
C 3 ^

Kybernetika
RECURSIVE CLASSIFICATION OF PSEUDO-RANDOM
SEQUENCES

IVAN KRAMOSIL

ACADEMIA

PRAHA

Some results achieved by Kolmogorov, Chaitin, Solomonoff, Martin-Lof, Schnorr and others
proved the high degree of coincidence between the sequences or strings of symbols, which are
of high algorithmic complexity and those sequences which are "true-random" in the sense that
they satisfy some empirical or theoretical tests of randomness. Some difficulties of this approach
are caused by the fact that the algorithmic complexity of a sequence, defined by the length of the
shortest program which generates the sequence in question, is not an effectively computable
function of this sequence. In the presented paper the definition of algorithmic complexity is
modified with respect to a theoretical computer (universal Turing machine) which works within
time and space limitations. This modification makes the conditions, which a sequence is to
satisfy in order to be taken as pseudo-random, weaker but effectively (recursively) decidable.
The aim of this paper is to investigate, in which degree the desirable properties of sequences with
high algorithmic complexity are preserved under this modification.

CONTENTS

1. Introduction — Problem Formulation
2. Absolute and Relative Algorithmic Complexity and Pseudo-Randomness
3. Basic Properties of Relative Complexity and Randomness
4. Relative Algorithmical Complexity and Monte-Carlo Methods
5. Absolute and Relative T-Randomness in Relation to Recursive Choosing Rules
6. Computational Complexity of Generators of Relatively T-Random Sequences
7. Conclusive Remarks

1. INTRODUCTION - PROBLEM FORMULATION

The papers and works dealing with pseudo-random sequences (strings) of numbers
or other symbols can be divided, with respect to their motivation and orientation,
into two main groups which are not quite disjoint. The first group is oriented rather
technically and practically. It tries to use pseudo-random sequences'as an appro
priate replacement of physical (true random) generators of random inputs, which
are necessary in many methods of statistical estimation of unknown parameters,
hypothesis testing of various kinds or approximations of some computational and
decision procedures which are not effective in the theoretical or practical sense.
The advantage of pseudo-random generators consists in their high speed and low
costs, if compared with physical (true random) generators, with which pseudo
random sequences can be generated, including the possibility to use computers for
these sakes. The quality of pseudo-random generators is classified just with respect
to explicitly utiliary criteria, i.e. with respect to the measure in which the results,
obtained when using pseudo-random inputs, satisfy some statistical tests of quality,
appropriately deduced from the specific features of the statistical decision or com
putation problem in question. These papers do not pose and do not solve questions
of ontological character, i.e. from the fact that such and such pseudo-random gene-

3

rator has been or can be used with success in order to solve such and such problem
no conclusions are drawn as far as the possibility to reduce the notation of ran
domness to some other, may be more primitive notions, is claimed or refused.

The second group of papers dealing with pseudo-random sequences consists
of those ones for which just this ontological aspect is substantial, and which try
to penetrate as deeply as possible into the nature of randomness. This effort dates
from the very beginnings of mathematical probability theory and mathematical statis
tics (let us remember, just as an example, the studies of von Mises) and has not been
fully abandoned neither after the Kolmogorov axiomatic probability theory having
come successfully into scene. This axiomatic approach apriori abandons the problem
how to classify particular sequences of results into "random" and "non-random"
ones and proclaims such a question to be illegitimate. As a matter of fact, he was
Kolmogorov himself who admitted, later, that the question about the randomness
of particular sequence is justified and legitimate, moreover, he proposed a way how
to construct an appropriate criterion of randomness for finite sequences.

In this paper we uphold the viewpoint which is situated somewhere between the
two extremal positions as stated above. The outcome of our explanation is given
by a model which has been conceived with the aim to explain the notion of ran
domness by its reduction or transformation into the notion of high algorithmic
complexity. Nevertheless, we shall try to modify this model in such a way that it
satisfies some at least theoretical effectivity criteria (i.e. an effective computability
of values necessary in order to decide about the randomness of the sequence in ques
tion). Moreover, we shall confront the resulting notion of pseudo-random sequence
with the possibility of its use in Monte-Carlo methods, i.e. we shall be very near
to the position occupied by practical user of pseudo-random generators, as mentioned
above.

A number of authors have investigated the idea to measure the complexity of a finite
or infinite sequence of symbols by the length of the shortest program, by the use
of which an a priori fixed universal Turing machine is able to generate the sequence
in question. Then, the sequence is proclaimed to be random, if its complexity is not
substantially less than its length, i.e., if these is no substantially shorter way how
to define the sequence in question than to write it simply down. It has been shown,
that the sequences which are random in this sense can play very well the role of ran
dom inputs, when some estimations using the Monte Carlo methods are to be made.
Moreover, the results obtained in this way are qualitatively better than in the case
of true-random inputs, hence, rather the true random inputs should be taken for
a not quite satisfactory approximations of sequences with high algorithmic com
plexity than vice versa. The difficulties of this approach consist in principal theoretic
al limitations as far as our possibilities are concerned to decide the validity or non-
validity of assertions dealing with the algorithmic complexity of sequences. In other
words the algorithmic complexity of a sequence is not a recursive function of this
sequence (in the case of a finite sequence we may take its Godel number). Hence,

in general we are not able to verify, effectively, the validity of conditions which the
complexity of a sequence is to satisfy in order that the sequence in question could be
used as a pseudo-random input.

In this paper we shall try to weaken the criterion of randomness, derived from the
algorithmic complexity, in such a measure that the predicate of pseudo-randomness
would become effectively decidable under the condition that the possibility to use
such pseudo-random sequences as inputs in the Monte-Carlo methods were preserved
in the most possible degree. The originally defined algorithmic complexity and the
concept of pseudo-randomness derived on its base will then play some absolute
or limit role. I. e., they will be able to be approached or approximated arbitrarily
by an appropriate choose or modification of parameters and by an appropriate in
creasing of the time and space computational complexity. Our main goal will be to
assure that the conditions posed on pseudo-random sequences were effectively
decidable at least in the theoretical sense. Even in the cases when we shall obtain
some explicit expressions or upper bounds for the time and space complexities of
the investigated computational and decision procedures, we shall not study the possi
bilities of their practical implementations. These questions can be and should be
subjected to a further investigation connected with this paper and proceeding in its
direction.

Let us start, now, by the building up a formal apparatus necessary for our further
considerations.

2. ABSOLUTE AND RELATIVE ALGORITHMIC COMPLEXITY AND
PSEUDO-RANDOMNESS

Let us start with a finite set A which will be called alphabet; elements of A are
called letters. Our investigation will be oriented toward finite and infinite sequences
(strings) of letters from A. Such sequences can be joined using the concatenation
operation, denoted by an asterisk (*). The length of a sequence is denoted by / and
is defined by the number of occurences of letters in the sequence. So we have A" =

00

= {x : l(x) = «}, A°° = {x : l(x) — oo}, we set A* = (J A" = {x : l(x) < oo},
n = 0

where A0 = {A} contains just the empty sequence A. The inequality card (A) =
= C(A) ^ 2 is supposed to be valid throughout this paper.

As an apparatus by the mean of which the sequences of letters will be investigated
and handled we shall use the universal Turing machine (UTM) over the alphabet A
and with one tape, as presented by Davis ([1]) in the case of the binary alphabet
{0, 1}. Machines with more than one tape are not mentioned below. Informally said,
a Turing machine of this type consists of one tape which is infinite in both the direc
tions and which is divided into an infinite but countable number of boxes, and
of a head, which is always situated over just one of the boxes and which is able
to move to the neighborhood boxes, either to the left or to the right. Finally, Turing

machine contains a finite number of instructions. By the set of instructions we mean
a finite set of quadruples of the form (gjSyS,^,), where qb q, are the so called internal
states of the Turing machines, Sj is either a letter from A or the symbol B which
denotes the blank (the box in which no letters is inscribed), finally Sk is either a letter
from A or B, or one of the two auxiliary symbols R, L; we always suppose that
A n {B, R, L} = 0. The quadruple <<ZjS/S*#i> represents the following instruction:
if the Turing machine is in the internal state qi and if the box just below the head
(i.e. the box which is just being read by the head) contains the symbol Sj (if this
box is empty, in case Sj = B), then the machine changes its internal position into
qt and executes the following operation: it inscribes Sk into the read box supposing
that Sk e A (Sj is erased); it erases S,-, supposing that Sk = B; it changes the position
of the head one box to the left (if Sk = L) or to the right (if S,£ = R), leaving S,-
unchanged. The Turing machine continues to operate until there is an applicable
quadruple in the set of instructions, i.e. such a quadruple (qiSjSkq{) that q{ corres
ponds to the "actual internal state of the machine and S; corresponds to the symbol
just being read. The set of instructions is supposed to be consistent in the sense that
there are no two instructions {^SySj-.g,), <^5SjS^J) such that qt = q\, Sj = Sj, but
Sk 4= S'k or q, #= q\.

As can be shown, there exist so called universal Turing machines which are able
to simulate the work of an arbitrary Turing machine supposing that the correspond
ing input is joined with an appropriate code of the Turing machine which is to be
simulated, e.g., with a code of its Godel number. Clearly, each Turing machine is
fully determined by the set of its instructions together with the conventions which
is the initial state and from which box the reading begins. Hence, it is, after all,
a finite description, the intuitive notions of tape and moving could be eliminated
in favour of a more formal, but less intuitive notions of instantaneous description.
There is an infinite number of universal Turing machines over the alphabet A, let
us fix one among them, which will be denoted by U or U(A), when the role of A is to
be underlined. We have to accept the unpleasant fact, that the greatest part of the
results presented below will be parametrized, more or less, by this choice of U(A).

Let us consider sequences p, S e A*, x e A* u A°°. The description U(p, S) = x
has the following meaning: if the concatenation S * p (in this order and separated
by one blank) is inscribed on the tape of the machine U, if the machine is posed
into the initial state (defined by an appropria:e convention), and if the head reads
the leftmost symbol in S * p, then either the machine stops after a finite number
of steps (i.e., after a finite number of applications of instructions) and there will
be just the sequence x inscribed on the tape (it is the case when x e A*), or the machine
U will never stop, but for every initial segment x±x2 ... x„ of x there exists a finite
number of steps after execution of which xxx2 ... x„ will be written on the tape and
will not be changed by later steps (it is the case when xeA°°) . In what follows
the notation U(p, S) = x will be used almost always for finite sequences x. J/" =
= {0, 1,2,...} denotes the set of all non-negative integers.

Definition 1. Let U be a universal Turing machine over a finite alphabet A, let
p, SeA*, x e A * u i " be sequences of letters from A. The absolute algorithmic
complexity KU(A)(x]S) of the sequence x under the condition S is defined by the
length of the shortest program p, which, concatenated with S, makes the machine U
to generate x, i.e.

(1) KU(A)(x]S) = min {/ : / e Jf, I = l(p), p e A*, U(p, S) = x} ,

for the empty set 0 we set min {0} = oo. If S = A e A0 (the empty word over A),
we write KU(A)(x) instead of Kv(A((x]A) and omit the expression "under the condi
tion S".

The adjective "absolute" as used in Definition 1 is to distinguish the just intro
duced complexity measures from its modified variant which will be defined below
as a "relative" complexity measure. Both the adjectives will be omitted supposing
that no misunderstanding menaces.

Three basic properties of the absolute algorithmic complexity Kv(A)(x]S) are
introduced in the following theorem. In spite of the fact that the corresponding
proofs can be found in references, they are introduced below as well, as they can
serve as an appropriate illustration of the way of reasoning used in the argumentation
dealing with the algorithmic complexity.

Theorem 1.

(2) (a) (3c e Jf) (Vx G A* u A") (VS e A*) (KV(A)(x]S) ^ l(x) + c).

(b) If U^A), U2(A) are two universal Turing machines over the alphabet A
then

(3) (3c(U1; U2) e Jf)(Vx, S e A*)(\KUl(A)(x]S) - KUl(A)(x]S)\ g c(Ut, U2)),

(4) (c) (VTe Jf, T ^ 0) (Vn eJf,n£ T) (3x e A") (KU(A)(x]l(x)) ^ n - T) .

Proof, (ad a) There exists a program pu which works, when concatenated with
arbitrary x, S e A*, in such a way that it erases S and pu leaving just x on the tape.
Hence, for p = p, * x, U(p, S) = x, so KU(A)(x]S) ^ l(p) = /(p.) + l(x) = l(x) +
+ c. Clearly, c depends on U, but this will be the case for all other constants occurring
below and we shall not always mention this dependence explicitly.

(adb) If Uj, U2 are two universal Turing machines over A, than there exists a
fixed program of a fixed length which enables to rewrite programs of Ut into pro
grams for U2 which are equivalent as far as the results are concerned, and vice versa.
Hence, each program for Ut can be used as program computing the same sequence
on U2 supposing the program is extended by the mentioned translating program.
It follows, that for an appropriate c = c(Uu U2) the two inequalities hold:

(5) KVl(A)(x]S) g KVl(A)(x]S) + c(U1; U2) ,

(6) KVl(A)(x]S) S KVl(A)(x]S) + c(U1; U2),

and from this the assertion (b) immediately follows. Hence, this assertion proves
that the dependence of the function Kv^A)(x.]S) on the choice of U is of limited
character and that the results are independent of this choice "if not taking into
consideration additive constants".

(ad c) Programs are finite strings of letters, so there are at most (C(A))' programs
of the length i and there are at most

(7) "~T£\c(A)y = (C(Arr - 1) (C(A) - I)"1 < (C(A))-r

i = 0

programs of the length shorter than n — T. However, there are (C(A))" sequences
of the length n, so there must be at least one x e A" for which, given Z(x), no program
exists which would be shorter than n — T, hence, ^ (^ (x)) ^ n — T. •

The assertion (c), which we have just proved, assures the non-triviality of the
following definition.

Definition 2. Let TeN,xeA*, then the sequence x is called T-random. if

M #)) ^ '(*) - T-
May be, we could also use the terms "pseudo-random with parameter T" or

"absolutely T-random". Of course, the first idea coming into mind is to try, in which
measure true-random sequences can br replaced by T-random ones, e.g. as side
random inputs in Monte-Carlo methods and such investigations has been actually
performed. The object of such investigations was a sequence x ; 1 x2, ... of sequences
from A*, satisfying the two following conditions:

(a) for all i e Jf, Z(x;) = i, i.e., x ; e A'',

(b) for all i e Jf and for aTeJf a priori fixed, X[y(^l)(x;/Z(x;)) ^ i - T.

The existence of such a sequence of sequences follows from the assertion (e) of
Theorem 1, the well-known assertion proved by Martin-L6f (cf. [2]) yields, that
x ; cannot be initial segments of one infinite sequence (the mentioned Martin-Lof's
theorem claims, that there is no infinite sequence x = x1x2x3 ... e {0, l}"3 and no
TeJf such that the inequality KV([0tl))(x1x2 ... x„]n) > n — Tholds for all n e Jf
and this result can be easily generalized to the case of another finite alphabet A).
The sequence x1 ; x 2 , . . . of sequences then possesses the following properties:

(1) If m eJf, m > 0, if a = axa2 ... am 6 Am is an m-tuple of letters, then the
relative frequency of occurrences of a in x ; tends to (C(A))_m, i.e., to the inverted
value of the total number of such letters (of course, x ; must be considered as a se
quence of letters from Am with the overflous letters from A possibly erased). Parti
cularly, for m = 1, the relative frequency of occurrence of each letter a e A in x ;

tends to (C(A)Y1, in both the cases it is a convergence for i -* co. Cf. [5] for more
details.

(2) Suppose that E <= <0, 1> is a Borel measurable set of reals which is a union
of semi-open intervals and the Borel measure of which is /i(E). Then we may use

X(with i large enough in order to sample reals from <0, 1> in such a way that the
relative frequency of those points which belong to E differs from n(E) by a value
smaller than an a priori given e > 0 (of course, the "large enough" i depends on E).
Moreover, let the characteristic function of E be recursive in the sense that the mem
bership of a real x e <0, 1> to the tested set E can be effectively decided using a finite
initial segment of the binary (decadic, C(A)-adic) expansion of x. Then for an i large
enough the relative frequency obtained by x ; just equals 1.1(E) (the "large enough"
i depends on the computational complexity of the algorithm which computes the
characteristic function of the set E). Cf. [3] and [4] for more details.

Hence, the absolute T-randomness would seem to be a satisfactory approximation
of physical randomness (true randomness) or rather true randomness seems to be
an insufficient approximation of T-randomness due to the fact that the limit asser
tions obtained on the ground of the T-randomness are stronger than the usual laws
of large numbers. The problem, however, lies in the fact that because of non-recursi-
vity of the function Kv(x]S) no algorithm exists which would generate a sequence
Xj, x 2 , . . . of sequences with the properties requested above. Even in case an external
oracle were able to offer such a sequence, we would not be able to verify algorithmic-
ally, that it is a sequence with the demanded properties. Our aim, in what follows,
is to weaken the demands inposed to the sequence x l s x2, ... in such a way that such
a sequence were, at least in the theoretical sense, effectively constructible. We shall
try, meanwhile, to preserve certain continuity with the function KU(A)(xjS) in the
sense that the case based on absolute algorithmic complexity were approchable to as
small distance as given a priori, supposing that the time and space complexity of the
corresponding computational and decision procedures increases.

Probably the most intuitive idea is to abandon some idealizations which distin
guish an abstract universal Turing machine from an actual, technically realizable
computer, as a theoretical counterpart of which universal Turing machine was
conceived. From the one side, these idealizations enable to abstract from the technical
details and parameters of an actual computer, from the other side, however, these
idealizations imply the potential non-effectivity of some operations on a universal
Turing machine. Namely, we shall abandon the assumption that the machine has
at its disposal an infinite tape and that it is allowed to make an unlimited number of
operations during a single computation. Hence, we shall suppose that there exists
an external oracle 0, which watches the work of the universal Turing machine U
over an input sequence and which stops the machine if either (a) the number of steps,
i.e. the number of applications of not necessarily different operations, exceeds an
a priori given n e J/~, or (b) if the computation needs more than meJ/~ boxes of the
tape, not including the boxes occupied by the input sequence at the beginning ol the
computation, i.e. if the computation needs more than m boxes which were empty
at the beginning; again, m is given a priori. If the machine stops before the inter
vention of the oracle, the oracle does not intervene at all and the work as well as

the result of the universal Turing machine does not differ, in this case, from the ideal
case as investigated above. By O(«, m) we shall denote the oracle & with parameters
n, m; the expression &v(n,m...x) = l (= 0, resp.) means that the universal Turing
machine is (is not, resp.) stopped by an external intervention oi the oracle &(n, m)
when working over an input sequence x e A* u A". If p, S,xe A*, n, me J/" =
= {0, 1, 2,...}, we write U(p, S; (n, m » = x as an abbreviation of the conjunction
(U(p, S) = x) & (&v(n, m, S * p) = 0). So it means, that using the input sequence
S * p the machine U constructs the sequence x and needs not more than n applica
tions and not more than m boxes which were empty at the beginning of the computa
tion.

Definition 3. Let 6 be an oracle, let p, S, x be as in Definition 1, let n, m eJf.
The relative algorithmic complexity KV(A)(xJS, <n, m » of the sequence x under
the condition.S and with respect to the oracle 6(n, m) is defined by the length of the
shortest program which makes, joined with S, the universal Turing machine U to
generate x without the oracle &(n, m) intervention, i.e., using at most n steps and at
most m boxes not containing the program and S. In symbols,

(8) K*(A)(xJS, <«, m » = min {I : I eJf, I = l(p), p e A*, U(p, S; <«, m>) = x } ,

where min {0} = oo and for S = A the same convention holds as in Definition 1.

Definition 4. Let T, m, n eJf, xe A*, then the sequence x is called (T,n,m)-
random (relatively (T. n, m)-random, pseudo-random with parameters T, n, m),
if K*(A)(xJl(x); <n, m » 2: l(x) - T

In the following chapter we shall study some basic properties of the relative com
plexity and randomness.

3. BASIC PROPERTIES OF RELATIVE COMPLEXITY AND
RANDOMNESS

As shown in the foregoing chapter, the main reasons for which we have introduced
the notion of relative algorithmic complexity instead of its original absolute version
consists in the fact that the function Kv(A)(xjS) is not effectively computable. So it
seems to be quite natural to investigate, first of all, whether and in which measure
this difficulty is overcome when introducing the relative variant. Let us define, for
this sake, the notion of conditional recursiveness of a function with respect to an
oracle.

Definition 5. Let nejf, n > 0, let / , g be two functional, in general partial, defined
in Jf" and taking their values in Jf. We say that the function / is conditionally
partially recursive with respect to the function g, if / belongs to the minimal class
of functions taking Jf" into Jf, containing all partially recursive functions together

10

with the function g and closed with respect to the oprations of composition, primitive
recursion and minimalization (i.e. with respect to the usual operations which define
the class of partially recursive functions). If / is defined onJfn, it is called conditionally
totally recursive with respect to g (if a is a partially recursive function, the same
is /) -

Theorem 2. The relative algorithmic complexity K* (i l)(x/S; <n, m » is a condi
tionally totally recursive function with respect to the oracle & and takes its values
in the set J/" u {oo}. (More correctly said, instead of arguments x and S we should
use their Godel numbers, using an appropriate one-to-one mapping between A* and
J/', instead of (9 we use the function (9V).

Proof. The proof will be given in the constructive way, i.e., we construct an algo
rithm which computes the function K%(A)(x]S; <n, m>) given x, S, n and m. The
construction will be given in details in order to be useful for further deductions
concerning the time and space computational complexities of the function K*.

Let p0 be a program of the length cy with this property: if the concatenation
S * p0 * X is written on the tape, then U erases p0 and S and stops, leaving x un
changed, hence, U(S * p0 * x) = x. To do this, the machine will need a certain
number of steps, independent of x, which can be written in the form c2 + 1(S).
Moreover, the machine will not need any boxes besides those occupied by S, p0 and
x. Hence, for all n > c2 + 1(S), m > 0, we have

(9) K*UiA)(x]S; <n, m » ^ l(Po) + l(x) = Z(x) + c. > oo , x e A* .

Because of the fact that the oracle 6(n, m) stops the run of the program after n steps,
it suffices, in order to compute K*(A)(x]S; </7i, n>) under the condition that n >.
2: c2 + 1(S), to exhaust all the sequences over A of the lengths 0, 1, 2, ..., l(x) + c'
as potential candidates to the demanded shortest program for x. The relation (9)
assures that such a search will be successful. There are

(C(A)Z(*> + C' + 1 - 1) (C (A) - I) " 1

sequences over A with the lengths not greater than /(x) + c1. Using each of these
sequences as potential candidate for the shortest one, the machine will not make
more than n steps, as it would be stopped by the oracle in the opposite case. Hence,
when n >, c2 + l(S), the universal Turing machine needs at most n(C(A)r(x> + Cl + 1 —
— 1)(C(A) — l) _ 1 steps in order to compute K*^A)(x]S; (n, m » .

Now, let n<c2 + 1(S), let p e A* be such that l(p) > l(x) + n. Then U(p, S;
<n, m>) + x, as l(p * S) > l(x) + n, hence, x differs from S * p in more than n
places and no procedure, neither the simple erasing, can give x from S * pin n steps.
Hence, it suffices to overlook exhaustively the sequences p e A* with l(p) S Z(x) +
+ n < l(x) + 1(S) + c2. If there is one p which gives, together with S, the sequence
x without an intervention of the oracle &(n, m), than the length of the shortest p with
this property defines K*{A)(x]S; <n, m » . If there is no p with this property and such

11

that l(p) < l(x) + l(S) + c2, we may be sure that K*(A)(x]S; <n, m » = oo. Using
the same way of reasoning as above we can see that the number of steps necessary
to compute K*U)(x]S, <n, m>) is case when n > c2 + /(S) does not exceed

(C(A) 'W + ; (S) + C2 - 1)(C(A) - l) " 1 .

The condition n > c2 + /(S) is recursively decidable, and from this fact the condi
tional recursivity of the function K* with respect to the oracle &(n, m) follows. •

Theorem 3. The time complexity tc and the space complexity sc of the computation
of the function K*(A)(x]S; <n, m » given the oracle & satisfy the following relations:

(a) There exists a constant K1 e „V such that for all x, S e A* and for all n,me Jf,

(10) tc(K\A)(x]S; in, m ») ^ n(C(AV(*)+*' + '(S) - 1) (C(A) - l) " 1 .

(b) There exists a constant K2 e Jf such that, for all x, S e A* and for all n, m e Jf,

(11) sc(K*(A)(x]S; <n, m ») g m + Z(x) + l(S) + K2 .

Proof. The assertion (a) has been proved, in fact, during the proof of Theorem 2,
the only which rests is to set Kt = max (c«, c2). The longest programs taken into
consideration when K*U)(x]S; <n, m » computed are of the length l(x) + c t (if
n ^ c2 + /(S)), or of the length c2 + /(S) - 1 (if n > c2 + /(S)). Hence, setting
K3 = K1 = max (c l5 c2) we obtain, that (l l) holds. •

Let us recall the fact that the assertion (9) in the proof of Theorem 2 is nothing
else than a relativized version of the relation KV(A)(x]S) = l(x) + const, which has
been proved in Theorem 1 for the case of the absolute algorithmic complexity.
The following three theorems show that, and in which sense, K*,(A)(x]S; <n, m>)
plays the role of a monotonneous approximation for KV(A)(x]S).

Theorem 4. For all n, n', m, m' eJf, n' 2: n, m' >. m, and for all x, S e A* the
following holds:

(12) Kt,iA)(x]S; <n, m » = K*(A)(x]S; <n', m ' » .

Proof. IfK*,(A)(x]S; (n, m> = oo, the assertion is trivial. If K*^A)(x]S; <n, m » =
= / < oo, then there exists p e A* such that l(p) = /, and U(p, S, <n, m » = x.
But in such a case also U(p, S, <n', m ' » = x, so p e {p' : U(p', S, <n', m ' » = x},
hence, / j> min {/':/' = /(p), U(p, S, <n', m ' » = x} = X* u) (x /S; <n', m ' » . D

Theorem 5. For all n,mejf and for all x, S 6 A* the following holds:

(13) KtiA)(x]S; in, m » ^ KV(A)(x]S) ,

so that we could also write that Ku(A)(x]S) = K*U)(x]S; <co, oo».

Proof. As can be easily seen,

(14) {/ : / = l(p), U(p, S) = x} = U {I • KP), U(p, S; <n, m » = x} ,

<n,m>eIVxJV

12

so

KU(A)(x]S) = min {/ : / = l(p), U(p, S) = x} g min {/ . / = l(p), U(p, S, <n, m » =

= x} = KU(A)(x]S; in, m » for all n,meJf . •

Theorem 6. There exist n,meJf such that, for all «', m' e . /F, n' > n, m' j£ m,
the following relation holds:

(15) KU(A)(x]S) = Ku(A)(x]S; <n', m ' » .

Proof. If KV(A)(x]S) = oo, and this possibility can occur if x e A 0 0 , then clearly
KU(A)(x]S; in, m » = oo for all n, me Jf. If KU(A)(x]S) < oo, then there is peA*
such that U(p, S) = x. Let n be the number of steps performed by the machine U
when computing x from given sequences p and S, let m be the number of boxes
on the tape which were used during this computation and which were not occupied
by S or p in the initial state. Then U(p, S; <rc, m » = U(p, S) = x, hence
K*(A) (x/S; <n, m » = KU(A)(x]S); according to Theorems 4 and 5 this must hold
for all n' >. n, m' >, m as well. •

Now, we shall introduce some auxiliary notions in order to be able to state the
basic assertion dealing with the possibility to use absolute T-random sequences as
pseudo-random inputs. Then we shall formulate and prove an analogy of this basic
assertion for the case of the relative T-random sequences.

Let x = x1x2 ... x„e A", let m e Jf, m > 0. Set

(16) B(m, x) = {{Xl ...xm}, {xm+1 ... x2m},.... {x(k_1)m + 1 ... xkm}} ,

where km ^ n < (k + 1) m, so B(m, x) e (Am)* <= (Am)*. In other words B(m, x)
is a word or string over a new alphabet A"', obtained by grouping the letters in x
into blocks of the length m (and by neglecting the last n — km letters, if n is not
divisible by m). The property of the absolute T-randomness can be defined, using
the universal Turing machine U, also for sequences from (A"')*, as we may define
KV(Am)(x]S) by KU(Am)(B(m, x)]B(m, S)). As can be shown, the absolute T-random
ness is, in a sense, invariant with respect to the replacement of A by Am, i.e. x and S
by B(m, x) and B(m, S).

Theorem 7. There exists cteJf such that, for all absolutely T-random x e A*
and for all mejf, m > 0, B(m, x) is absolutely T'-random for T = T + cu in
symbols,

(17) Ku(A)(xll(x)) ;> Z(x) - T=* KV(Am)(B(m, x)]lAm(B(m, x))) ^

^ U *) - T~ci

If l(x) is divisible by m, (17) holds for c. = 0.

Proof. Cf. the proof of Theorem 2 in [5].

13

Theorem 8. Let Sf = {S1; S2, S3, ...} be an infinite sequence of sequences from A*
such that, for all ieJf, l(S,) = i and S; is absolutely T-random, i.e. KViA)(Siji) >
> i — T. Let fr*(a, S,) denote, for a 6 A, the total number of occurrences of the
letter a in S;, set fr(a, St) = i'1 fr*(a, St). Then, for all a e A, lim fr(a, S;) exists
and, moreover, :~~'~

(18) lim/7-(a, S,-) = (card (A))'1 .

Proof. In spite of the fact that the proof is given in [5], we repeat it here as well,
in a modified form, because of the fact that it contains a construction to which we
shall refer several times in the rest of this paper. Write c = C(A) and suppose,
in order to arrive at a contradiction, that lim fr(a, S„) either does not exist, or its

equals to a value c' 4= c"1 . In the latter case a e A may be chosen in such a way
that c' < c - 1 , or if the relation limjr(a, S„) = c'a > c _ 1 held for all a e A, with

sharp inequality holding for at least one as A, then we would obtain ~~ lim/r(a , S„)> 1

and this is not possible. So we may assume that there exist a e A and e > 0 such
that 0 <.fr(a, S„) < c - 1 — e for infinite number of n's from Jf. Let us fix an
a e A, e < c _ 1 and one S„ for which this relation holds.

Setting (' = fr*(a, S„), we obtain i < c~xn — en. The sequence S„ can be described
by giving these two objects:

(1) a string of the length n — i over the alphabet A — {a}, it is the element of the set
(A — {a})"~1 which results when all occurrences of a in S„ are erased.

(2) an j-tuple of natural numbers, not exceeding n and giving the indices of the
places in S„ where the occurrence of a are situated.

A simple fixed program, the length of which will be denoted by k, constructs then
S„, given the two objects above. There are (c — l)" - 1 ' words of the length n — i
over the alphabet A - {a}, hence, a word of the length Int (logc (c — 1)""') + 1
over A suffices in order to encode the original word of the length n — i over A — {a}.

There are (.) different i-tuples of different positive integers not exceeding n, hence,

a word of the length Int I logc I . 11 + 1 over A suffices in order to encode such

an z-tuple. Combining these results we obtain

(19) KVU)(S„Jn) <, Int (logc (c - l)"- ;) + 1 + Int 6 °Sc ("Y) + 1 + * =

< logc (c - I)""1' + logJ n J + k', k' = fe + 2 .

In order to close the proof by contradiction it is sufficient, now, to show that
the right side of the inequality (19) is smaller than n — T for i < c~xn — en and

14

for n sufficiently large. The relation

(20) logc(c - 1)""'' + log.V j + k' < n ~ T

holds if, and only if:

(21) (c - i r ' (^ ' < C . c - T

and this relation holds, for n sufficiently large, if

(22) lim c~"(c - 1)"" ' ' (") = 0 .

The well-known criterion sounds, that (22) holds, if the ratio of the two subsequent
members of the series could be majorized by a value smaller than 1, at least for n
large enough. An easy computation yields

(c _ . » + ! - . / '» + l \ c - - l
1 > v I 7 _ (c- A (_ + ______ _______ t + 2) =

(c-l)-Y")c-" V C j n (n - l) („ - 2) . . . (n - f + l)

c - l \ / 1 +

« — i

As i < c"xn — en and e < c ~ \ we obtain

v V c 7 \ n — c xn + £H + 1

c - 1\ / n + 1 \ _ / cen + 1

n - c 'и + єn + 1 / V (c - 1) (» + 1)

C£ 1 - C£ ^ - " 1 1

= 1 + + < < 1 . c - 1 (c + 1) (n + \)J 1 + e

This inequality completes the proof. •

Theorem 9. Let the notations and conditions of Theorem 8 hold, let mejf, m > 0,
be given, then for all a e A"', lim fr(fi, B(m, S,,)) exists and, moreover,

(23) lim/r(a, B(m, S,,)) = (card A)'"'.

Proof. The assertion immediately follows from Theorems 7 and 8. Theorem 7 states
that each S,„ which satisfies the conditions of Theorem 8, is an absolutely T'-random
sequence over the alphabet A'" and for T' = T + const. Hence, Theorem 9 follows
when Theorem 8 applied to the sequence {B(m, S_), B(m, S2),...} of sequences over
the alphabet A"'. •

15

Now, let us re-formulate and prove the Theorems 8 and 9 to the case of the relative
complexity. Let us postpone a discussion concerning the meaning and the importance
of such an assertion till the end of its proof.

Theorem 10. Let Sf = {S1; S2,...} be a sequence of sequences from A* such that
1(S{) = i. Then there exist functions f,g :J/"->Jf with the following property:
if each S; is relatively <T ri, m'>-random, i.e. if

(24) KuiA)(Sili; {ri, m ' » ^ i - T,

for some ri 3; j(i), m' 3; g(i), then for each m e / , m > 0 and each a e A ,
limjr(a, B(m, S;)) exists, moreover,

(25) limjr(a, B(m, S,)) = (card A)~m .

Proof. Let iejf, denote by p;&A* the shortest program which generates S;

given i and using universal Turing machine U (p; is one of such programs supposing
there are more of the same minimal length). So it holds

(26) U(Pi, i) = S„ l(Pi) = KU(A)(Sili).

Denote by f(i) the number of steps performed by the machine U when generating
S; from pi and i, denote by g(i) the number of boxes on the tape used during this
computation but not occupied by p; or i at the initial state. When defining j and g
in this way and when applying Theorem 4, we obtain, that for each ri 3: f(i), m' 2;
2; g(i) the relation

(27) KuiA)(Sili; {ri, m ' » = Ka<4{Sji)

holds, hence, the condition (24) is equivalent to the condition of the absolute T-ran-
domness of the sequence S;, i ejf. In this way, the assumptions of Theorems 8 and 9
are satisfied and it is why also their assertions hold (here we present just the generalized
variant of Theorem 9, the assertion equivalent to Theorem 8 lollows as a special
case when setting m = 1). Q

The consequences deduced in Theorems 9 and 10, are, formally spoken, the same
and they are also intuitively acceptable, as the convergence of relative frequencies
of particular letters or strings of letters to the uniform distribution is considered
to be a necessary condition to admit the sequence of letters in question as a good
approximation of the realization of a true random sequence of independent samples
from the uniform (equiprobable) distribution over the set A. As far as the premises
are considered, both of them are non-effective in the sense that their validity cannot
be algorithmically checked. Neither can be algoritmically generated a sequence S
satisfying these premises. There is, however, a difference between the condition
of absolute T-randomness and the condition (24). When knowing the functions / and
g and supposing that they were recursive, the condition (24) would be algoritmically

16

decidable for all / eJ/~. Moreover, it would be possible to generate arbitrary initial
segment of the sequence y satisfying the conditions of Theorem 10 (in the worst
case, by a blind exhaustive searching in the sets A" with n increasing and by testing
whether they are or are not </(<), g(i), T)-random where i denotes the length of the
investigated sequence). In other words, it is just the fact that the functions / and g
are not constructively defined which causes the condition (24) not to be effectively
decidable, as we have obtained our definitions for / and g by an argumentation
which is substantially based on the axiom of choice. In fact, the relation (27) has been
obtained by the process of skolemization applied to the formula

(28) (V.) (3n) (3m) (K*M)(5 (/i; <n, m » = KU(A)(S.Ji)),

even if this assertion has not been explicitly mentioned; here / ang g are Skolem
functions corresponding to the existential quantifiers in (28). It follows, that if it were
possible to define / and g in an effective and constructive way and if they were re
cursive, it would be possible to verify effectively the validity of premises of Theorem
10. Hence, it would be able to construct an arbitrary initial segment of such a se
quence y = {Su S2, •-.} e(A*)00, that using y instead of true-random sequences
would assure the convergence of relative frequencies of letters and their strings to the
uniform distribution over the corresponding Cartesian product of A. Moreover,
the obtained convergence would be that in the usual mathematical sense, i.e. stronger
convergence than that offered by statistical laws of large numbers. In what follows
we shall try to find, in a constructive way, recursive functions / and g satisfying
the demands of Theorem 10.

Consider a sequence p e A* which, taken as a program, generates a word w' e A*,
using the quadruple <;', a, w, n> which satisfies certain conditions, and proceeding as
follows. Formally, we can write U(p * i * a * w * n) ~ w' and U can be also con
sidered as a partial mapping which takes the corresponding Cartesian product into A*.

(1) The program p verifies, first of all, whether

(a) i is the expression for a positive integer, written in the alphabet A,

(b) a is a letter of the alphabet A, i.e., a e A,

(c) w e U (A - {a})J, i.e. w is a word of the length at most i over the alphabet A
j=o

which does not contain the letter a,

(d) n is a positive integer which satisfies the inequality n = I , J and which is
written in the alphabet A. \ \ '/

All these conditions can be effectively verified, and if at least one of them is not
satisfied, then U(p * / * a * w * n) is not defined. Let the conditions (a)-(d) hold,
then the program p proceeds in this way:

(2) It compares i and /(w), if i = l(vt), then U(p * i * a * w * n) = w and
the work of the program p terminates.

17

(3) Let /(w) < ;', then there are (. _ J = I , 1 possible (;' - /(w))-

tuples <fcl5 kz,..., /c,_I(w)> of positive integers without repetitions. There exists
a uniquely defined ordering of these (/ — /(w))-tuples with respect to a supposed
and uniquely defined alphabetical ordering of the letters from A. Program p generates
(or finds) the nth of these (i — /(w))-tuples, say <fcj, k2, ..., fc;_/(w)>, this step can
be effectively performed.

(4) Program p generates a sequence w' = <w'«, w2, ..., w',> in this way: if
j e {fcj,/c2, . . . , / c ,_ ; (w) } , then w) = «, the other /(w) positions in w' are occupied
by the symbols from w in the same order as in w. In other words, program p inter
polates the occurrences of the letter a in the original word w in such a way that the
indices of the occurrences of the letter a in the resulting word w', Z(w') = ;', were
just kuk2,..., /c,_,(w).

(5) Program p terminates its "work, so U(p * i * a * w * n) = w'. Clearly, p
is the program the existence of which assures the validity of Theorem 8.

Let us denote, now, by tc(i, a, w, n) the number of steps performed by the machine
U when generating the word w' = U(p * i * a * w * n) and by sc(i, a, w, n) the
number of boxes on the tape used during this computation and not occupied by the
concatenation p * i * a * w * n in the initial state. Set tc(i, a, w, n) = sc(i, a, w, n) =
= 0, if U(p * i * a * w * n) is not defined. From the fact that the conditions for w
and n, under which U(p * i * a * w * n) is defined, are recursively decidable, and from
the way in which program p proceeds, it follows immediately, that tc and sc are
totally recursive functions of their arguments and they could be specified in more
details when given the alphabet A and the universal Turing machine U. Set, now,
for ; e Jir,

(29) E(/) = max max max {__•(;', a, w, /?)} ,
a__ weW(a.i) »«(i ,w)

(30) G(i) = max max max {sc(i, a, w, _)} ,
aeA wsW(a.i) nSK(i.w)

where W(a, i) = U (A - {a})1, K(i, w) = (' .) . For each ieJf the sets W(a, i)

and {n : n :£ K(i, w)} are, clearly, finite because of the finiteness of the set A. Hence,
even E and G are totally recursive functions defined on the set of natural numbers
and taking it into itself. Let us try to show, now, that the just generated functions E
and G can be used as constructive variants of the non-effectively defined Skolem
functions f and g occurring in the proof of Theorem 10.

Theorem 11. Let Zf = {St, S2,...} be a sequence of sequences from A* such that
/(S,) = i and each S, is relatively <T F(i), G(.)>-random, hence,

(31) K*tA)(S,li; <F(i), G(/)» ^ i - T.

18

Then for all meJf, m > 0 and all a e A m , lim/r(a, B(m, S;)) exists, moreover,

(32) lim/r(«, B(m, S;)) = (card (A))'m .

Proof. Let us investigate only the case m = 1, as the generalization to m > 1

is the same as in the case of Theorem 9. Let for some a' e A the relation lim fr(a', S,) =
;->oo

= c"1 does not hold, where c = card (A). Then there is e' > 0 such that for infinitely
many values iejf the inequality |/r(a' , S;) — c _ 1 | > e' holds. As £ / r (a , S;) = 1

aeA

for all i e^yT, then there must exist aeA and e > 0 such that fr(a, S;) < c" 1 — e
for infinitely many i's from ./F. For each i E ! " there exist w, e If (a, i) and nt ^
:£ X(i, w ;) such that U(p * i * a * w ; * n;) = S ;; w ; is nothing else than S ; with all
occurrences of a e A erased and nt is the number of the (i — /(w))-tuple of erased
indices with respect to the supposed alphabetical ordering of such (i - i(w))-tuples.
According to the way, how the functions F and G are defined, we have also that
U(p * i * a *Yfl* nt; <E(i), G(i)}) = S ;, as F(i) abd G(i) are the upper bounds
of the time and space complexity of the program p over all aeA, w ; e W(a, i),
and nt £ K(i, w ;). Hence,

(33) K*(A)(StIH <E(i), G(i)y) s KP * « * w i * ».)

for infinitely many i's from Jf and using the same argumentation as in the proof
of Theorem 8, the right-hand side in (33) is majorized by i-Tfor all i > i0, if i0 is
appropriately chosen. This contradicts the assumption (31), so there exists, for each
£ > 0, such an i1 e Jf, that |/r(a, S;) — c""1] > e holds for all a e A, i 2: i,, hence,
l im/r(a, S;) = c"1 . As already said, the generalization to m > 1 is straightforward,

;->oo

of course, the functions F and G must be replaced by functions Fm and Gm corres
ponding to the alphabet Am. •

Before closing this chapter let us mention one alternative definition of relative
algorithmical complexity which seems to be more general and appropriate, together
with introducing the reasons for which we have preferred, nevertheless, the definition
presented above. In the accepted approach we interpreted the expression U(jp, S;
<n, m » = x in such a way that the universal Turing machine U stops itself its work
over S * p, before the oracle's intervention forces it to do so. It would be possible
to extend the sense of the expression U(p, S; <n, m » = x also to the case when x
is written on the tape in the moment when the oracle &(n, m) stops the work of the
machine U over the input string S * p (and when this x would be modified and
changed by the further actions of the machine U supposing the oracle let it run).
Under such an interpretation of the relation U(p, S; <n, in)) = x, however, the
monotonous character of the function X*U)(x/S; <ji, m>) with respect to the para
meters n and m would be seriously threaten; this monotonicity is explicitly stated
in Theorems 4 and 5 and substantially used several times above. As an example,

19

consider a digital (A = {0, 1, ..., 9}) or binary (A = {0, 1}) alphabet and take the
sequence x = 00. . .0 , l(x) = n (or x = 0", in other way).Then there exist ri, irieJT
such that KU(A)(xjA; (ri, m')) = const, where const does not depend on n, on the
other hand, Ku(A)(xjA; <n", ;n"» ^ const + logc n for n" #= ri, m" 4= m', here
c = caj-d (A) = 2 or 10. Or, if ri, iri appropriately chosen, then x can be constructed
using the simple program, independent of n, which generates an infinite sequence
of zeros; it is just the oracle which stops the work after having generated the nth
zero. In other cases, the instruction to stop after having generated 0" must be in
corporated into the program, so the c-adic expression for the number n must be a part
of the program, and this needs at least logc n boxes on the tape. Even if it might be
interesting and useful to study in more details the mentioned above extension of the
relation U(p, S; (n, m)) = x, for the sake of simplicity and monotonically con
servation we have preferred the variant adopted here.

4. RELATIVE ALGORITHMICAL RANDOMNESS AND
MONTE-CARLO METHODS

In its most general form the notion of the Monte-Carlo method covers each
computational or decision method which takes profit of the statistical laws of large
numbers in such a way that the unknown expected values (probabilities) are replaced
by arithmetical average values (relative frequencies) and the risks following from
such a replacement are accepted. Let {X1, X2, •••} be a sequence of independent and
identically distributed random variables with a finite expected value EX and finite
dispersion D2X; the random variables are defined on a probability space (Q, 9>', P)
and take their values in the Borel line <E, J 1) , E = (- co, co). Then

(34) P({co:a)eQ,\imn~1YJXi(co) = EX}) = 1 ,

so the arithmetical average value tends almost surely to the expected value. Hence,

it is reasonable, in a sense, to take the value n" 1 ^]Z,.(co), for n large enough, as an
;=i

acceptable approximation of the value EX. The well-known Tchebyshev inequality
describes in a quantitative way, in which sense the arithmetical average value approxi
mates the expected value, giving an upper bound for the probability with which both
the values differ from each other by more than an e > 0. Precisely,

(35) P({co :coeQ, {n^1^ Xt(co) - EX\ > e}) < D2X(ne2)-x .
i= 1

There exist a number of improved variants for this inequality, however, we shall
not introduce them here, neither we shall investigate here the character of the con
vergence occurring in the laws of large numbers and the consequences for the philoso-

20

phical and metodological justification of Monte-Carlo methods. As special cases
we may consider the two-valued random variables Xt, for which X;(co) = 1 with,
a probability p and Xt(co) = 0 with a complementary probability 1 — p. Clearly,
these random variables can be interpreted within the framework of the Bernoulli
schema, i.e. as occurences (X,(co) = l) or absences (Xj(co) = 0) of a random event

in a series of independent trials. Then n'1 ^Xt(co) is just the relative frequency
:'=1

r(A, p, n, co) of the occurrences of a random event A in n independent trials, EX = p,
D2X = p(l - p). In this notation

(36) P({co :coeQ, lim r(A, p, n, co) = p)) = 1 ,

(37) P({co :caeQ, \r(A, p, n, co) - p\ < E) > p(l - p) (ne2)~l g (4/2£2)~~1 ,

as the value p(l — p) takes its maximum \ for p = 1 — p = \.

Monte-Carlo methods became attractive just with the computers coming into
scene when the computations connected with large samples (i.e., for n large enough)
became technically accessible, enabling to obtain estimates of high correctness and
realibility. However, the limiting factor of implementation of Monte-Carlo methods
on computers consisted in the fact that the used true-random generators were rather
slow and expensive. This led to the idea of the so called pseudo-random numbers, i.e.
sequences of numbers which are generated deterministically (as a rule, by an appro
priate computer program), but which can replace the true-random generators for
the Monte-Carlo methods. As said in the introductory part of this paper, from this
stage of reasoning there is a direct path to the idea to use sequences of high absolute
or relative algorithmic complexity to these purposes, in the introduced terms, to use
absolutely or relatively T-random sequences. As already mentioned, the aspirations
of T-random sequences are justifiable, even the obta'ned limit results are, in the case
of absolutely T-random sequences, qualitatively better than in the case of the true-
random ones. Even the relatively T-random sequences were proved, in the last chapter,
to satisfy, supposing the time and space limitations are large enough, one of the basic
condition of an independent random sample, i.e. the stability of the relative fre
quencies of occurrences of particular letters and strings of letters together with the
convergence of these relative frequencies to the uniform distribution. Let us try
to find, now, whether relatively T-random sequences can be used also in order
to generate random samples necessary for Monte-Carlo methods.

Consider the following most simple model. Let M = {at, a2, •••} be a finite or
infinite countable set, let V be a formula of an appropriate first-order predicate
language with a single variable, which is interpreted as ranging over thr set M.
Hence, Vis a predicate which can be attributed to each element of the set M. We shall
suppose, that for each at e M the validity or non-validity of V(fl;) can be decided
effectively, quickly and within low expenses. The measure /x(V M) of the property V

21

in the set M is defined by

(38) n(V, M) = (card (Mj)~1 card {/ : i = card (M), V(a,)} ,

if card (M) < co, or by

(39) fi(V, M) = lim n~1 card {i : i S n, V(a,)} ,

supposing that card(M) = co and that the introduced limit exists. Our aim is to
obtain the value n(V, M), however, we shall mostly investigate the situations where
this is not immediately possible because of theoretical (infinite set M) or practical
(finite, but very large set M) reasons. In such a situation the Monte-Carlo method,
and the statistically based estimate which it offers, seem to be an acceptable outcome.
When we are satisfied just with an appropriate approximation of the value fi(V, M),
we may limit ourselves to the case when the set M is finite. If M is not finite, we may
approximate the value [i(V, M), if defined, by a value [i(V, M„), with M„ = {at, a2,...
. . . ,a„} <= M and with neJf large enough. The difference \/J,(V, M) — n(V, M„)\
may be done as small as demanded.

Theorem 12. Let M = [au a2, ..., an} be a finite nonempty set, let p(V, M) be
defined by (38). Let A — (5 . , d2,..., an} be such an alphabet that each letter a, is
the number of the element a,e M. Let Sf = <S1; S2, ...> be such a sequence of finite
sequences over A, that for a given TeJ/" and for each i e Jf

(a) l(S,) = i

(b) K^pji; <E(/), G(/)» = i - T ,

where F and G are the functions defined by (29) and (30). Set, for each i e Jf, S, =

(40) fi(V, S;) = r 1 . card {j :jejr,j^ i,V(f(xu))} ,

where / is the mapping which ascribes to each 5j e A the element a , 6 M, which is
labelled or enumerated by Uj. Then

(41) lim fi(V, S^ = fj.(V, M).

Proof. Let xeA*, j ;g n. Denote by r(dj, x) the number of occurrences of dj
in x, denote by Mv c M the subset of all elements from M which possess the pro
perty V, and denote by Av c= A the set of letters corrrsponding to Mv. Then

(42) n(V, M) = card (MY) (card (M))~x = card (Av) (card (A))"1 .

Hence,

(43) lim fi(V, S) = lim r x Y, r(dj, S;) = card (Av) (card (A))-1 = fi(V, M),
i -oo i->x SjsAv

as lim r 1 r(dj, S;) = (card (A))"1, according to Theorem 11, for each dj e A. •

22

The assumption that card (M) = card (A) may seem to be, from the first sight,
rather strong and limiting, because it implies the existence of a one-to-one isomorphism
between M and A. As we have already showed, however, the sequence Sf of sequences
can be seen not only as sequence of sequences over A, but also over a product alphabet
A" with n taken in such a way that (card (A))" = (card A") ^ card M. Replace
the condition (b) of Theorem 12 by a new condition

(b') K*V(An)(B(n, S,.)/^„(S,.); <F„(i), G„(i))) £ lAa(St) - T.

We assure the validity of Theorem 11 with respect to the alphabet A", clearly, B(n, S,)
is the sequence S,- taken as a sequence of strings from A", lAn(St) is the length of
B(n, Sj) with respect to A", and the functions F„, G„ are defined, with respect to the
alphabet A", in the same way as F and G were with respect to A. When card (A") >
> card(M), the letters from A", to which no element from M corresponds are not
taken into consideration, when ~(V, S,) computed. A more detailed analysis of the
proof of Theorem 12 shows that this assertion holds even in this case.

Relatively T-random sequences may be used even in order to estimate probabilities
or measures defined on infinite spaces, when appropriately using the diagonalization
method. Let us demonstrate this claim in the case of some Bore! measurable sets. Let
us limit ourselves to subsets of the unit interval <0, 1), as the generalization to subsets
of other finite intervals will be straighforward and follows immediately from the
constructions presented below.

Let E c I = <0, 1) be a finite union of semi-open intervals, i.e. a special case
of Borel set in I. Let fi(E) be its Borel measure, hence, 1.1(E) is the sum of the lengths
of disjoint intervals the union of which is E. Denote, for ;', n ejV, j f£ n, by I(j, n)

the semi-open interval <(j-\)n~1,jn~1), so J = (J l(j, n). Set
j = i

(44) n*(n, E) = n " 1 card {j :j ^ n, l(j, n) n E #= 0} ,

hence, /{* is something like an "outer measure" of the set E generated by the intervals
l(j, n). Clearly, for each interval <a, b) <=• I the relation

(45) lim n*(n, <a, b)) = b - a = n«a, bj) ,

holds, so the same must hold for E as well, so lim f.i*(n, E)= fi(E). The value /x*(;i, E),

is completely defined by the fact, which of the finite number of intervals l(\. n),
I(2,n),...,I(n,n) possess the property V, i.e. the property of having a nonempty
intersection with the set E. Hence, /**(/?, E) can be approximated by using appro
priate relatively T-random sequences according to Theorem 12.

Consider a sequence Sf* = \Sf ±, S^2, S"3, ...} of infinite sequences with the
following properties: Each Sfk is a sequence [Skl, Sk2,...} of finite sequences of
elements from Ak, i.e. of fe-tuples of letters of the original alphabet A. Moreover,

(46) lAk(Ski) = i, for all k,ieJ/~, where lAk is defined by the number

of /c-tuples in Ski, i.e. l(Ski) = lAi(Ski) = k . lAk(Ski) ;

23

(47) K*u(Ak)(Skili ; <Fk(i), Gk(i)}) ^ i - T ,

with the function Fk, Gk being effectively constructed, with respect to the alphabet Ak,
in the same way as F and G were with respect to the original alphabet A.

Let us divide, for each k e Jf, the interval / = <0,1) into subintervals l(l, ck),
1(2, ck),..., I(ck, ck), with c = card (A), so that to each letter from Adjust one interval
I(j, ck) corresponds, let us denote it immediately I(x, ck) for x e Ak. Let us define,
given k, ieJf, the value ^(S*;, E) in this way:

(48) fi(Ski, E) = r l card {j : j ^ i, l(xkJ, c") n E * 0} ,

where Ski = {xki, xk2,..., xki}, hence fi(Ski, E) is the relative frequency of occurrences
of those elements from Ak, whose corresponding intervals of the length c~k have
a nonempty intersection with the tested set E. Because of the fixed one-to-one corres
pondence between the intervals l(j, ck) and the letters from Ak we are allowed to
consider the sequence Ski as a sequence of intervals I(j, ck) and we shall often do so
in what follows.

Theorem 12 implies the following assertion.

Theorem 13. Let £, £f*, £fk, Ski, fi and /t* satisfy the conditions introduced above,
then
(49) Jim fi(Ski, E) = /x*(ck, E),

for all k,ieJf.

Proof. Denote

(50) Bk(E) = {j : j S c\ / (/ , ck) n E * 0} ,

so that, according to (44), n*(ck, E) = c~k . card(Bk(E)). In the same time we may
write

(51) fi(Ski, E)=i~Ll card {j : j ^ i, Xj = /} = V. fr(l, Skl) ,
leBk(E) leBk(E)

so that, in the limit case

(52) lim fi(Ski, E) = lim Y. fr(l, Ski) = £ limjr(/, Ski) ,
i-»oo i-»co leBk(E) l<=Bk(E)i^co

as the number of summands is finite (at most ck) and independent of ('. According
to Theorem 12, limjr(/, Ski) = c~k for each / e Ak, i.e., / ^ ck. Hence,

(53) l i m M (S „ , E) = £ c-k = c-k.card(Bk(E)) = fi*(ck,E). D
i-oo leBk(E)

The relation (53) clearly implies that there exists, for each k e Jf, an i(k) e Jf such
that \fi(Skm, E) - n*(ck, E)\ ^ l/fe, and because of the fact that /.i*(ck, E) tends
to ft(E) with k increasing, also lim n(Ski(k), E) = n(E), A constructive variant

t-a>

of this limit assertion can be obtained as follows.

24

When proving Theorem 13, we used the fact that for each / e Ak, lim//•(/, Ski) =

= c'k, the corresponding proof being presented in Theorem 12. Hence, for each
kejf there exists i(k) e Jf such that, for all i l> i(k) and all / e Ak, the relative
frequency of occurrences of / in Ski differs from c~k by less than (c + lj~ fc, hence,
for i ^ i(k), I e Ak,

(54J fr(l, Su) e (c~k - (c + l)~k, c~k + (c + l)'k).

By a detailed analysis of the proof of Theorem 12 we shall find, that such an i(k)
can be effectively found given k eJf. Using the sequence Sf*, we shall define a new
sequence

(55J Sf = {Si;(i), S2i(2)> S3K3),...}

of finite sequences; for all k e Jf,

(56) U W = »(fc) '
(57) K*V(Ak)(Skmli(k) ; <£*(/cj, G*(/c)» ^ i(k) - T,

where F*(k) = Fk(i(k)), G*(k) = Gk(i(k)) are recursive functions according to the
recursivity of the functions Fk, Gk and i(k).

Theorem 14. Let £, Sf*, S?, Ji and /** satisfy the conditions introduced above, then

(58) lim fi(Skm, E) = ,x(E),
k-Ka

Proof. A simple computation yields that

0 = lim \jl(Skm, E) - n(E)\ = lim (\jl(Skm,E) - P*(ck, £) | + \P*(c\ E) - P(E)\) =
t-+oo k^oa

= lim \fi(Skm, E) - fi*(ck, £) | + lim \n*(ck, £) - /<£)| =
fc->O0 fc^OO

= lim \fi(Skm, E) - n*(ck, E)\ .
k->a>

Relations (52J and (54) imply that

H(Skm, E) = £ fr(l, Ski(k)) < I (c~k + (c + I)"*) =
!eBk(E) IEB^E)

= c"* . card (Bk(E)) + (c + \)~k card Bk(E) S P*(ck, E) + (c + 1)"* ck,

as Bk(E) c A", so card (Bk(E)) S ck.
Using analogously the other side of the relation (54) we obtain, that

(59) ~(Skm, E) ^ P*(ck, E)-(c + l)~k ck,
so that
(60) lim \fi(Skm, E) - ,i{E)\ = lim \ji(Skm, E) - n*(ck, £ j | g

= lim2.(c + l)-".c* = 0. D
k->oo

25

Hence, Theorem 14 improves the results obtained in [3] and [4] in the sense that
it enables an arbitrarily close approximation of the unknown value fi(E) by Monte-
Carlo methods, using as a pseudo-random input sequence a sequence of relatively
T-random sequences with appropriate recursive time and space limitations, hence,
there is no need of absolutely T-random sequences, as it claimed the premises of
assertions proved in [3] and [4]. Each finite initial segment of the defined above
"diagonal" sequence $? can be effectively, i.e. recursively, constructed, or it is pos
sible to decide effectively, given a finite sequence of sequences of letters from A,
whether it is an initial segment of an appropriate sequence Sf or not. The problem
how large would be the computational complexity of such a constructive or decision
procedure will be postponed to one of the following chapters, as well as the question
of its practical use. Let us just remember, that in the case of the absolute T-randomness
the initial segments of the corresponsing sequence £f are principally non-constructive
and the predicate of being an initial segment of £f is algorifhmically undecidabie
(because of the general undecidability of the halting problem for the universal
Turing machine cf. [l] in general, [3], [4] in the context of the problems solved
here).

5. ABSOLUTE AND RELATIVE T-RANDOMNESS IN RELATION
TO RECURSIVE CHOOSING RULES

It was proved, in the third chapter of this work, that when accepting "high enough"
time and space limitations and with these limitations increasing quickly enough
when the length of the tested sequence increases, the relative T-randomness of such
sequences may serve as a sufficient condition for the stability of relative frequencies
of occurrences of particular letters and strings of letters. Such a stability is one of the
demands usually imposed to a sequence in order to consider it for a useful simulation
of an independent and equally distributed random sample from the set A of letters.
However, usually more is requested, namely the condition of stability and conver
gence of relative frequencies is demanded to hold not only for the sequence in question
but also for some of its subsequences, at least for those of them when it is just the
index of the occurrence which decides about the belonging of this occurrence of
a letter to the subsequence in question. Let us investigate, in this chapter, whether,
and in which measure, absolutely and relatively T-random sequences possess this
property.

Le t j : N -> N be a total (i.e. always defined) recursive function such that, for all
i,j e / , if i < j , thenj(i) < f(j), let us call such functions monotonously increasing
(or simply monotonous, as no monotonously decreasing function in this sense exists).
Hence, f(l), f(2),... is a monotonously increasing sequence of natural numbers.
Denote, for S = <#., x2,..., xt} e A1,

V."H ~* ~ \X/(1)> Xf(.2)> */(3)> • • •» */(*(.))) »

26

where

(62) k(i) = max{j:jeJT,f(j)Si}.

By Sf we shall denote the sequence obtained from S when the occurrences
*/<i)' x/(2)> •••» xs(Hi)) are erased, so l(Sf) + l(Sf) = l(S).

Theorem 15. Let 5" = \SU S2, ...} be a sequence of absolutely T-random sequences
of increasing lengths over a finite, and at least binary, alphabet A. Hence, for a given
TeJT,

(63) l(S,) = i,

(64) KU(A)(StJi) ^ i - T .

L e t j : Jf -> Jf be a monotonously increasing recursive function. Then there exists
T = T'(Tj) such that <ff = {S{, S{,...} is a sequence of absolutely T'-random
sequences of non-decreasing lengths, i.e.

(65) i^j=>l(S{)<l(Sf),

(M) KmA)(S{Ji) ^ 1(S{) - T = k(i) - T .

Proof. Let us prove the assertion by contradiction, supposing that there are,
for each T eJ/', infinitely many i"s in Jf, for which

(67) KV(M(S^i) < i(S{) - T .

Now, consider three objects:
(a) A /c(/)-tuple <j(l),j(2), ...,f(k(i))} of natural numbers; such a /c(i)-tuple is

completely defined, given i, by the program which defines the recursive function j .
If this program is of the length Cj(U), we have

(68) KV(A)((f(i),f(2),...,f(k(i))}Ji) ?k cx(V).

(b) A fe(/)-tuple S{ of letters over A; as far as the complexity KViA)(S{Ji) is concer
ned, we suppose, for the sake of this proof, (67) to hold.

(c) An (i — fe(/))-tuple S{ of letters over A; the general assertion (cf. Theorem l)
implies that there is a constant c2(U) such that

(69) Kv(S{Ji) < 1(S{) + c2(U) = / - k(i) + c2(U).

There exists a program P of the length, say, c3(U), independent of /, S{, S{,f,
which proceeds as follows:

(a) constructs the sequence of i zeros,
(b) calls a subprogram for computing the function / , which computes /<(/), f(l) ,

f(2),...,f(k(ij).
(c) calls a subprogram which generates Sf,
(d) calls a subprogram which generates S{,
(e) goes through the zero sequence from the left to the right; if a zero is the j(/)th

27

one from the left for ;' = 1, 2, ..., k(i), it is replaced by the jth symbol from £.•>'
If it is not the case, the zero is replaced by the first (from the left) occurrence of
a symbol in S{, not yet used by P. Clearly, the work of P terminates by generating St.

According to the assumption (67) we obtain, for each T" e Jf and for infinitely
many i's from Jf, that

(70) * W s l / 0 < ci(F) + K%) + C2(U) + l(S{) - T + c3(U) =

l(St) + c4(U) - T .

Hence, for each T" e Jf there are infinitely many i's in Jf such that

(71) Kv(A)(Stli) < l(St) + c4(U) - T = Z(S,.) - T",

setting T = T" 4- c4(U); however, this contradicts the assumption that the sequences
is if are absolutely T-random, hence, (66) must hold. •

Applying Theorem 9 and the other results obtained in Chapter 3 we get immediately
that also the subsequences S{, S{,... of absolutely T-random sequences Su S2,...
satisfy the condition of stability and convergence to the equiprobable distribution
for the relative frequencies of occurrences of letters and strings of letters, supposing
/ is a monotonously increasing recursive choosing rule. Because of the importance
and easy interpretability of this result let us formulate it as a particular theorem.

Theorem 16. Let the notations and conditions of Theorem 15 hold, then for each
m e Jf, m > 0, and each a e A"',

(72) Hm/r(a, B(m, St)) = (card (A))~"m .

Proof. An immediate consequence of Theorems 9 and 15. •

Because of the fact that the absolutely T-randomness of subsequences S{, S{, ...
in the proof of Theorem 15 is demonstrated by "reduction ad absurdum" and this
proof is of constructive character consisting in giving an appropriate program P,
we may try to apply the same idea as in Theorem 11, i.e. to replace the demand
of absolute T-randomness by the relative T-randomness with respect to time and
space limitations large enough to be able to apply the program P. Denote by
tc(i, f, S{, S{) the number of steps made by the universal Turing machine U when
working over the inputs <i , / , S{, S{), denote by sc(i,f, S{, S{) the number of used
boxes on the tape, not taking into account the boxes occupied by the input data
in the initial state.

There are (card (A))1 sequences of the length i over the alphabet A. Each decom
position of 5,-into 5f and S{ is uniquely determined by a subset of the set {1,2, ..., i}
of integers. There are just 2' of such subsets, hence, there are at most 2 l . (card (A))' =
= (2 card (A))' pairs <S{, S{>. So we may define, for F and G being given by (29)

28

and (30),

(73) F0(f, i) = max {tc(i,f, S{, B{)}, Ft(f, i) = max {T0(/, i), F(i)} ,
<S,/.5 ('>

(74) G0(f, i) = max {sc(i,f, S{, S{),} G,(f, i) = max {G0(f, i), G(i)} .
<stf-s,t>

To be able to perform the work of the program P described above within some time
and space limitations, and this will be the basic idea of the proof of the following
theorem, these limitations must be great enough to allow to compute S{ using
a program for /

Denote by tc(x, S{) the number of steps used by our fixed universal Turing machine
U in order to compute S{ given x e A*, i e Jf. If U(x, i) + S{, then tc(x, S{) is not
defined. Set -

(75) c(U) = min {c : c e Jf, KUU)(xjS) ^ l(x) + c for all x, S e A*} ,

the set over which the minimum is taken is nonempty because of Theorem 1. Set,
moreover,

(76) TC(i) = max {tc(x, S{) : <S{, x> e A* x A*, l(S{) S i, /(*) ^

^ i + c(U), U(x, i) = S{} .

Again, the set over which the maximum is taken is nonempty, as follows from
Theorem 1, it is also finite, as there are only finitely many pairs <S{, x> with /(S{) fS i,
l(x) ^ i + c(U). Hence, TC(i) is an always defined finite value, let us define SC(i)
in an analogous way using the space complexity sc(x, S{), and set, finally

(77) F*(f, i) = F*(f, i) + TC(i), G*(f, i) = G?(/, i) + SC(i). .

Combining these considerations with the results already obtained we arrive at the
next theorem which may be seen as a "relative" variant of Theorems 15 and 16.

Theorem 17. L e t / : Jf-+Jf be a monotonous recursive function, let the functions
F*(f, i), G*(f, i) be defined by (77), let £f = {St, S2,...} be a sequence of relatively
<T, F*(f, i), G*(f, i)} — random sequences over a finite, and at least binary, alphabet
A. Hence, for a given TeJf,

(78; /(S,) = i,

(79) KtU)(StJi; (F*(f, i), G*(f, .) » £ i - T.

Then for all m e Jf, m > 0, and all a e A"' the relation (72) holds.

Proof. The relation (79) yields, that there exists T eJf such that

(80) K*U)(S{ji; (F*(/, i), G*(f, i) » ^ /(S{) - T .

Or, if (80) were not valid, it would be possible to prove, using program P described
in the proof of Theorem 15, that for each TeJf there are infinitely many i's in Jf

29

such that (79) does not hold. If (72) were not valid, it would be possible to construct
S{ using a program shorter than /(S{) — T', as the accepted time and space limitations
permit to use programs defined in Chapter 3 and constructing S; on the ground
of the knowledge of the indices of the extremely frequented (the minimally or the
maximally frequented) letter and of the knowledge of the rest of the word S(resulting
when these occurrences are erased. Hence, (72) must hold for m = 1, applying
this result to the alphabet Am for m ^ 2 we prove (72) in all the generality. Q

Clearly, the results of Chapter 3 dealing with the convergence of relative frequencies
of occurrences of letters and their strings to the equiprobable (uniform) distribution
can be seen as special cases of the assertions obtained here, using the most trivial
identical choosing function/(i) = i, i ejf. However, if we wanted to interprete the
last statement in the sense that the results of Chaptes 5 can be seen as generalizations
of the results of Chapter 3, it would be necessary to precise, first of all, in which sense
and measure we may speak about a generalization. The limits F*(f, i) and G*(f, i)
of time and space complexity are not effectively computable, as they request to know
the computational complexity of all programs which are not longer than an upper
bound and which generate S{. Each program, which would be able to compute the
values F*(f, i), G*(f, i), given / and i e Jf, would contain a sub-program deciding,
for each x e A * , Z(x) ^ /(S{) + c(U), whether U(x, i) = S{ or not; if the answer
were positive, the program would have to compute ic(x, S{). The demand of a gene
ral existence of such a program contradicts the undecidability of the halting problem
for the universal Turing machine, so there does not exist a general program to com
pute F*(f, i) and G*(f, i), given / and i ejf. On the other hand, in the particular
case of f(i) = i, as investigated in Chapter 3, there exist recursively computable time
and space limitations F(i) and G(i).

To mention another important circumstance, the limits F*(f, i) and G*(f, i)
substantially depend on the particular recursive choosing rule/and cannot be replaced
by some functions F(i) and G(i) universal for all recursive choosing rules. When
implementing some overfluous cycles not influencing the final result we may define
each recursive function by a program the computational complexity of which is,
given the argument i e Jf and a function t(i), greater than t(i). However, it is not
possible to decide effectively, in general, whether a universal Turing machine computes
the same function or not, given two different programs ("the same" function in the
sense of identifying the function / with the set of ordered pairs <x,/(x)> with x
ranging over the domain Dom (/) o f /) . Hence, recursive functions cannot be effecti
vely distinguished in other way than by identifying them with corresponding pro
grams; from this fact the non-existence of universal limitations F(i) and G(i) immedi
ately follows. Hence, there does not exist a sequence of relatively T-random sequences
which would simulate one important property of "true random" infinite sequences
of independent and equally distributed random samples: the convergence to equi
probable distribution for the relative frequencies of occurrences of letters and strings

30

in all recursively sampled subsequences. As we have seen, in the case of absolutely
T-random sequences such a simulation was possible. Hence, the results of this chapter
show the limits of possibilities when true-random sequences are to be simulated by
sequences with effectively decidable properties, and this was the aim of this work.
In the next chapter we shall briefly investigate the computational complexity of
constructive procedures which generate initial segments of sequences of relatively
T-random sequences of letters over a given finite alphabet.

6. COMPUTATIONAL COMPLEXITY OF GENERATORS
OF RELATIVELY T-RANDOM SEQUENCES

Using som; simple combinatorial reasonings we have already derived simple
upper bounds for the time complexity rc(K*,(/))(x/S; <rc, m ») and space complexity
sc(K*(A)(xJS; <«, m ») connected with the computation of the relative algorithmic
complexity K*U)(xJS; <n, m>), cf. Theorem 3 and the relations (10) and (11) above.
Hence, due to (10), the time complexity is bounded by an exponential function
of the lengths /(x) and l(S), which could be expected, because of the fact that the
algorithm works on the ground of a blind exhaustive searching in the set of combina
torial objects and the cardinality of this set (of strings) increases exponentially with
their lengths increasing. On the other hand, the use of a more sophisticated algorithm
may be justified just on the ground of an a priori information about the particular
problem. Hence, using the idea of the worst case classification we are not allowed
to omit the blind exhaustive search as a possible candidate. Let us investigate.
now, how rapidly increases the function tc(K*(A)(xJl(x); <F(/(x)), G(/(x))>) with /(x)
increasing in the case of effectively computable functions F and G defined by the
relations (29) and (30).

Theorem 18. Let $P = {S1, S2 , . . .} be a sequence of sequences from A* which
satisfies the conditions of Theorem 11, let the functions F, G :JV -> Jf be defined
by (29) and (30). Then there exist constants K2, K3 ejV, which depend only on the
used universal Turing machine U and on the cardinality c(A) of the alphabet A,
such that

(81) ?c(K*(4S,.//; <F(/), G(/)») < X 2 / V + K3i
2(2cy .

Hence, the time complexity of the computation of the relative <T, F(i), G(/)>-algo-
rithmic complexity of S ; may be majorized by an exponential function of /.

Proof. When writing KU(A)(x]l(x)) or KVCA)(Stji), we mean by / the description
of the natural number in the alphabet A, hence, /(/) < (logc /) + 1. So, using (10)
we obtain

(82) tc(K*viA)(StJi; <T(/J, G(/)») < F(i) . (c - 1) - . (c ' + * + " ~ ' + I - 1) <

< T (/) . c K l + 1 (c - 1)" ; .icl.

31

Now, we have to obtain an upper bound for F(i), which would be of at most exponen
tial character. (29) yields that

(83) F(i) = max max max {tc(i, a, w, n)} ,
aeA we>F(a,0 «<*(••, w)

where tc(i, a, w, n) is the time computational complexity of the program P defined
in Theorem 11. Hence, we have a letter a e A, a word w e W(a, i) of the length
at most i over the alphabet A — {a}, i.e., w does not contain a, and we have a natural

number n < K(i, w) = I , J. All /-tuples of zeros and units containing just Z(w)

zeros and i — Z(w) units are supposed to be alphabetically ordered in the sense
that unit follows zero, hence, the first /-tuple is 00 .. . Oil ... 1, the last being 1 1 . . .
. . . 100. . . 0. There are just K(i, w) of such /-tuples which can be numbered using
the numbers 0, 1, ...,K(i, w) — 1 according to the mentioned ordering.

Consider an algorithm which finds, given n < K(i, w), the corresponding /-tuple
with / — /(w) units in such a way that it constructs first n such /-tuples. Every /-tuple
can be generated, using the preceding one, by a fixed number of checking of this
preceeding /-tuple from the left to the right, hence, an upper bound of the time
complexity of the transformation of the (j — l)th /-tuple into the jth one can be
given as a linear function of i, say cti. Hence, the time complexity of our trivial
algorithm for finding the n-th /-tuple with / — Z(w) units is, given i, /(w) and n <

< K(i, w), majorized by the expression cti (. 1 < cti 2'.

Having a word w of the length at most i over the alphabet A — {a}, and hawing an
/-tuple of zeros and units with just (/ — /(w)) units, we are able, going just once
through this /-tuple from the left to the right, i.e., using c2i steps for an appropriate
c2, to generate the sequence St as already described (units replaced by symbols from
w, zeros replaced by a's). If cx and c2 depend on aeA, we take their maxima
values over A. Hence, setting into (83), we have

(84) F(i) < c2i + C l / 2 ' ' ,

combining with (82), we obtain

(85) tc(K*(/()(S;//; <E(/), G(/)») < (c2i + Cli 2l) (cK^\c - 1)"1 icl) =

= K2i
2cl + K3i

2(2Cy ,
setting

(86) K2 = c2c
Kl + 1(c - I) " 1 , K3 = c lC

Kl + 1 (c - l) - 1 . '

The assertion is proved. •

Let us try to find an upper bound of the computational complexity of an algorithm
which generates initial segments of the sequence Zf = {S1; S2,...}, satisfying the
demands of Theorem 11.

32

Theorem 19. There exists a totally recursive function $F : Jf -» A* with the
following properties

(a) l(Sf(ij) = ifor all ieJf,
(b) K*(A)(^(i)ji; <E(i), G(i)» S; (' - Tfor all ieJf, given Te^T, functions E
and G are defined by (29) and (30).

(c) tc(F(i)) < K2i\2cf + K3i
2(3cy ,

where K2, K3 and c are the same as in Theorem 18.

Proof. The assertion is satisfied by the trivial blind exhaustive search algorithm
which, given /" e J/', takes one z'-tuple over A after another, computes their relative
algorithmical complexities K*,U)(xji, <E((), G(i)» and stops its work when finding
that this complexity is at least i - T. The corresponding string from A1 is then
proclaimed to be ^(i), Theorem 4 assures that there is at least one such string.
So, for (' e Jf and x e A',

(87) tc(^(i)) ^ c' tc(Kt{A)(xJi; <E(/), G(i)))) < c ' (K2 jV + K3i
2(2Cy) =

= K2i
2(2Cy + K3i

2(3c)1,

by a substitution into (81). •

Theorem 20. There exists a recursive function J5" : Jf -• A*, with an exponential
upper bound for the time computational complexity, such that the sequence £f & =
= {tF(l), ^(2), •••} can be used as a pseudorandom input in the Monte-Carlo
methods in the sense that it satisfies the conditions of Theorems 12, 13 and 14.

Proof. An immediate consequence of Theorems 11 and 19. Q

7. CONCLUSIVE REMARKS

Let us close this paper by a very brief re-consideration of the obtained results.
We have declared as our goal to investigate, whether and in which measure are
preserved these good properties of sequences of high algorithmic complexity, which
enable them to serve as good approximations of true-random sequences, even
in case when the algorithmic complexity is defined and tested with respect to universal
Turing machines with time and space limitations. We have proved that if the time
and space limitations grow up "quickly enough" with the lengths of the tested se
quences, the stability of relative frequencies of occurrences of letters and strings
of letters as well as their convergence to the equiprobable distribution are preserved.
Due to this fact, even within the appropriate time and space limitations, the usefulness
of relatively pseudorandom sequences in order to estimate unknown probabilities
by Monte-Carlo methods is preserved as well. Choosing appropriately, and in a way
which is not algorithmizable in general, the time and space limitations, the mentioned
above stability and convergence of relative frequencies may be preserved to hold

33

also in subsequences chosen by a recursive rule, or by one of a finite set of such rules.
On the other hand, because of principial reasons it is not possible to satisfy this
property for all recursive rules, no matter which the time and space limitations may
be, supposing they are finite. Let us recall that the von Mises conception of a "collec
tive" and the related conceptions emphasize just this aspect. Hence, if the stability
and convergence of the relative frequencies of occurrences of letters or strings in all
recursively chosen subsequences in considered as a necessary condition for a sequence
to be taken as random, then the notion of random sequence is principially non
effective and non-recursive and can be described and handled only within the appara
tus of universal Turing machines without time and space limitations. Because of the
fact that this work has been conceived as a mathematical one in its nature, we shall
not investigate here the methodological and may be even philosophical consequences
of the obtained results for a deeper penetration into the nature of the relations bet
ween complexity, algorithmizability and randomness; let us postpone such considera
tions till another study.

REFERENCES

[1] M. Davis: Computability and Unsolvability. McGraw Hill Book Company, New York-
Toronto-London 1958.

[2] T. L. Fine: Theories of Probability. An Examination of Foundations. Academic Press,
New York—London 1973.

[3] I. Kramosil: Monte-Carlo methods from the point of view of algorithmic complexity. In:
Transactions of the Ninth Prague Conference on Information Theory, Statistical Decision
Functions and Random Processes, Academia, Prague 1983, pp. 39—51.

[4] I. Kramosil: Pseudo-random Monte-Carlo methods. Ann. Soc. Math. Polon. Ser. IV. Fund.
Inform. 5 (1982), 3-4 , 301-312.

[5] I. Kramosil: On pseudo-random sequences over finite alphabets. Ann. Soc. Math. Polon.
Ser. IV. Fund. Inform, (to appear).

34

