G can be used as constructive variants of the non-effectively defined Skolem 
functions f and g occurring in the proof of Theorem 10. 

Theorem 11. Let Zf = {St, S2,...} be a sequence of sequences from A* such that 
/(S,) = i and each S, is relatively <T F(i), G(.)>-random, hence, 

(31) K*tA)(S,li; <F(i), G(/)» ^ i - T. 

18 



Then for all meJf, m > 0 and all a e A m , lim/r(a, B(m, S;)) exists, moreover, 

(32) lim/r(«, B(m, S;)) = (card (A))'m . 

Proof. Let us investigate only the case m = 1, as the generalization to m > 1 

is the same as in the case of Theorem 9. Let for some a' e A the relation lim fr(a', S,) = 
;->oo 

= c"1 does not hold, where c = card (A). Then there is e' > 0 such that for infinitely 
many values iejf the inequality |/r(a' , S;) — c _ 1 | > e' holds. As £ / r ( a , S;) = 1 

aeA 

for all i e^yT, then there must exist aeA and e > 0 such that fr(a, S;) < c" 1 — e 
for infinitely many i's from ./F. For each i E ! " there exist w, e If (a, i) and nt ^ 
:£ X(i, w ;) such that U(p * i * a * w ; * n;) = S ;; w ; is nothing else than S ; with all 
occurrences of a e A erased and nt is the number of the (i — /(w))-tuple of erased 
indices with respect to the supposed alphabetical ordering of such (i - i(w))-tuples. 
According to the way, how the functions F and G are defined, we have also that 
U(p * i * a *Yfl* nt; <E(i), G(i)}) = S ;, as F(i) abd G(i) are the upper bounds 
of the time and space complexity of the program p over all aeA, w ; e W(a, i), 
and nt £ K(i, w ;). Hence, 

(33) K*(A)(StIH <E(i), G(i)y) s KP * « * w i * ».) 

for infinitely many i's from Jf and using the same argumentation as in the proof 
of Theorem 8, the right-hand side in (33) is majorized by i-Tfor all i > i0, if i0 is 
appropriately chosen. This contradicts the assumption (31), so there exists, for each 
£ > 0, such an i1 e Jf, that |/r(a, S;) — c""1] > e holds for all a e A, i 2: i,, hence, 
l im/r(a, S;) = c"1 . As already said, the generalization to m > 1 is straightforward, 

;->oo 

of course, the functions F and G must be replaced by functions Fm and Gm corres
ponding to the alphabet Am. • 

Before closing this chapter let us mention one alternative definition of relative 
algorithmical complexity which seems to be more general and appropriate, together 
with introducing the reasons for which we have preferred, nevertheless, the definition 
presented above. In the accepted approach we interpreted the expression U(jp, S; 
<n, m » = x in such a way that the universal Turing machine U stops itself its work 
over S * p, before the oracle's intervention forces it to do so. It would be possible 
to extend the sense of the expression U(p, S; <n, m » = x also to the case when x 
is written on the tape in the moment when the oracle &(n, m) stops the work of the 
machine U over the input string S * p (and when this x would be modified and 
changed by the further actions of the machine U supposing the oracle let it run). 
Under such an interpretation of the relation U(p, S; <n, in)) = x, however, the 
monotonous character of the function X*U )(x/S; <ji, m>) with respect to the para
meters n and m would be seriously threaten; this monotonicity is explicitly stated 
in Theorems 4 and 5 and substantially used several times above. As an example, 
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consider a digital (A = {0, 1, ..., 9}) or binary (A = {0, 1}) alphabet and take the 
sequence x = 00. . .0 , l(x) = n (or x = 0", in other way).Then there exist ri, irieJT 
such that KU(A)(xjA; (ri, m')) = const, where const does not depend on n, on the 
other hand, Ku(A)(xjA; <n", ;n"» ^ const + logc n for n" #= ri, m" 4= m', here 
c = caj-d (A) = 2 or 10. Or, if ri, iri appropriately chosen, then x can be constructed 
using the simple program, independent of n, which generates an infinite sequence 
of zeros; it is just the oracle which stops the work after having generated the nth 
zero. In other cases, the instruction to stop after having generated 0" must be in
corporated into the program, so the c-adic expression for the number n must be a part 
of the program, and this needs at least logc n boxes on the tape. Even if it might be 
interesting and useful to study in more details the mentioned above extension of the 
relation U(p, S; (n, m)) = x, for the sake of simplicity and monotonically con
servation we have preferred the variant adopted here. 

4. RELATIVE ALGORITHMICAL RANDOMNESS AND 
MONTE-CARLO METHODS 

In its most general form the notion of the Monte-Carlo method covers each 
computational or decision method which takes profit of the statistical laws of large 
numbers in such a way that the unknown expected values (probabilities) are replaced 
by arithmetical average values (relative frequencies) and the risks following from 
such a replacement are accepted. Let {X1, X2, •••} be a sequence of independent and 
identically distributed random variables with a finite expected value EX and finite 
dispersion D2X; the random variables are defined on a probability space (Q, 9>', P) 
and take their values in the Borel line <E, J 1 ) , E = ( - co, co). Then 

(34) P({co:a)eQ,\imn~1YJXi(co) = EX}) = 1 , 

so the arithmetical average value tends almost surely to the expected value. Hence, 

it is reasonable, in a sense, to take the value n" 1 ^]Z,.(co), for n large enough, as an 
;=i 

acceptable approximation of the value EX. The well-known Tchebyshev inequality 
describes in a quantitative way, in which sense the arithmetical average value approxi
mates the expected value, giving an upper bound for the probability with which both 
the values differ from each other by more than an e > 0. Precisely, 

(35) P({co :coeQ, {n^1^ Xt(co) - EX\ > e}) < D2X(ne2)-x . 
i= 1 

There exist a number of improved variants for this inequality, however, we shall 
not introduce them here, neither we shall investigate here the character of the con
vergence occurring in the laws of large numbers and the consequences for the philoso-
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phical and metodological justification of Monte-Carlo methods. As special cases 
we may consider the two-valued random variables Xt, for which X;(co) = 1 with, 
a probability p and Xt(co) = 0 with a complementary probability 1 — p. Clearly, 
these random variables can be interpreted within the framework of the Bernoulli 
schema, i.e. as occurences (X,(co) = l) or absences (Xj(co) = 0) of a random event 

in a series of independent trials. Then n'1 ^Xt(co) is just the relative frequency 
:'=1 

r(A, p, n, co) of the occurrences of a random event A in n independent trials, EX = p, 
D2X = p(l - p). In this notation 

(36) P({co :coeQ, lim r(A, p, n, co) = p)) = 1 , 

(37) P({co :caeQ, \r(A, p, n, co) - p\ < E) > p(l - p) (ne2)~l g (4/2£2)~~1 , 

as the value p(l — p) takes its maximum \ for p = 1 — p = \. 

Monte-Carlo methods became attractive just with the computers coming into 
scene when the computations connected with large samples (i.e., for n large enough) 
became technically accessible, enabling to obtain estimates of high correctness and 
realibility. However, the limiting factor of implementation of Monte-Carlo methods 
on computers consisted in the fact that the used true-random generators were rather 
slow and expensive. This led to the idea of the so called pseudo-random numbers, i.e. 
sequences of numbers which are generated deterministically (as a rule, by an appro
priate computer program), but which can replace the true-random generators for 
the Monte-Carlo methods. As said in the introductory part of this paper, from this 
stage of reasoning there is a direct path to the idea to use sequences of high absolute 
or relative algorithmic complexity to these purposes, in the introduced terms, to use 
absolutely or relatively T-random sequences. As already mentioned, the aspirations 
of T-random sequences are justifiable, even the obta'ned limit results are, in the case 
of absolutely T-random sequences, qualitatively better than in the case of the true-
random ones. Even the relatively T-random sequences were proved, in the last chapter, 
to satisfy, supposing the time and space limitations are large enough, one of the basic 
condition of an independent random sample, i.e. the stability of the relative fre
quencies of occurrences of particular letters and strings of letters together with the 
convergence of these relative frequencies to the uniform distribution. Let us try 
to find, now, whether relatively T-random sequences can be used also in order 
to generate random samples necessary for Monte-Carlo methods. 

Consider the following most simple model. Let M = {at, a2, •••} be a finite or 
infinite countable set, let V be a formula of an appropriate first-order predicate 
language with a single variable, which is interpreted as ranging over thr set M. 
Hence, Vis a predicate which can be attributed to each element of the set M. We shall 
suppose, that for each at e M the validity or non-validity of V(fl;) can be decided 
effectively, quickly and within low expenses. The measure /x(V M) of the property V 

21 



in the set M is defined by 

(38) n(V, M) = (card (Mj)~1 card {/ : i = card (M), V(a,)} , 

if card (M) < co, or by 

(39) fi(V, M) = lim n~1 card {i : i S n, V(a,)} , 

supposing that card(M) = co and that the introduced limit exists. Our aim is to 
obtain the value n(V, M), however, we shall mostly investigate the situations where 
this is not immediately possible because of theoretical (infinite set M) or practical 
(finite, but very large set M) reasons. In such a situation the Monte-Carlo method, 
and the statistically based estimate which it offers, seem to be an acceptable outcome. 
When we are satisfied just with an appropriate approximation of the value fi(V, M), 
we may limit ourselves to the case when the set M is finite. If M is not finite, we may 
approximate the value [i(V, M), if defined, by a value [i(V, M„), with M„ = {at, a2,... 
. . . ,a„} <= M and with neJf large enough. The difference \/J,(V, M) — n(V, M„)\ 
may be done as small as demanded. 

Theorem 12. Let M = [au a2, ..., an} be a finite nonempty set, let p(V, M) be 
defined by (38). Let A — ( 5 . , d2,..., an} be such an alphabet that each letter a, is 
the number of the element a,e M. Let Sf = <S1; S2, ...> be such a sequence of finite 
sequences over A, that for a given TeJ/" and for each i e Jf 

(a) l(S,) = i 

(b) K^pji; <E(/), G(/)» = i - T , 

where F and G are the functions defined by (29) and (30). Set, for each i e Jf, S, = 

(40) fi(V, S;) = r 1 . card {j :jejr,j^ i,V(f(xu))} , 

where / is the mapping which ascribes to each 5j e A the element a , 6 M, which is 
labelled or enumerated by Uj. Then 

(41) lim fi(V, S^ = fj.(V, M). 

Proof. Let xeA*, j ;g n. Denote by r(dj, x) the number of occurrences of dj 
in x, denote by Mv c M the subset of all elements from M which possess the pro
perty V, and denote by Av c= A the set of letters corrrsponding to Mv. Then 

(42) n(V, M) = card (MY) (card (M))~x = card (Av) (card (A))"1 . 

Hence, 

(43) lim fi(V, S) = lim r x Y, r(dj, S;) = card (Av) (card (A))-1 = fi(V, M), 
i -oo i->x SjsAv 

as lim r 1 r(dj, S;) = (card (A))"1, according to Theorem 11, for each dj e A. • 
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The assumption that card (M) = card (A) may seem to be, from the first sight, 
rather strong and limiting, because it implies the existence of a one-to-one isomorphism 
between M and A. As we have already showed, however, the sequence Sf of sequences 
can be seen not only as sequence of sequences over A, but also over a product alphabet 
A" with n taken in such a way that (card (A))" = (card A") ^ card M. Replace 
the condition (b) of Theorem 12 by a new condition 

(b') K*V(An)(B(n, S,.)/^„(S,.); <F„(i), G„(i))) £ lAa(St) - T. 

We assure the validity of Theorem 11 with respect to the alphabet A", clearly, B(n, S,) 
is the sequence S,- taken as a sequence of strings from A", lAn(St) is the length of 
B(n, Sj) with respect to A", and the functions F„, G„ are defined, with respect to the 
alphabet A", in the same way as F and G were with respect to A. When card (A") > 
> card(M), the letters from A", to which no element from M corresponds are not 
taken into consideration, when ~(V, S,) computed. A more detailed analysis of the 
proof of Theorem 12 shows that this assertion holds even in this case. 

Relatively T-random sequences may be used even in order to estimate probabilities 
or measures defined on infinite spaces, when appropriately using the diagonalization 
method. Let us demonstrate this claim in the case of some Bore! measurable sets. Let 
us limit ourselves to subsets of the unit interval <0, 1), as the generalization to subsets 
of other finite intervals will be straighforward and follows immediately from the 
constructions presented below. 

Let E c I = <0, 1) be a finite union of semi-open intervals, i.e. a special case 
of Borel set in I. Let fi(E) be its Borel measure, hence, 1.1(E) is the sum of the lengths 
of disjoint intervals the union of which is E. Denote, for ;', n ejV, j f£ n, by I(j, n) 

the semi-open interval <(j-\)n~1,jn~1), so J = (J l(j, n). Set 
j = i 

(44) n*(n, E) = n " 1 card {j :j ^ n, l(j, n) n E #= 0} , 

hence, /{* is something like an "outer measure" of the set E generated by the intervals 
l(j, n). Clearly, for each interval <a, b) <=• I the relation 

(45) lim n*(n, <a, b)) = b - a = n«a, bj) , 

holds, so the same must hold for E as well, so lim f.i*(n, E)= fi(E). The value /x*(;i, E), 

is completely defined by the fact, which of the finite number of intervals l(\. n), 
I(2,n),...,I(n,n) possess the property V, i.e. the property of having a nonempty 
intersection with the set E. Hence, /**(/?, E) can be approximated by using appro
priate relatively T-random sequences according to Theorem 12. 

Consider a sequence Sf* = \Sf ±, S^2, S"3, ...} of infinite sequences with the 
following properties: Each Sfk is a sequence [Skl, Sk2,...} of finite sequences of 
elements from Ak, i.e. of fe-tuples of letters of the original alphabet A. Moreover, 

(46) lAk(Ski) = i, for all k,ieJ/~, where lAk is defined by the number 

of /c-tuples in Ski, i.e. l(Ski) = lAi(Ski) = k . lAk(Ski) ; 
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(47) K*u(Ak)(Skili ; <Fk(i), Gk(i)}) ^ i - T , 

with the function Fk, Gk being effectively constructed, with respect to the alphabet Ak, 
in the same way as F and G were with respect to the original alphabet A. 

Let us divide, for each k e Jf, the interval / = <0,1) into subintervals l(l, ck), 
1(2, ck),..., I(ck, ck), with c = card (A), so that to each letter from Adjust one interval 
I(j, ck) corresponds, let us denote it immediately I(x, ck) for x e Ak. Let us define, 
given k, ieJf, the value ^(S*;, E) in this way: 

(48) fi(Ski, E) = r l card {j : j ^ i, l(xkJ, c") n E * 0} , 

where Ski = {xki, xk2,..., xki}, hence fi(Ski, E) is the relative frequency of occurrences 
of those elements from Ak, whose corresponding intervals of the length c~k have 
a nonempty intersection with the tested set E. Because of the fixed one-to-one corres
pondence between the intervals l(j, ck) and the letters from Ak we are allowed to 
consider the sequence Ski as a sequence of intervals I(j, ck) and we shall often do so 
in what follows. 

Theorem 12 implies the following assertion. 

Theorem 13. Let £, £f*, £fk, Ski, fi and /t* satisfy the conditions introduced above, 
then 
(49) Jim fi(Ski, E) = /x*(ck, E), 

for all k,ieJf. 

Proof. Denote 

(50) Bk(E) = {j : j S c\ / ( / , ck) n E * 0} , 

so that, according to (44), n*(ck, E) = c~k . card(Bk(E)). In the same time we may 
write 

(51) fi(Ski, E)=i~Ll card {j : j ^ i, Xj = /} = V. fr(l, Skl) , 
leBk(E) leBk(E) 

so that, in the limit case 

(52) lim fi(Ski, E) = lim Y. fr(l, Ski) = £ limjr(/, Ski) , 
i-»oo i-»co leBk(E) l<=Bk(E)i^co 

as the number of summands is finite (at most ck) and independent of ('. According 
to Theorem 12, limjr(/, Ski) = c~k for each / e Ak, i.e., / ^ ck. Hence, 

(53) l i m M ( S „ , E ) = £ c-k = c-k.card(Bk(E)) = fi*(ck,E). D 
i-oo leBk(E) 

The relation (53) clearly implies that there exists, for each k e Jf, an i(k) e Jf such 
that \fi(Skm, E) - n*(ck, E)\ ^ l/fe, and because of the fact that /.i*(ck, E) tends 
to ft(E) with k increasing, also lim n(Ski(k), E) = n(E), A constructive variant 

t-a> 

of this limit assertion can be obtained as follows. 
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When proving Theorem 13, we used the fact that for each / e Ak, lim//•(/, Ski) = 

= c'k, the corresponding proof being presented in Theorem 12. Hence, for each 
kejf there exists i(k) e Jf such that, for all i l> i(k) and all / e Ak, the relative 
frequency of occurrences of / in Ski differs from c~k by less than (c + lj~ fc, hence, 
for i ^ i(k), I e Ak, 

(54J fr(l, Su) e (c~k - (c + l)~k, c~k + (c + l)'k). 

By a detailed analysis of the proof of Theorem 12 we shall find, that such an i(k) 
can be effectively found given k eJf. Using the sequence Sf*, we shall define a new 
sequence 

(55J Sf = {Si;(i), S2i(2)> S3K3),...} 

of finite sequences; for all k e Jf, 

(56) U W = »(fc) ' 
(57) K*V(Ak)(Skmli(k) ; <£*(/cj, G*(/c)» ^ i(k) - T, 

where F*(k) = Fk(i(k)), G*(k) = Gk(i(k)) are recursive functions according to the 
recursivity of the functions Fk, Gk and i(k). 

Theorem 14. Let £, Sf*, S?, Ji and /** satisfy the conditions introduced above, then 

(58) lim fi(Skm, E) = ,x(E), 
k-Ka 

Proof. A simple computation yields that 

0 = lim \jl(Skm, E) - n(E)\ = lim (\jl(Skm,E) - P*(ck, £ ) | + \P*(c\ E) - P(E)\) = 
t-+oo k^oa 

= lim \fi(Skm, E) - fi*(ck, £) | + lim \n*(ck, £) - /<£)| = 
fc->O0 fc^OO 

= lim \fi(Skm, E) - n*(ck, E)\ . 
k->a> 

Relations (52J and (54) imply that 

H(Skm, E) = £ fr(l, Ski(k)) < I (c~k + (c + I)"*) = 
!eBk(E) IEB^E) 

= c"* . card (Bk(E)) + (c + \)~k card Bk(E) S P*(ck, E) + (c + 1)"* ck, 

as Bk(E) c A", so card (Bk(E)) S ck. 
Using analogously the other side of the relation (54) we obtain, that 

(59) ~(Skm, E) ^ P*(ck, E)-(c + l)~k ck, 
so that 
(60) lim \fi(Skm, E) - ,i{E)\ = lim \ji(Skm, E) - n*(ck, £ j | g 

= lim2.(c + l)-".c* = 0. D 
k->oo 
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Hence, Theorem 14 improves the results obtained in [3] and [4] in the sense that 
it enables an arbitrarily close approximation of the unknown value fi(E) by Monte-
Carlo methods, using as a pseudo-random input sequence a sequence of relatively 
T-random sequences with appropriate recursive time and space limitations, hence, 
there is no need of absolutely T-random sequences, as it claimed the premises of 
assertions proved in [3] and [4]. Each finite initial segment of the defined above 
"diagonal" sequence $? can be effectively, i.e. recursively, constructed, or it is pos
sible to decide effectively, given a finite sequence of sequences of letters from A, 
whether it is an initial segment of an appropriate sequence Sf or not. The problem 
how large would be the computational complexity of such a constructive or decision 
procedure will be postponed to one of the following chapters, as well as the question 
of its practical use. Let us just remember, that in the case of the absolute T-randomness 
the initial segments of the corresponsing sequence £f are principally non-constructive 
and the predicate of being an initial segment of £f is algorifhmically undecidabie 
(because of the general undecidability of the halting problem for the universal 
Turing machine cf. [ l ] in general, [3], [4] in the context of the problems solved 
here). 

5. ABSOLUTE AND RELATIVE T-RANDOMNESS IN RELATION 
TO RECURSIVE CHOOSING RULES 

It was proved, in the third chapter of this work, that when accepting "high enough" 
time and space limitations and with these limitations increasing quickly enough 
when the length of the tested sequence increases, the relative T-randomness of such 
sequences may serve as a sufficient condition for the stability of relative frequencies 
of occurrences of particular letters and strings of letters. Such a stability is one of the 
demands usually imposed to a sequence in order to consider it for a useful simulation 
of an independent and equally distributed random sample from the set A of letters. 
However, usually more is requested, namely the condition of stability and conver
gence of relative frequencies is demanded to hold not only for the sequence in question 
but also for some of its subsequences, at least for those of them when it is just the 
index of the occurrence which decides about the belonging of this occurrence of 
a letter to the subsequence in question. Let us investigate, in this chapter, whether, 
and in which measure, absolutely and relatively T-random sequences possess this 
property. 

Le t j : N -> N be a total (i.e. always defined) recursive function such that, for all 
i,j e / , if i < j , thenj(i) < f(j), let us call such functions monotonously increasing 
(or simply monotonous, as no monotonously decreasing function in this sense exists). 
Hence, f(l), f(2),... is a monotonously increasing sequence of natural numbers. 
Denote, for S = <#., x2,..., xt} e A1, 

V."H ~* ~ \X/(1)> Xf(.2)> */(3)> • • •» */(*(.))) » 
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where 

(62) k(i) = max{j:jeJT,f(j)Si}. 

By Sf we shall denote the sequence obtained from S when the occurrences 
*/<i)' x/(2)> •••» xs(Hi)) are erased, so l(Sf) + l(Sf) = l(S). 

Theorem 15. Let 5" = \SU S2, ...} be a sequence of absolutely T-random sequences 
of increasing lengths over a finite, and at least binary, alphabet A. Hence, for a given 
TeJT, 

(63) l(S,) = i, 

(64) KU(A)(StJi) ^ i - T . 

L e t j : Jf -> Jf be a monotonously increasing recursive function. Then there exists 
T = T'(Tj) such that <ff = {S{, S{,...} is a sequence of absolutely T'-random 
sequences of non-decreasing lengths, i.e. 

(65) i^j=>l(S{)<l(Sf), 

(M) KmA)(S{Ji) ^ 1(S{) - T = k(i) - T . 

Proof. Let us prove the assertion by contradiction, supposing that there are, 
for each T eJ/', infinitely many i"s in Jf, for which 

(67) KV(M(S^i) < i(S{) - T . 

Now, consider three objects: 
(a) A /c(/)-tuple <j(l),j(2), ...,f(k(i))} of natural numbers; such a /c(i)-tuple is 

completely defined, given i, by the program which defines the recursive function j . 
If this program is of the length Cj(U), we have 

(68) KV(A)((f(i),f(2),...,f(k(i))}Ji) ?k cx(V). 

(b) A fe(/)-tuple S{ of letters over A; as far as the complexity KViA)(S{Ji) is concer
ned, we suppose, for the sake of this proof, (67) to hold. 

(c) An (i — fe(/))-tuple S{ of letters over A; the general assertion (cf. Theorem l) 
implies that there is a constant c2(U) such that 

(69) Kv(S{Ji) < 1(S{) + c2(U) = / - k(i) + c2(U). 

There exists a program P of the length, say, c3(U), independent of /, S{, S{,f, 
which proceeds as follows: 

(a) constructs the sequence of i zeros, 
(b) calls a subprogram for computing the function / , which computes /<(/), f(l) , 

f(2),...,f(k(ij). 
(c) calls a subprogram which generates Sf, 
(d) calls a subprogram which generates S{, 
(e) goes through the zero sequence from the left to the right; if a zero is the j(/)th 
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one from the left for ;' = 1, 2, ..., k(i), it is replaced by the jth symbol from £.•>' 
If it is not the case, the zero is replaced by the first (from the left) occurrence of 
a symbol in S{, not yet used by P. Clearly, the work of P terminates by generating St. 

According to the assumption (67) we obtain, for each T" e Jf and for infinitely 
many i's from Jf, that 

(70) * W s l / 0 < ci(F) + K%) + C2(U) + l(S{) - T + c3(U) = 

l(St) + c4(U) - T . 

Hence, for each T" e Jf there are infinitely many i's in Jf such that 

(71) Kv(A)(Stli) < l(St) + c4(U) - T = Z(S,.) - T", 

setting T = T" 4- c4(U); however, this contradicts the assumption that the sequences 
is if are absolutely T-random, hence, (66) must hold. • 

Applying Theorem 9 and the other results obtained in Chapter 3 we get immediately 
that also the subsequences S{, S{,... of absolutely T-random sequences Su S2,... 
satisfy the condition of stability and convergence to the equiprobable distribution 
for the relative frequencies of occurrences of letters and strings of letters, supposing 
/ is a monotonously increasing recursive choosing rule. Because of the importance 
and easy interpretability of this result let us formulate it as a particular theorem. 

Theorem 16. Let the notations and conditions of Theorem 15 hold, then for each 
m e Jf, m > 0, and each a e A"', 

(72) Hm/r(a, B(m, St)) = (card (A))~"m . 

Proof. An immediate consequence of Theorems 9 and 15. • 

Because of the fact that the absolutely T-randomness of subsequences S{, S{, ... 
in the proof of Theorem 15 is demonstrated by "reduction ad absurdum" and this 
proof is of constructive character consisting in giving an appropriate program P, 
we may try to apply the same idea as in Theorem 11, i.e. to replace the demand 
of absolute T-randomness by the relative T-randomness with respect to time and 
space limitations large enough to be able to apply the program P. Denote by 
tc(i, f, S{, S{) the number of steps made by the universal Turing machine U when 
working over the inputs <i , / , S{, S{), denote by sc(i,f, S{, S{) the number of used 
boxes on the tape, not taking into account the boxes occupied by the input data 
in the initial state. 

There are (card (A))1 sequences of the length i over the alphabet A. Each decom
position of 5,-into 5f and S{ is uniquely determined by a subset of the set {1,2, ..., i} 
of integers. There are just 2' of such subsets, hence, there are at most 2 l . (card (A))' = 
= (2 card (A))' pairs <S{, S{>. So we may define, for F and G being given by (29) 
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and (30), 

(73) F0(f, i) = max {tc(i,f, S{, B{)}, Ft(f, i) = max {T0(/, i), F(i)} , 
<S,/.5 ( '> 

(74) G0(f, i) = max {sc(i,f, S{, S{),} G,(f, i) = max {G0(f, i), G(i)} . 
<stf-s,t> 

To be able to perform the work of the program P described above within some time 
and space limitations, and this will be the basic idea of the proof of the following 
theorem, these limitations must be great enough to allow to compute S{ using 
a program for / 

Denote by tc(x, S{) the number of steps used by our fixed universal Turing machine 
U in order to compute S{ given x e A*, i e Jf. If U(x, i) + S{, then tc(x, S{) is not 
defined. Set -

(75) c(U) = min {c : c e Jf, KUU)(xjS) ^ l(x) + c for all x, S e A*} , 

the set over which the minimum is taken is nonempty because of Theorem 1. Set, 
moreover, 

(76) TC(i) = max {tc(x, S{) : <S{, x> e A* x A*, l(S{) S i, /(*) ^ 

^ i + c(U), U(x, i) = S{} . 

Again, the set over which the maximum is taken is nonempty, as follows from 
Theorem 1, it is also finite, as there are only finitely many pairs <S{, x> with /(S{) fS i, 
l(x) ^ i + c(U). Hence, TC(i) is an always defined finite value, let us define SC(i) 
in an analogous way using the space complexity sc(x, S{), and set, finally 

(77) F*(f, i) = F*(f, i) + TC(i), G*(f, i) = G?(/, i) + SC(i). . 

Combining these considerations with the results already obtained we arrive at the 
next theorem which may be seen as a "relative" variant of Theorems 15 and 16. 

Theorem 17. L e t / : Jf-+Jf be a monotonous recursive function, let the functions 
F*(f, i), G*(f, i) be defined by (77), let £f = {St, S2,...} be a sequence of relatively 
<T, F*(f, i), G*(f, i)} — random sequences over a finite, and at least binary, alphabet 
A. Hence, for a given TeJf, 

(78; /(S,) = i, 

(79) KtU)(StJi; (F*(f, i), G*(f, . ) » £ i - T. 

Then for all m e Jf, m > 0, and all a e A"' the relation (72) holds. 

Proof. The relation (79) yields, that there exists T eJf such that 

(80) K*U)(S{ji; (F*(/, i), G*(f, i ) » ^ /(S{) - T . 

Or, if (80) were not valid, it would be possible to prove, using program P described 
in the proof of Theorem 15, that for each TeJf there are infinitely many i's in Jf 
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such that (79) does not hold. If (72) were not valid, it would be possible to construct 
S{ using a program shorter than /(S{) — T', as the accepted time and space limitations 
permit to use programs defined in Chapter 3 and constructing S; on the ground 
of the knowledge of the indices of the extremely frequented (the minimally or the 
maximally frequented) letter and of the knowledge of the rest of the word S( resulting 
when these occurrences are erased. Hence, (72) must hold for m = 1, applying 
this result to the alphabet Am for m ^ 2 we prove (72) in all the generality. Q 

Clearly, the results of Chapter 3 dealing with the convergence of relative frequencies 
of occurrences of letters and their strings to the equiprobable (uniform) distribution 
can be seen as special cases of the assertions obtained here, using the most trivial 
identical choosing function/(i) = i, i ejf. However, if we wanted to interprete the 
last statement in the sense that the results of Chaptes 5 can be seen as generalizations 
of the results of Chapter 3, it would be necessary to precise, first of all, in which sense 
and measure we may speak about a generalization. The limits F*(f, i) and G*(f, i) 
of time and space complexity are not effectively computable, as they request to know 
the computational complexity of all programs which are not longer than an upper 
bound and which generate S{. Each program, which would be able to compute the 
values F*(f, i), G*(f, i), given / and i e Jf, would contain a sub-program deciding, 
for each x e A * , Z(x) ^ /(S{) + c(U), whether U(x, i) = S{ or not; if the answer 
were positive, the program would have to compute ic(x, S{). The demand of a gene
ral existence of such a program contradicts the undecidability of the halting problem 
for the universal Turing machine, so there does not exist a general program to com
pute F*(f, i) and G*(f, i), given / and i ejf. On the other hand, in the particular 
case of f(i) = i, as investigated in Chapter 3, there exist recursively computable time 
and space limitations F(i) and G(i). 

To mention another important circumstance, the limits F*(f, i) and G*(f, i) 
substantially depend on the particular recursive choosing rule/and cannot be replaced 
by some functions F(i) and G(i) universal for all recursive choosing rules. When 
implementing some overfluous cycles not influencing the final result we may define 
each recursive function by a program the computational complexity of which is, 
given the argument i e Jf and a function t(i), greater than t(i). However, it is not 
possible to decide effectively, in general, whether a universal Turing machine computes 
the same function or not, given two different programs ("the same" function in the 
sense of identifying the function / with the set of ordered pairs <x,/(x)> with x 
ranging over the domain Dom (/) o f / ) . Hence, recursive functions cannot be effecti
vely distinguished in other way than by identifying them with corresponding pro
grams; from this fact the non-existence of universal limitations F(i) and G(i) immedi
ately follows. Hence, there does not exist a sequence of relatively T-random sequences 
which would simulate one important property of "true random" infinite sequences 
of independent and equally distributed random samples: the convergence to equi
probable distribution for the relative frequencies of occurrences of letters and strings 
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in all recursively sampled subsequences. As we have seen, in the case of absolutely 
T-random sequences such a simulation was possible. Hence, the results of this chapter 
show the limits of possibilities when true-random sequences are to be simulated by 
sequences with effectively decidable properties, and this was the aim of this work. 
In the next chapter we shall briefly investigate the computational complexity of 
constructive procedures which generate initial segments of sequences of relatively 
T-random sequences of letters over a given finite alphabet. 

6. COMPUTATIONAL COMPLEXITY OF GENERATORS 
OF RELATIVELY T-RANDOM SEQUENCES 

Using som; simple combinatorial reasonings we have already derived simple 
upper bounds for the time complexity rc(K*,(/))(x/S; <rc, m » ) and space complexity 
sc(K*(A)(xJS; <«, m » ) connected with the computation of the relative algorithmic 
complexity K*U)(xJS; <n, m>), cf. Theorem 3 and the relations (10) and (11) above. 
Hence, due to (10), the time complexity is bounded by an exponential function 
of the lengths /(x) and l(S), which could be expected, because of the fact that the 
algorithm works on the ground of a blind exhaustive searching in the set of combina
torial objects and the cardinality of this set (of strings) increases exponentially with 
their lengths increasing. On the other hand, the use of a more sophisticated algorithm 
may be justified just on the ground of an a priori information about the particular 
problem. Hence, using the idea of the worst case classification we are not allowed 
to omit the blind exhaustive search as a possible candidate. Let us investigate. 
now, how rapidly increases the function tc(K*(A)(xJl(x); <F(/(x)), G(/(x))>) with /(x) 
increasing in the case of effectively computable functions F and G defined by the 
relations (29) and (30). 

Theorem 18. Let $P = {S1, S2 , . . .} be a sequence of sequences from A* which 
satisfies the conditions of Theorem 11, let the functions F, G :JV -> Jf be defined 
by (29) and (30). Then there exist constants K2, K3 ejV, which depend only on the 
used universal Turing machine U and on the cardinality c(A) of the alphabet A, 
such that 

(81) ?c(K*(4S,.//; <F(/), G(/)») < X 2 / V + K3i
2(2cy . 

Hence, the time complexity of the computation of the relative <T, F(i), G(/)>-algo-
rithmic complexity of S ; may be majorized by an exponential function of /. 

Proof. When writing KU(A)(x]l(x)) or KVCA)(Stji), we mean by / the description 
of the natural number in the alphabet A, hence, /(/) < (logc /) + 1. So, using (10) 
we obtain 

(82) tc(K*viA)(StJi; <T(/J, G(/)») < F(i) . (c - 1 ) - . ( c ' + * + " ~ ' + I - 1) < 

< T ( / ) . c K l + 1 ( c - 1)" ; .icl. 
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Now, we have to obtain an upper bound for F(i), which would be of at most exponen
tial character. (29) yields that 

(83) F(i) = max max max {tc(i, a, w, n)} , 
aeA we>F(a,0 «<*(••, w) 

where tc(i, a, w, n) is the time computational complexity of the program P defined 
in Theorem 11. Hence, we have a letter a e A, a word w e W(a, i) of the length 
at most i over the alphabet A — {a}, i.e., w does not contain a, and we have a natural 

number n < K(i, w) = I , J. All /-tuples of zeros and units containing just Z(w) 

zeros and i — Z(w) units are supposed to be alphabetically ordered in the sense 
that unit follows zero, hence, the first /-tuple is 00 .. . Oil ... 1, the last being 1 1 . . . 
. . . 100. . . 0. There are just K(i, w) of such /-tuples which can be numbered using 
the numbers 0, 1, ...,K(i, w) — 1 according to the mentioned ordering. 

Consider an algorithm which finds, given n < K(i, w), the corresponding /-tuple 
with / — /(w) units in such a way that it constructs first n such /-tuples. Every /-tuple 
can be generated, using the preceding one, by a fixed number of checking of this 
preceeding /-tuple from the left to the right, hence, an upper bound of the time 
complexity of the transformation of the (j — l)th /-tuple into the jth one can be 
given as a linear function of i, say cti. Hence, the time complexity of our trivial 
algorithm for finding the n-th /-tuple with / — Z(w) units is, given i, /(w) and n < 

< K(i, w), majorized by the expression cti ( . 1 < cti 2'. 

Having a word w of the length at most i over the alphabet A — {a}, and hawing an 
/-tuple of zeros and units with just (/ — /(w)) units, we are able, going just once 
through this /-tuple from the left to the right, i.e., using c2i steps for an appropriate 
c2, to generate the sequence St as already described (units replaced by symbols from 
w, zeros replaced by a's). If cx and c2 depend on aeA, we take their maxima 
values over A. Hence, setting into (83), we have 

(84) F(i) < c2i + C l / 2 ' ' , 

combining with (82), we obtain 

(85) tc(K*(/()(S;//; <E(/), G(/)») < (c2i + Cli 2l) (cK^\c - 1)"1 icl) = 

= K2i
2cl + K3i

2(2Cy , 
setting 

(86) K2 = c2c
Kl + 1(c - I ) " 1 , K3 = c lC

Kl + 1 ( c - l ) - 1 . ' 

The assertion is proved. • 

Let us try to find an upper bound of the computational complexity of an algorithm 
which generates initial segments of the sequence Zf = {S1; S2,...}, satisfying the 
demands of Theorem 11. 

32 



Theorem 19. There exists a totally recursive function $F : Jf -» A* with the 
following properties 

(a) l(Sf(ij) = ifor all ieJf, 
(b) K*(A)(^(i)ji; <E(i), G(i)» S; (' - Tfor all ieJf, given Te^T, functions E 
and G are defined by (29) and (30). 

(c) tc(F(i)) < K2i\2cf + K3i
2(3cy , 

where K2, K3 and c are the same as in Theorem 18. 

Proof. The assertion is satisfied by the trivial blind exhaustive search algorithm 
which, given /" e J/', takes one z'-tuple over A after another, computes their relative 
algorithmical complexities K*,U)(xji, <E((), G(i)» and stops its work when finding 
that this complexity is at least i - T. The corresponding string from A1 is then 
proclaimed to be ^(i), Theorem 4 assures that there is at least one such string. 
So, for (' e Jf and x e A', 

(87) tc(^(i)) ^ c' tc(Kt{A)(xJi; <E(/), G(i)))) < c ' (K2 jV + K3i
2(2Cy) = 

= K2i
2(2Cy + K3i

2(3c)1, 

by a substitution into (81). • 

Theorem 20. There exists a recursive function J5" : Jf -• A*, with an exponential 
upper bound for the time computational complexity, such that the sequence £f & = 
= {tF(l), ^(2), •••} can be used as a pseudorandom input in the Monte-Carlo 
methods in the sense that it satisfies the conditions of Theorems 12, 13 and 14. 

Proof. An immediate consequence of Theorems 11 and 19. Q 

7. CONCLUSIVE REMARKS 

Let us close this paper by a very brief re-consideration of the obtained results. 
We have declared as our goal to investigate, whether and in which measure are 
preserved these good properties of sequences of high algorithmic complexity, which 
enable them to serve as good approximations of true-random sequences, even 
in case when the algorithmic complexity is defined and tested with respect to universal 
Turing machines with time and space limitations. We have proved that if the time 
and space limitations grow up "quickly enough" with the lengths of the tested se
quences, the stability of relative frequencies of occurrences of letters and strings 
of letters as well as their convergence to the equiprobable distribution are preserved. 
Due to this fact, even within the appropriate time and space limitations, the usefulness 
of relatively pseudorandom sequences in order to estimate unknown probabilities 
by Monte-Carlo methods is preserved as well. Choosing appropriately, and in a way 
which is not algorithmizable in general, the time and space limitations, the mentioned 
above stability and convergence of relative frequencies may be preserved to hold 

33 



also in subsequences chosen by a recursive rule, or by one of a finite set of such rules. 
On the other hand, because of principial reasons it is not possible to satisfy this 
property for all recursive rules, no matter which the time and space limitations may 
be, supposing they are finite. Let us recall that the von Mises conception of a "collec
tive" and the related conceptions emphasize just this aspect. Hence, if the stability 
and convergence of the relative frequencies of occurrences of letters or strings in all 
recursively chosen subsequences in considered as a necessary condition for a sequence 
to be taken as random, then the notion of random sequence is principially non
effective and non-recursive and can be described and handled only within the appara
tus of universal Turing machines without time and space limitations. Because of the 
fact that this work has been conceived as a mathematical one in its nature, we shall 
not investigate here the methodological and may be even philosophical consequences 
of the obtained results for a deeper penetration into the nature of the relations bet
ween complexity, algorithmizability and randomness; let us postpone such considera
tions till another study. 
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