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ROBUSTNESS OF DECENTRALIZED CONTROL SUBJECT 
TO NONLINEAR PERTURBATION 
IN THE SYSTEM DYNAMICS* 

DJORDJIJA PETKOVSKI 

This paper considers the problem of robustness in decentralized control system designs subject 
to nonlinear perturbation in the system dynamics. New relationship is established between 
perturbation bounds and dominant poles of the nominal closed loop system. The theory is 
applied to characterize the robustness properties of a power system example which employ five 
DC terminals to damp out interarea oscillations due to the AC power system dynamics. 

1. INTRODUCTION 

In recent years, there has been an increased interest in the development of satisfac
tory control design methods implemented in a decentralized way. One of the most 
basic issues that arise in this class of problems is the robustness of the decentralized 
design, i.e. its ability to maintain stability and performance in the face of uncertain
ties. In this light, stability is a primary concern since an unstable system is obvious 
useless. The major objective of this paper is to show that the decentralized control 
systems with a prescribed degree of stability, can accommodate different types of 
nonlinear perturbations in the system dynamics, so that the perturbed system re
mains stable. New relationships are established between perturbation bounds and 
dominant poles of the nominal closed loop system, thus helping a designer to select 
an appropriate degree of stability to attain a robust design. 

Consider the decentralized control system described by 

(1) x(t) = Ax(t) + iBiUi(t) 
;= t 

(2) Ui(t) = F;CiX(t), i = 1,2,..., ft. 

At least two approaches can be used to determine the decentralized feedback matrices 
Ft. The first one is based on minimization of the decentralized quadratic performance 

* Research supported in part by the U.S.-Yugoslav Scientific and Technological Cooperation 
under Grant ENERGY-401. 

473 



index (cf. [1], [6]) 

(3) J = $ Pe 2 a ' ( .vTox + X «TR;Ki) dt 
Jo ' - I 

Q = QT ^ 0, Ri = RT > 0, i = 1, 2, ..., /< and a is a nonnegative constant. The 
second approach (cf. [2], [6]) is based on computation of a complete state feedback 
(by LQ methodology) and reduction to a specified control with a decentralized 
structure. 

We assume that the system, eqns. (l) and (2), is stabilizable and that, by one of the 
above approaches, the feedback matrices Ft have been selected so that the closed 
loop matrix 

k 

(4) Ac = A + X BiFiCi 
i = 1 

is a stability matrix so that 

(5) R e [ ^ c ) ] = - « 

where a defines the minimal degree of stability. Therefore, we can define the following 
Lyapunov matrix equation 

k 

(6) ATP + PA, + 2aP + £ CjFjRiF.C, + Q = 0. 
i= i 

Notice that the value of the corresponding performance index is 

(7) J = ^<°xT(t0)Px(t0) 

where P is defined by (6). For ease in subsequent calculation it is assumed that P 
is positive definite. 

2. ROBUSTNESS RESULTS 

Let the perturbed version of the nominal system, eqns. (1) and (2), satisfies 
k 

x = Ax + £ Bit, + f(x, u, t) 

(9) (- H; = F;CiX 

where A, Bh F{ and Ct are the same as in eqns. (1) and (2); so that all the parameter 
variations, nonlinearities in the open loop system dynamics and the design lineriza-
tion are lumped into the vector function/(x, ti, t). 

Therefore, we are not restricting our attention to linear systems with nonlinear 
parameters variations in the system dynamics but (§) can also be interpreted as 
a linearization of a general nonlinear system. The control engineer's task would 
indeed not be an enviable one if the mathematical description of all physical systems 
requires, for the purpose of control system design, a general nonlinear model of the 
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process dynamics. The presence of the nonlinear disturbance vector f(x, u, t) makes 
the overall system (S) a nonlinear one, and despite the avaliability of modern design 
techniques the generation of algorithm for the stabilization of nonlinear systems, 
as is well known, is extremely complicated. Even if a satisfactory algorithm is found, 
the data-processing difficulties arising from the high dimensionality of the system 
make the determination of the necessary control functions quite formidable. 

The major objective of this paper is to show that when the nonlinear perturbation 
vector f(x, u, t) admits certain norm bounds or conforms to certain symmetry 
requirements the perturbed system can be stabilized by using the nominal model 
of the system for the purpose of control system design. 

A reasonable measure of robustness for a feedback system is the magnitude 
of the otherwise arbitrary perturbations which may be tolerated without instability. 
The stability margines of the proposed decentralized output feedback control schemes 
are characterized by the following theorem, which gives sufficient conditions for the 
closed loop stability of the actual nonlinear system (S). 

Theorem 1. Let f(x, u, t) be memoryless, time-varying vector function. If the 
following inequality is satisfied 

m IIMOIH < W g ) 
ME ~2Xmm(P) 

where the matrix K is defined by 
k 

(11) K = X CjFrRtFtCt + Q + 2aP 
i = l 

and the matrix P is the solution of the equation (6); for all t e [0, co), then the per
turbed system (8) and (9) is asymptotically stable. 

Proof. Choose the positive definite Lyapunov function as V(x) = xTPx. Taking 
the time derivative along the solution of (8) and (9) and using (6), V(x) may be 
represented as, 

k 

(12) V(*) = - x T ( £ CTT,TR,T;C, + Q + 2aP) x + 2f(x, t) Px. 

Notice that 

(13) /T(*, o Px ^ \\f(x, 0||E | |P* | E ^ ||/(*, 0||B M E | * | E 
since, 

(14) J H E < m a x J IME = lij-.fl 
1 j l l*«E - S 1 * 1 . " "E 

Therefore, from (13) and condition (10), it follows that 

(15) r(x,t)Px^^min(K)\\xU 
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and V(x), eqn. (12), becomes 

(16) K(Jc) = - xr( Y CjFjRiF:Ci + Q + 2aP - Xmin(K))x. 
i - 1 

It is easy to see that V(x) < 0 for all x(t) and, hence, the perturbed system is stable 
for all nonlinear perturbations satisfying (10). • 

An alternative expression for the results of Theorem 1 is given in the following 
corollary. 

Corollary 1. Let the nonlinear perturbation f(x, t) satisfy the inequality 

(17) ||/(MI|B-I<l.«*«B 

for all (f, x) e R"+1, x e R", where d; are n nonnegative numbers, and let d = £ d ; 

satisfy 

(18) KdK) ^ ^d Xmm(P) 

then the perturbed system (8) and (9) is asymptotically stable. 

Proof. Straightforward from Theorem 1 and observation that 

(19) X//,-||*I!E _ 4*IIE- • 

These results provide a framework within which quantitive bounds on the non
linear perturbations and on the imprecisions in an engineering model may be used 
to test whether or not the model is sufficiently precise to be of use in assessing the 
actual system's behavior with given feedback law. In this framework, nonlinear 
systems emerge as a special case in which one is primarily interested in testing the 
validity of a linear approximation. 

If the above analysis finds out that the proposed decentralized control system 
has unsatisfactory robustness characteristics, it is necessary to develop the procedure 
which leads to control system designs with improved robustness characteristics. 
For that reason, in what follows the allowable perturbations will be interpreted 
in terms of dominant eigenvalues of the nominal closed loop system and in terms 
of a prescribed degree of stability parameter a. 

Theorem 2. The following relationship between the perturbation bounds on the 
nonlinear vector/(x, t) and the closed loop poles can be established 

(20) .l/]Mk ^ - R e [K-Mcj] 
FIIE 

where Ac is given by (4). 

Proof. Denote by q the eigenvector corresponding to the greatest eigenvalue 
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function for the perturbed system, V(x) can be calculated as before to give 

(27) V(x) = - * T ( £ CjFjRiFiCi + Q + 2aP) x + fT(x, t) Px + xTPf(x, t). 
i = l 

Forf(x, t) defined by (25), expression (27) becomes 

(28) V(x) = -xT( £ CjFjRiFiC; + Q + 2xP - P(TT(x, t) + T(x, t)) P + 
i= 1 

+ P(ST(x, t) + S(x,t))P)x. 
But, 

(29) P(TT(x, t) + T(x, t))P = 0 

since T(x, t) = -TT(x, t) for all t e [0, oo). 
Now, if conditions (i) holds, then (28) becomes 

(30) V(x) = -xT( £ CjFjR,FiCi + Q + 2OLP + 2PS(x, t)P)x. 
i = i 

Therefore, 

(31) V(*) S ~xT(t CjFjRiFiCi + Q + 2aP)x. 
i= 1 

So, it can be said that the system with nonlinear perturbation vector of the form (25) 
which satisfies the condition (i), is "at least" as stable as the nominal unperturbed 
system. 

The proof of conditions (ii) follows directly from (28) and its omitted. • 

It is important to emphasize that the decentralized pole placement approach 
for large scale control system design present no difficulty to the theory, and that 
the robustness results developed, can all be applied directly. 

3. NUMERICAL EXAMPLE: FIVE TERMINAL MTDC SYSTEM 
DESIGN 

To illustrate the concepts developed in this paper a five-terminal MTDC system, 
with typical parameters, is used throughout. A one-line diagram of this system is 
shown in Figure 1. The AC bases in this system represent coherent areas identified 
by a dynamic-equivalent algorithm and the AC lines represent the equivalent tie-lines 
connecting the different areas. In this illustrative system, the terminal 1 is considered 
to be the voltage controller and acting as the slack terminal for the MTDC system. 
The other terminals are assumed to be current controllers and their current orders 
may be perturbed by respective modulating signals. For more detailed discussion 
on this issue and physical interpretation of five machine model see reference [5]. 

The linear quadratic state feedback is used as a starting point in the decentralized 
control system design. The control penalty matrix R is selected as an identity matrix 
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of Ae, and by q the complex conjugate of q. Premultipying and post-multiplying (6) 
by q and q it follows 

, , n « ( £ CjFjRiFiCi +Q + 2aP) q 
{ ' - Re [W.4„)] = — " • 

L maxV yJ 2 ? P ? 

Notice that the matrices on the right side of eqn. (21) are symmetric ones. Therefore, 
by applying the Rayleigh's principle (cf. [3], [4]) it follows 

k k 

(22) Xmin ( £ CjFjRiFiCi + Q + 2aP) S q ( £ CjFjRiFtCi + Q + 2aP) q 
i = l ( = 1 

(23) KJP) £ qpV 2* ^ax(I ' ) 
and 

(24) 
- Re [>max(Ac)] ^ 

^min( £ CjFjRiFiCi + Q + 2aP) 

2KUP) 
From (10) and (24) the inequality (20) follows directly. • 

Having in mind that — Re pm a x(A c)] ^ a, where a is a prescribed degree of sta
bility parameter, the inequality (20) also establishes a relationship between the allow
able perturbation and the parameter a. In other words, the inequality (20) provides 
an explicit link between the allowable perturbation and the choice of the parameter a, 
helping a designer to use the parameter a as a design parameter. 

The following theorem gives an explicit parametrization of the subclass of distur
bances that never destabilize the originally stable closed loop system. In essence 
the theorem gives alternative conditions for stability, which do not take into account 
the norms bounds on the nonlinear vector f(x, t) but rather constraint the structural 
arrangement off(x, /). 

Theorem 3. Let the nonlinear perturbation vector f(x, t) be of the form 

(25) / (* , /) = [T(x, t) - S(x, /)] Px(t) 

If one of the following conditions holds 
(i) T(x, t) is an arbitrary skew-symmetric matrix for all / e [0, co), and S(x, /) 

is an arbitrary symmetric, positive semidefinite matrix for all / e [0, oo) or, 
(ii) T(x, t) is an arbitrary skew-symmetric matrix for all / e [0, oo), and S(x, /) is an 

arbitrary symmetric matrix for all / e [0, co), so that 
k 

(26) £ CjFjRiFiCi + Q + 2aP + 2PS(x, t) P ^ 0 
i= 1 

for all / s [0, co); 
then the perturbed system (8) and (9) is asymptotically stable. 

Proof. The proof runs along identical lines to that of Theorem 1. Choosing 

V(x) = x(t) Px(t), where P is the positive definite solution of (6), as a Lyapunov 
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weighting by a scalar 37-5. Based on the model-decomposition concept, the state 
weighting matrix Q is selected (see [5]) to penalize the complex modes associated 
with inter-area oscillations. For this example the optimal feedback gain matrix is 

Fig. 1. A power system with five DC terminals and five AC modes. 

given with 

F = 

0-2728 D + 3 -0-1379 D + 0 -0-4046 D + 3 
0-2862 D + 3 -0-4398 D + 0 0-5988 D + 1 
0-2116 D + 3 0-2356 D - 2 -0-3677 D + 2 

0-3716 D + 0 0-3489 D + 2 
0-2226 D + 0 -0-3400 D + 3 
0-2097 D + 0 -0-2123 D + 2 

0-1474 D + 3 -0-1674 D - l 0-3952 D + 2 -0-1010 D + 0 0-5175 D + 2 

-0-1516 D + 0 0-5404 D + 2 0-5745 D - l 0-4245 D + 2 
-0-5506 D - 4 0-1908 D + 2 0-1013 D + 0 0-2776 D + 2 
-0-7648 D - l -0-1568 D + 3 -0-8022 D - l 0-2858 D + l 

0-1166 D + 0 -0-6033 D + l -0-2525 D - l -0-2325 D + 3 

The feedback law given by the linear quadratic methodology requires a knowledge 
of all the state variables at each actuator. However, the angles of the areas cannot 
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be measured easily, thus only the frequency information is available to the controllers-

As alternatives to the fill-state feedback structure, we consider the following infor

mation pattern: feedback using local frequency and frequency of the original voltage-

setting terminal (teiminal 1). This decentralized information pattern corresponds to: 

C,= 

c2 = 

c3 = 

Cл = 

[ 1 0 0 0 0 0 0 0 Ol 
[o 0 1 o o o o o o j 

[ 1 0 0 0 0 0 0 0 0] 

[o 0 0 0 1 o o o o j 

[ 1 0 0 0 0 0 0 0 0] 
[o o o o o o i o o j 
[ 1 0 0 0 0 0 0 0 0 ] 

[ o 0 0 0 0 0 0 0 l j 

Using the least-square optimization algorithm [6] the centralized state feedback 

controller is reduced to the decentralized control scheme, eqn. (2), 

EiC! = [0-2728 D + 3 0 -0-4046 D + 3 0 0 0 0 0 0] 

F2C2 = [0-2863 D + 3 0 0 0 -0-3400 D + 3 0 0 0 0] 

E3C3 = [0-2161 D + 3 0 0 0 0 -0-1568 D + 3 0 0 0] 

T4C4 = [0-1474 D + 3 0 0 0 0 0 0 0 -0-2325 D + 3] 

As known, a power system can be viewed as a nonlinear system whose dynamics 

are governed by a vector nonlinear function. However, the MTDC control system 

design has been studied using linear system model. Therefore, the actual system can 

be defined by (S), eqns. (8) and (9), i.e., all the parameter variations, nonlinearities 

in the open-loop system dynamics and the design linearization are lumped into 

the vector function/(x, u, t). 

To realistically evaluate the robustness of the MTDC control system design, 

modelling uncertainties described by the function/(Jf, it, t) must be known a priori. 

This characterization can be based on experimental measurement. If the time domain 

data are used in this purpose then the results of this paper can be employed for 

robustness characterization. For the purpose of illustration, let us examine the 

robustness of the perturbed system using the condition (17), Corollary 1. Let us assume 

that 
4 

tll = E d 2 i + 1 
i = 0 

and 
4 

tlII = Z^2i 
i = 0 

where d2i+l, i = 0, 1, 2, 3, 4 are nonnegative numbers which correspond to the 

states which describe the changes in electrical angles, and d2h i = 1, 2, 3, 4 are non-
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negative numbers which correspond to the states which describe the changes in fre
quences. The visualization of the dt and dn, for different values of the prescribed 
degree of stability parameter a, for which the perturbed system remains stable, is 
shown in Figure 2. 
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Fig. 2. Visualization of the values of dj and du for which the perturbed system remains stable, 
for different values of the prescribed degree of stability parameter /. 

4. CONCLUSIONS 

The robustness of decentralized control systems subject to nonlinear perturbations 
in the system dynamics has been considered. It has been shown that there exist 
finite nonlinear perturbations, which admit certain norm bounds, so that the per
turbed system remains stable. A new relationship has been established between 
perturbation bounds and dominant poles of the nominal, unperturbed closed loop 
system. Alternative conditions for stability, which do not take into account the norm 
bounds on the nonlinear perturbations but rather constrain the structural arrange
ment of the perturbations, have also been given. 

(Received November 2, 1983.) 
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