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A PROCEDURE FOR DESIGNING STABILIZING 
OUTPUT FEEDBACK CONTROLLERS 

JAN LUNZE 

This new approach to designing stabilizing constant-gain output feedback controllers is based 
on quantitative robustness properties of feedback control. A sufficient stabilizability condition 
is derived for an important class of unstable linear systems, which can be directly interpreted 
in terms of the system modes. Then, an instructive design procedure is presented to calculate 
appropriate feedback matrices. It can be used to find a solution of the general servomechanism 
problem with least dynamical order. For Pi-control the design algorithm yields an explicit 
expression for the controller matrices. 

0. INTRODUCTION 

The problems of stability and stabilization of unstable linear systems 

x = Ax + Bu, x(0) = x0 

y = Cx + Du 

by means of constant output feedback 

u = Ky 

are of fundamental importance in systems theory and have attracted considerable 
attention. However, up to now these problems have not been completely solved. 
The existence of stabilizing output feedback matrices is established only in form 
of necessary or sufficient conditions [1], [17], [20 ] - [22 ] or for special classes 
of unstable systems [2], [4], [10], [12], [13], The design procedures presented 
in [2], [3], [8], [18] can be used only if the number of outputs and inputs is rather 
high compared with the order of the system. 

Most of these results have been obtained by a discussion of the characteristic 
polynomial of the closed-loop system in relation to the elements of the matrix K 
and are expressed in algebraic relations. Although these results essentially originate 
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from structural properties of the system [14], [15], [19], they cannot be satisfactorily 
interpreted in terms of the technological and physical characteristics of the system 
to be controlled. 

In this paper a completely new approach will be presented to solving the stabiliza-
bility and stabilization problems. Based on the robustness of multivariable feedback 
controllers, the stabilization of an important class of unstable linear systems is 
considered. The results summarized in Theorem 1 lead to an instructive design 
algorithm. Theorem 2 states a sufficient condition for the stabilizability. This condi
tion can be easily interpreted in terms of those properties, which are commonly used 
in control theory and by control engineers to describe the nature of the control 
system. 

1. THE PROBLEM OF STABILIZATION BY OUTPUT FEEDBACK 

Consider a linear dynamical system 

x = A x(t) + B u(t), x(0) = x0 

U y(t) = Cx(t) + Du(t) 

where x(t) e R" is the vector of system states, u(t) e Rm the vector of inputs, and y(t) e 
6 Rr the vector of outputs. A,B,C and D are constant matrices with appropriate 
dimensions. 

Let the system (1) be unstable, i.e. the matrix A has some eigenvalues with non-
negative real parts. Then the system is to be stabilized by means of a constant output 
feedback 

(2) u(t) = Ky(t). 

If the matrix /— KD is invertible, the closed-loop system (1), (2) is described by 

x = [A + B(I - KD)1 KC] x , x(0) = x . 

It is stable, if all the eigenvalues of 

(3) A = A + B(I - KD)1 KC 

have negative real parts. 

Problem 1. (Problem of stabilizability.) Under what conditions does a feedback 
gain matrix KeRmXr exist such that the matrix (/ — KD) is nonsingular and the 
closed-loop system matrix A is stable? 

Problem 2. (Problem of stabilization.) Assume that the system (1) is s'tabilizable 
by output feedback (2). Which feedback matrix Ke RmXr does the system (1) stabilize? 

Both problems are solved in this paper for system (1), which satisfies the following 

Assumption 1. It is assumed that the system (1) can be decomposed into two sub-
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systems 

(4) x = Ax + Bx , x(0) = x0 , x(t) e M"1 

s = Cx + Du s(t) e Rp 

(5) i=Fz + Gs, z(0) = z0 , z(t) e R"2 

(6) y = z 

where subsystem (4) is stable and subsystem (5) includes all the unstable modes 
of( l ) . 

As shown in Section 6, this assumption is satisfied by an important class of unstable 
control systems. 

2. A SIMPLE EXAMPLE 

At the first sight, all systems of the form (4) — (6) seem to be stabilizable, because 
all the unstable state variables can be directly measured. However, the special struc
ture of the system explained in Assumption 1 does not ensure the stabilizability 
by output feedback. To demonstrate this and to motivate our further investigations 
let us consider the single-input single-output (SISO) system with nt = n2 = 1 

(7) x = ax + bu , x(0) = xQ 

s = x 

z =fz + gs, z(0) = z0 

y = z. 

Obviously, this system satisfies Assumption 1, if a < 0 and / > 0. Without loss 
of generality it is assumed that b > 0 and g > 0. 

The closed-loop system (2), (7) is described by 

'a bk\(x\ (x(0)\_ 
Kg f){z)> {z(0))~ 

It is stable if and only if 

(8) f<-a 

(9) k<£. 
bg 

Thus, the system (7) is stabilizable if and only if eqn. (8) holds, i.e. if the stability 
degree of the subsystem (5) is greater than the instability of the subsystem (5). Then 
the system can be stabilized by output feedback (2) with gains satisfying eqn. (9). 
Note that the absolute value of the gain must be greater than \fa\bg\. 

This simple example points out that a system (1) of the form (4) —(6) can be 
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stabilized by output feedback only under some restrictions concerning the eigen
values or time constants, respectively, of both subsystems. These restrictions occur 
although the unstable modes of the system can be directly measured! The following 
investigations yield a generalization of the restriction (8) and a way to calculate 
stabilizing output feedback matrices. 

3. NECESSARY CONDITION FOR STABILIZABILITY BY OUTPUT 
FEEDBACK 

A necessary condition for the stabilizability of the system (4) — (6) is that all the 
unstable modes of (5) must be controllable by input u and observable by output y. 
While the observability is ensured by eqn. (6), the controllability depends on the 
properties of both subsystems. It can be checked by means of the necessary and 
sufficient condition given in [4], Here, the following assumptions are made, which 
are sufficient and "nearly" necessary for the controllability of the modes of (5) 
(cf. [4], Section 3.2). 

Assumption 2. It is assumed that the static transition matrix Ks of subsystem (4) 

(10) Kt= D - CA lB 

satisfies the condition 

(11) rg Ks = r 

and that the pair (F, G) of subsystem (5) is controllable. 

4. DESIGN OF A STABILIZING OUTPUT FEEDBACK 

4.1. The robustness approach 

The design should be carried out by means of the following philosophy, which is 
motivated by the example of Section 2. To stabilize the system (4)—(6) the unstable 
eigenvalues of the matrix F must be shifted into the left half complex plane. This 
problem would be trivial, if subsystem (4) has very small eigenvalues in relation 
to the eigenvalues of rand can be approximated by a static system 

(12) s = Ksu . 

Then the output feedback (2) would represent a state feedback to the system (5), 
(6), (12) and Assumption 2 would ensure arbitrary pole assignability. The controller 
could be chosen so as to give all the eigenvalues of the closed-loop system (2), (5), 
(6), (12) some real value — /? < 0, i.e. there exists some transformation matrix T 
such that 

(13) T'\F + GKSK) T = diag -fi . 

To stabilize the original system (4)-(6) rather than the modified system (5), (6), 



(12), this feedback must be robust enough to tolerate the dynamical effects of sub
system (4). A sufficient condition for this robustness leads to the following theorem, 
which describes the main result of this paper. 

Theorem 1. Consider the system (1) satisfying Assumption 1 and Assumption 2. 
Choose the matrix K such that all the eigenvalues of 

F = F + GK 

have the same positive real value —/? < 0. If the inequality 

(14) Xp \CA~l exp (At) B\ dt \K?RG\ < 1 

is satisfied, then the close-loop system (1), (2) is stable with 

(15) K = Ks
+K . 

Here, Xp denotes the maximum eigenvalue (Perron root) of the indicated non-negative 
matrix. The symbol |. | signifies that all elements of the matrix are replaced by their 
absolute values. K^ is the pseudoinverse of Ks 

(16) K; = KS
,(KX)-1 . 

This result will be proved in Section 4.3. 

4.2. Design algorithm 

Theorem 1 leads to an instructive design algorithm, which proceeds in the follow
ing steps: 

Step 1. Decompose the overall system (1) into the stable subsystem (4) and the 
unstable subsystem (5). Check Assumption 1 and 2. 

Step 2. Calculate a feedback matrix K so as to satisfy eqn. (13) for some P > 0 
by means of design procedures for state feedback (cf. [9], [16]). 

Step 3. Check the stability condition (14), (15). If eqn. (14) is not satisfied proceed 
with Step 2 choosing a smaller value of/?. 

This design procedure is very simple indeed. It can be used to solve different 
problems of feedback control (for examples see Section 5). 

4.3. Proof of Theorem 1 

To prove Theorem 1 the following lemma will be used. 

Lemma 1. Consider a stable linear system 

(17) x = Ax + Bu 

y = Cx 
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with unity feedback 

(18) « = y + v . 

Then the closed-loop system (17), (18) is stable if the inequality 

(19) Xp(\G(s)\) < 1 

holds for all s on the Nyquist contour £>, where G(s) is the transfer function matrix 
of system (17) 

G(s) = C(sl- A)'1 B. 

Proof. In the frequency domain the closed-loop system (17), (18) is described by 

(17') j (s) = G(s)«(s) 

and 
(18') u(s) = y(s) + v(s). 

First, it will be proved that this system is input-output (I/O) stable if the inequality 
(19) holds. 

According to the generalized Nyquist stability criterion used for stable system (17), 
the closed-loop system (17'), (18') is stable if and only if the graph of det (F(s)) 
for s e D does not encircle the origin of the complex plane (cf. [9], [16]), where 

F(s) = l-G(s). 

This criterion is satisfied if eqn. (19) holds, because 

Re[det(F(s))] = Re [ ] T W ) ) ] = R e 01(1 " W-)))] * 

= no - \mk) = na - wm = o 
follows from (19) with Xt(.) denoting the eigenvalues of the given matrices. 

Now, it will be proved that l/0-stability of the system (17'), (18') in the frequency 
domain implies Lyapunov-stability of the system (17), (18) in the time domain, 
which is characterized by the fact that all eigenvalues of the closed-loop system 
matrix 

A = A + BC 

have negative real parts. To do this realize that if (17'), (18') is I/0-stable then all 
modes of (17), (18) that are controllable via v(t) and observable via y(t) have negative 
real parts. In order to prove Lemma 1 it must be shown that all other eigenvalues 
of A are stable. 

Using Hautus' controllability criterion [7], the eigenvalues Xf(A) of the closed-loop 
system (17), (18) which are not controllable via v(t) or not observable via y(t) are 
given by 

(20) rg (A - XJ, B)<n 

rg(T - XJ, C) < n 



respectively, where n is the order of the matrices A and A. For these eigenvalues 

rg (A - XJ, B) = rg (A - X,I + BC, B) = rg (A - XtI, B) < n 

rg (A' - XJ, C) = rg (A' - XJ + CB, C) = rg (A' - XJ, C) < n 

hold. Hence, these eigenvalues of A are also eigenvalues of A. Thus they are stable. 

This completes the proof. • 

P r o o f of T h e o r e m 1. The closed-loop system described by eqns. (2), (4)-(6) 

and (15) can be written as 

x = Ax + Bu 
V ' • st = Cx+ CA~lBu 

i =(F+GK)z + Gst 
(22) 

u =Kz, 

X = Ax + B u 

S l = С x + С A - 1 B u 

s 2 = K S U 

u = Kv 

Ż= Fz + Gs 
v = z 5 s * 
Ż= Fz + Gs 
v = z 

Fig. 1. Decomposition of the closed-loop system (2), (4)—(6) with j = st + s2. 

where eqns. (15), (16) are used (Fig. 1). According to the location indicated in Figure 
1, the system (21), (22) can be interpreted as open-loop system 

(23) 

and unity feedback 

A 0 
GC F + GKІ\z 

B 

GCAXB 

»-<•*)(;) 

u = y. 

The stability of this system can be proved by means of Lemma 1. In order to get 

a simple expression for the transfer function matrix G(s) of the system (23), eqn. (23) 

is transformed by 

/ 0 

-T'GCA1 T 1 
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with J from (13) into 

(t) = (-PT^GCA-i -Pl)\s) + ( o 

(24) ,-\ 
y = (KGCAl KT){X_\. 

This system represents a chain connection of the subsystems 

ic = Ax + Bu 
(25) 

* = CA ~1x 
and 

(26) . - - * » - A T " ' * 

y = #25 + ZGL? • 

Hence the transfer function matrix G(s) of the system (23) is given by 

(27) • G(s) = G2(s) Gt(s) 

with 

(28) <?x(s) = CA ~' exp (_4 /) £ exp ( - sf) di 

(29) G2(s) = KG- pKT(sI + pi)"' T >G. 

From (28) 

(30) |<?.(s)| g J |G<~1exp(i<.*).-?|d< 

follows. Eqn. (29) yields 

(31) \G2(s)\ = \Pl(s + P)\ \KG\ S \KG\ for s e B , p > 0 . 

Now, the stability condition (14) of Theorem 1 follows directly from Lemma 1. • 

5. A SUFFICIENT CONDITIONS FOR STABILIZABILITY 
BY OUTPUT FEEDBACK 

Theorem 1 can be used to derive a sufficient condition for the stabilizability by 
output feedback. Consider the system 

ih 
x = diag (—A;) x + I : \u 

(32) U, 

s = (ci • • • -.,,) * 
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(33) 

' 0 1 0 . . . 0 

i ~ « l ~ « 2 ••• ~a„ 

y = z 

Z + 

with dim u = dim s = 1, which satisfies the Assumptions 1 and 2. The design 
procedure of Section 4.2 shall be used to find a vector k' such that the feedback 

u = k'y 

stabilizes the given system (32), (33). From (10) and (15) 

(34) 

follow, k has to be chosen such that the matrix 

0 1 /0\ 

+ ; \(k..-k2) = 

k' •• -I* 
K 

K = i>. 
í = l 

ғ = ' 1 
— a„ ,-a, - Ű , 

has an eigenvalue —/? with multiplicity n2. As the scalars at and at in Tor F, respect
ively, are the coefficients of the characteristic polynomial of F or F, respectively, 
k can be calculated easily. In particular, 

(35) k2 = ~nß2 - I щ = -(n2ß + 1 Re(ш ;)) 

holds, where wf are the eigenvalues of F. 
To check the stability condition (14), use the relation 

(c1... c „ J d i a g — - diag exp ( — A;t) • II dt < ^ (36) 

The closed-loop system is stable, if for some fi > 0 the inequality 

I 
(37) 

I 
()12ß + V RЄ (Ю;)) < 1 

holds. Hence, a suffcient condition for stabilizability is given by 

Theorem 2. A sufficient condition for the stabilizability of systems (4)-(6) with 
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dim u - dim 5 = 1 satisfying Assumptions 1 and 2 is given by 

(38) £ R e ( o ; ; ) < 
г=i 

t-i |A.| 

where c ; and A,- are defined by the canonical form (32) of subsystem (4). 

This condition is a generalization of the inequality (8). As eqn. (8) states a neces
sary and sufficient condition for stabilizability in case of nt = n2 = 1, eqn. (38) 
can be considered as a sufficient and "nearly" necessary condition for the stabiliza
bility of higher order systems. Therefore, the stability condition of Theorem 1 is 
not very conservative. 

The result of Theorem 2 can be interpreted in the sense of the design philosophy 
described in Section 4.1. The overall system is stabilizable by constant output feed
back if the subsystem (4) is fast enough in relation to subsystem (5), so that it can be 
approximated by a static system (12). Inequality (38) describes, what "fast enough" 
means. It provides a bound on the dynamics of subsystem (4) that can be tolerated 
by the controller. In contrast to the singular perturbation approach, which proceeds 
with a similar design philosophy, the robustness approach, as adopted here, leads 
to quantitative bounds rather than qualitative statements. 

Note that eqn. (38) can be satisfied if the subsystem (5) has not only unstable 
eigenvalues but stable ones too. Then Y^Re (co,) may be very small even if the overall 
system has severely unstable modes. Therefore, the system (l) can be made to satisfy 
condition (38) by transforming some stable eigenvalues with small real part from 
subsystem (4) into subsystem (5). The only price for it is an additional measurement 
of these states. 

The result of Theorem 2 can be extended to multi-input, multi-output systems 
using similar canonical forms of both subsystems as in eqns. (32) and (33) [11]. 

6. APPLICATIONS 

To demonstrate the usefulness of the proposed design procedure and the suffi
cient stabilizability condition several applications are considered in the following 
section. 

The influence of the actuator dynamics in feedback systems 

Identify subsystem (5) with the real plant and subsystem (4) with the actuator 
of a feedback system. If the actuator dynamics are neglected the controller (2) 
represents a state feedback to the resulting plant (4), (12). Then Theorems 1 and 2 
can be used to investigate the stabilization problem in the presence of actuator 
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dynamics. Accordingly, the plant remains stabilizable, if the actuator is fast enough 
so as to satisfy the quantitative bound on its dynamical behaviour given by eqn. 
(38). Then a stabilizing output feedback of the overall system can be found by the 
algorithm described in Section 4.2. 

The general servomechanism problem 

A problem that often occurs in linear multivariable control is to find a feedback 
such that the output y(t) tracks asymptotically a given command input v(t) indepen
dently of unmeasurable disturbances. If the command and disturbance signals are 
solutions of homogenenous linear differential equations 

(39) r = Rr , r(0) = r0 

v = Vr 

where all the eigenvalues of R have non-negative real parts, then the feedback must 
include an internal model (servocompensator) of the external signals [5] 

(40) z = diagRz + G(y-v). 

The block diagonal matrix diag R consists of r blocks, and G is chosen such that 
the pair (diag R, G) is controllable. If a compensator with input y and z and output 
u is used that ensures closed-loop stability for v = 0, then asymptotic regulation 
occurs for v(t) from (39) 

y(t) - v(t) ->• 0 for t ->• oo 

for all initial states x0 and r0. 

The overall feedback controller consists of the servocompensator (40) as well as 
the stabilizing compensator. Whereas the former is given by the properties of the 
external signals, there is some freedom in the design of the latter. In order to get 
a low dynamical order of the controller the question arises, whether a static feedback 

(41) u = K%y + K2z 

can be used rather than a dynamic compensator to stabilize the extended plant (1), 
(40). It can be answered by means of Theorems 1 and 2. 

Interpreting the real plant (1) as subsystem (4) and the servocompensator (40) as 
subsystem (5) the results of the Sections 4 and 5 lead to the following 

Corollary 1. Consider a SISO plant (l). Assume that the plant (1) is stable and 
satisfies eqn. (11). Then there exists a static feedback 

(42) u = K2z 

stabilizing the extended plant (l), (40), if the inequality (38) is satisfied, where co, 
are the eigenvalues of the servocompensator (40) and (Xh c;) are given by the canonical 
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form (32) of the plant (1). A stabilizing feedback (42) can be found by means of the 
procedure of Section 4.2. 

If the output y is fed back as well (cf. eqn. (40)) then the freedom in choosing 
the matrix Kt can be utilized to make the plant as fast as possible in order to satisfy 
the inequality (38). 

Multivariable I-controIler 

If the servomechanism problem is considered for step signals »(f) = v a(t), which 
are commonly used in process control, the servocompensator (40) has the form 

(43) i = y - v . 

Then condition (11) must necessarily be satisfied to ensure the stabilizability of the 
extended plant (l), (43) by static output feedback (41) [12]. Using Theorems 1 and 2 
with F = 0, G = / and K2 = -fiKs

+ eqn. (38) is satisfied, and the following corollary 
can be derived. 

Corollary 2. For every stable system (l) satisfying eqn. (11) there exists a multi-
variable I-controller (42), (43) such that the closed-loop system (1), (42), (43) is stable. 
Corresponding controller matrices K2 are given by 

(44) K2 = -£ffs
+ 

with 0 < f3 < ft 

(45) ,5 = 1/1 ІCA" 1 exp(At)B\dt 1*1} 
While the existence of such an I-controller is already known [6], [12], the eqns. 

(44) and (45) give a broader class of controller matrices than the results of [12], [13]. 
This example gives a further argument that the stability condition (14) given 

in Theorem 1 is not very conservative, although it is sufficient but in general not 
necessary for the stability of the closed-loop system. 

CONCLUSIONS 

Using the methods of robust control a design procedure and a sufficient condition 
for the stabilizability of a class of unstable linear systems by means of constant-gain 
output feedback have been given. As demonstrated by several examples the class 
of systems considered here is important e.g. in process control. The main advantage 
of the obtained results is the possibility to interprete the stabilizability condition 
directly in terms of the system properties. The design procedure is instructive and 
very simple. 

(Received November 14, 1983.) 
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