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REGRESSION QUANTILES AND TRIMMED LEAST 
SQUARES ESTIMATOR UNDER A GENERAL DESIGN 

JANA JURECKOVA 

For the regression quantiles introduced by Koenker and Bassett [16], the Bahadur-type 
representation up to the remaining term 0 P («~ 3 ' 4 ) is derived under a general design and for 
generally asymmetric distribution. This is then applied to derive the representation and the 
asymptotic distribution of the trimmed least squares estimator under general conditions. 

1. INTRODUCTION 

Let us consider the linear model 

(1.1) X = Cfi + E 

where X = (X1, ...,X„)' is the vector of independent observations, C is the n x p 
design matrix, /} = (ftu ...,PP)' is the vector of unknown parameters and £ = 
= ( £ ] , . . . , E„)' where Eu ..., E„ are independent and identically distributed (i.i.d.) 
random variables with a continuous distribution function (d.f.) F. Our main interest 
is in robust estimating the parameter /?. 

For the location submodel, three broad classes of robust estimators, M-, R- and 
L-estimators, were introduced and intensively studied. Their finite-sample as well as 
as asymptotic properties can be found, e.g., in Huber's monograph [6]. From these 
classes of estimators, the M- and R-estimators were extended in a straightfoiward 
way to the linear model. This was not the case of L-estimators, though they are com-
putionally appealing in the location submodel. Comparing with a host of papers 
on M- and R-estimators of regression parameters, it was apparently only Bickel's 
paper [4] until recently which dealt with an extension of L-estimators to the regres
sion model. Koenker and Bassett [16] introduced the concept of regression quantile 
as an extension of the sample quantile to the linear model. This concept seems to 
provide a reasonable basis not only for the construction of robust L-estimators 
of regression parameters but also for the construction of robust tests of the linear 
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hypothesis and for the robust analysis of variance. Koenker and Bassett [16] also 
suggested the trimmed least squares estimator (trimmed LSE) as an extension of the 
trimmed mean to the linear model. 

The regression quantiles and the trimmed LSE were later-on studied by Ruppert 
and Carroll [19], who derived the Bahadur-type representation of both up to the 
order op(n~112) as well as the asymptotic distribution of the trimmed LSE. Jureckova 
[12] studied the asymptotic relation of the trimmed LSE to the Huber M-estimator. 
Both [19] and [12] considered the design matrix satiyfying 

(1.2) c n = l , i = l , . . . , n ; f c 0 - = 0 , j = 2,...,p. 
i= 1 

Ruppert and Carroll showed that under such design and for asymmetric F, the 
ambiguity about the parameter being estimated involves only the intercept and none 
of the slope parameters. Such design was also considered by Bassett and Koenker 
([2], [3]) and by Portnoy [18] in the studies of the empirical distribution and of the 
empirical quantile functions based on regression quantiles and also by Jureckova [13] 
in the study of Winsorized LSE and by Jureckova and Sen [14] in the construction 
of an adaptive scale-equivariant M-estimator. 

The problem of interest is what is the behaviour of the regression quantiles and 
of the trimmed LSE in the case of a more general design not satisfying (1.2) and 
in the special case of design without an intercept, 

(1.3) X . C y - 0 , j= I,..., p. 
i = l 

In the case of general design satisfying neither (1.2) nor (1.3), the regression 
quantiles would be asymptotically biased but their asymptotic bias would not have 
a natural population counterpart. As an alternative, we suggest to supplement the 
model by an additional dummy intercept and to estimate it simultaneously with 
the other components of the parameter. We also suggest to calculate the trimmed 
LSE for the extended model in the Koenker and Bassett manner and to consider 
its marginal vector as an estimator of ft in the original model. It turns out that, 
even in this case, the trimmed LSE represents an extension of the trimmed mean 
to the linear model. Its asymptotic relation to Huber's estimator and to an appro
priate R-estimator will be also considered. 

On the other hand, under the design without an intercept (1.3), the regression 
quantiles are asymptotically undistinguishable from each other and thus the trimmed 
LSE is not well-defined. It means that, even if the intercept is known to be zero, 
the extended model mentioned above is preferable to (1.3). 

The Bahadur-type representation of regression quantiles up to the order 0p(n~3 / 4) 
is derived in Section 2. The trimmed LSE is defined in Section 3 which also contains 
the asymptotic representation and the asymptotic distribution of the same. Section 4 
brings some concluding remarks. 
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2. BAHADUR'S REPRESENTATION OF REGRESSION QUANTILES 

Let Xu ...,Xn be independent observations, Xt distributed according to the d.f. 
p 

F(x — Y. cijPj), i = 1. • ••> n> where F is an absolutely continuous d.f., C = Cn = 
j=l 

= [ J c M 1H-=1 '*.*.*-." is a known design matrix; we assume that C satisfies the following 
set of conditions (A): 

(A.l) max n-l/4\cu\ = 0(1), as n -*• oo . 
I g i g n . l g j g p 

(A.2) lim - C^C„ = Q* , where Q* is a positively definite p x p matrix . 
n-OD n 

(A.3) - 1 4 - 0 ( 1 ) , as i i - c o , j = 1, . . . , p . 
« i = i 

Denote cj the ith row of C, i = 1,..., n, and c = c„ = (c n l , . . . , c„p)' with cnj- = 

= n ~' £ c y , j = 1 , . . . , p, the vector the column averages of C. We shall assume that 
i = i 

(A.4) lim caj = q0J, j = 1 , . . . . p . 

Let D„ denote the n x (p + 1) matrix 

(2-i) D „ = ii*: CB|| 

where 1 = ( 1 , . . . , 1)' is an n x 1 vector. Denoting d[ the ith row of D„, i = 1,..., n, 
we have 

(2.2) d'i=(di0,dil,...,dip) = (l,cil,...,cip), i = l,...,n. 

By (A.2) and (A.4), 

(2.3) Urn - D'„Dn = Q 
n - oo n 

where Q = | | a ,4 \* = o,...,P is a (p + 1) x (p + 1) matrix. 

We shall consider an extended model 

(2.4) X = DJ + E 

with p = (p0, pu ..., pp)'; then (2.4) coincides with the original model (1.1) if j80 = 0. 
Following Koenker and Bassett [16], we shall consider the a-regression quantile j8(a) 
(0 < a < 1) for the model (2.4) as any value of t e Rp+1 which solves 

(2.5) £ & L Y i - < , ; t ) : = n n n 
i = l 

where 

(2.6) QJX) = x <pa(x) , xeM1 
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and 

(2.7) <pa(x) = « - I[x < 0] , J t e B 1 . 

If the density / of F is continuous and positive in a neighbourhood of F~l(a), 
we get from Ruppert and Carroll [19], under (1.3),(A.2),(A.3) and under the con
dition 

(2.8) max |c;,| = o(ni/2), as n —» oo , 

the following asymptotic representation of /J(a): 

(2.9) /J(a) - P(a) = »" W ^ O - ) ) ] ' 1 Q" 1 £ d , ^ ( E ; - F ^ a ) ) + op(n"1/2) 
i= I 

where 

(2.10) /J(a) = (E-1(a),f91,...,^)' 

isa(p + 1) x Lvectorand 

(2.H) £ , = X,. - <.;/? 

is the ith residual, i = 1, ..., n. (2.9) further implies the asymptotic normality of 
ni/2(p(a) - P(a)) as n -> oo: 

(2.12) i?{«1/2(/J(«) - /J(a))} -> 

-^^ (Ojaa-aV/^E -^jQ- 1 ) . 
The subvector /?*(a) = (J§!(a),..., Pp(a))' of /9(a) is then a consistent estimator of fi. 

The following theorem gives an extension of the representation (2.9) to one with 
the remaining term of the order op(n

_3/4); the matrix C is assumed to satisfy (A.l) to 
(A.4) but not necessarily (1.2). 

Theorem 2.1. Let XU...,X„ be independent random variables, Xt distributed 
according to the d.f. F(x — cj/J), i = 1, ..., n, where F is absolutely continuous 
and its density/ is positive and finite a n d / ' is bounded in a neighborhood of F~ l(a), 
0 < a < 1. Let C„ satisfy (A.l) —(A.4) and let the matrix Q of (2.3) be positively 
definite. Then 

(2.13) £(a) - p(a) = ^ [ / ( F ^ a ) ) ] " 1 Q 1 £ d. ?«,(£, - £ " » ) + «„ 
;= I 

where 
(2.14) R„ = op(n~3/4), as n -> OO . 

Theorem 2.1. will be proved with the aid of two lemmas. 

Lemma 2.1. Let Yu ..., Y„ be i.i.d. random variables with the d.f. F and the 
density/such that 0 < f(y) < oo and / ' ( j ) is bounded in a neighborhood of F'1(a), 
0 < a < 1. Denote 

(2.15) S,(t) = n " ' / 4 t dtJMYt - F~\a) - n- 1 / 2d; t ) - <pa(Y; - F ^ a ) ) ] , 
;= i 
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j — 0,1,...,p; tEftp+1. Then, under the conditions (A.1)-(A.4), 

(2.16) max sup |S,(t) + »-3 /4/(F -1(«))£ £ dijdikh\ = 0p(l) 

for every fixed K > 0, as n -» co. 

Proof. Denote 

(2.17) Z,= Y; ~ F-\u), i = [,..., n 

and 

(2.18) S°(t) = S,(t) - E Sj(t), j = 0,,..,p. 

Then Z,'s are i.i.d. with the d.f. F*(z) = F(z + E_1(a)) and with the density/*(x) = 
= f(z + F_1(a)); then E*-!(a) = 0. For t, u e «p + 1 , we shall write u = t if i/; = f,. 
for j = 0,..., p. We could easily verify 

(2.19) E|S°(t) - S°(u)|4 = /T1{11 £ 4|E*(n~1/2d;t) - E*(n~1/2d;u)| + 

+ £ Z44 l^*(»" 1 / 2 d; t ) - E*(n-1/2d;u)| 
; = i t = i 

i*k 

.|E*(n-1/2d,;t)-E*(n-1/2d;u)|} = 

= K ^ " ^ 2 £ d*|dj(t - u)| + K2n~\ i d2,d|(t - u)]2 = 
i = l i = l 

= 0(n- 1 / 4) l | t - u| + 0(1) | | t - u | 2 , as B-»CO 

and, by Chebyshev and Schwarz inequalities, we get for u = v = t and for /. > 0 

(2.20) P{|S°(t) - S°(v)| = A, |S°(v) - S » | ^ A} = 

= A - 4 ( K 3 | | t - u | | 2 + K 4 « - 1 / 4 | | t - u | | ) , for n = «0 . 

Using the extension of Theorem 12.1 of Billingsley [5] to the vector arguments 
(see Jureckova and Sen [14], proof of Lemma 3.1, for details), we get from (2.20) 

(2.21) max sup |S°(t)| = op(l), as n -+ 00 . 
° = J'SP l!t||SK 

It remains to prove 

(2.22) sup |ES/t) + n~^f(F-\x))i £ dudiktk\ = O(l) . 
||*|1 SK i = l t = 0 

Denote <5; = n"1/2d;t. Then 

(2.23) |-S,(t) + n-1/4 £ ^ , 5 ^ - > ( « ) ) ! = 
i = l 

= «~m\idu[F*(0) - F*(8t) +/(E-1(a))5,.]| = 
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= n~m t \du\ P f If'W*) + «)l d« dz --
i=l Jo Jo 

gK5n-5 / 4£|d , , | (£d^)2 = o(B-1/4)||t||2, 
i = l ft=0 

as „ -> oo; the integration bounds should be written in the reverse order if necessary. 

• 
The following lemma studies the stochastic order of $(a) — fi(a). 

Lemma 2.2. Assume that the conditions of Theorem 2.1 are satisfied. Then 

(2.24) B1/2(#a)-/*(«)) = o p ( l ) , as n -» co . 

Proof. Let/?(a) be a solution of the minimization (2.5). Then it follows from (AT) 
and from Lemma A.2 of Ruppert and Carroll [19] that 

(2.25) B- 1/2 t dij(pa(Xi - d; $(a)) = Op(n-1/4), j = 0,..., p . 
; = i 

Moreover, <px given by (2.7) is nondecreasing and 

(2.26) „-1 /2 £ dt/PJ(Et - F~ '(a)) = op(l), j - 0,..., p . 
> = i 

Proceeding analogously as in the proof of Lemma 5.2 of Jureckova [10], we get 
from (2.26) and from Lemma 2.1 that, to every s >0, there exist K >0, « >0 and nx 

such that 

(2.27) P{ inf B - 1 / 2 | £ dij(px(Ei - F~-(a) - «_1 /2 rf,'t)| < n} < e 
| | t | | i K i = l 

for n >. nv By (2.25) and (2.27), there exist K > 0, n > 0 and «t to every e > 0 
so that 

(2.28) P{B1/2fl/t(a) - /,(«)| ^ K} < P{B1/2||/J(«) - /J(a)|j >, X , 

(2.28) B - 1/2| tdt/P&t ~ F~'(«) - - W - fla)))l < •»} + 

+ P{B"1 /2 | £ dij<Px(Xi - d\fl(a))\ £: -} < 2s 
i = 1 

for n ^ «!. • 
Proof of Theorem 2.1. It follows from Lemma 2.1. that 

(2.29) B" 1 / 2 £ d;,[<pa(£; - F--(«) - B-1/2d,T„) - «,,(£, - £-*(«)) + ' 
i= 1 

+ n-ll2d'JJ(F-\a))-\ = 0 P ( B - 1 / 4 ) , j = 0,..., p 

for every sequence of random vectors such that ||T„| = op(l). Hence, (2.13) follows 
from (2.29), (2.24) and (2.25). • 
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Corollary 1. (i) Under the conditions of Theorem 2.1, 

(2.30) J?{nl'2(p(«) - 0(a))} - JT,+ l(0, {a(l - a)\f2(F~-(«))} Q " 1 ) , 

as n —> co. 
(ii) If/5*(a) = ( ^ ( a ) , . . . J » ) ' , t h e n 

(2.31) .?{»«^«) - 0)} - ^ , ( 0 , {«(1 - «)//2(I^'(«))} Q - 1 ) 

as H -» co, where the p x p matrix ^ = | |?/tj ',t-i is given by 

(2-32) qjk = lim i ; £ (c;j. - c,) (c;t - cy). 

Proof. (2.30) follows directly from (2.13). Concerning />*(a), consider the block 
decomposition of Q - 1 : 

IIQ 1 1 Q1 2j |} 1 
[ jQ 2 1 Q 2 2 ! ^ . 
T P 

It follows from (2.13) that 

(2.34) B-'-0*(a) - /?) = f l / f r H ] " 1 ||Q211 Q 1 2 ! ! ^ - , - r_1(«)) + 

+ o>~ 1 / 4 ) 
and this further implies 

*{nl'2(p(a) - 0)} - JT(0,{a(l - a)jf(F'\a))} Q » ) . 

Moreover, 
(2.35) Q 2 2 = ( Q 2 2 - Q 2 1 Q 1 2 ) - 1 = Q - 1 

where Q 2 1 = Q'12 and Q 2 2 = Q* (see (A.2)) are the blocks in the decomposition 

(2.33) Q " 1 = 

(2,6) *Ą%Лï }1 
}P 

1 P 

of the matrix Q. This completes the proof of (2.31). • 

Theorem 2.1 and its corollary apply also to the special case of C„ satisfying (1.3). 
Let us now assume that, for C„ satisfying (1.3), the regression quantile ji(a) is defined 
through the minimization 

(2.37) £&(#,-- c',t):=min 
; = l 

with respect to t e Rp, instead of minimization (2.5). The following theorem shows 
that, in such case, the regression quantiles corresponding to different a's are asympto
tically undistinguishable from each other and gives their common asymptotic distri
bution. 
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Theorem 2.2. Let Xls ...,XB be independent random variables, Xt distributed 
according to the d.f. F(x — cJ/J), i = 1, ..., n, where F is absolutely continuous 
and such that its density / is positive and finite and has a bounded derivative in 
a neighborhood of 0. Assume that C„ satisfies (1.3), (A.l) —(A.4). Let /?(a) be the 
a-regression quantile defined as a solution of the minimization (2.37), 0 < a < 1. 
Then , 

(2.38) /5(a) - ~ = ^ ' ( / ( O ) ) - ' Q^-'tc, cpjEt) + Op(n~3'4) 

a s « - > x , where a0 = E(0), and 

(2.39) n»U2(K«) ~ P)} - ^P{0, [F(0) (1 - E(0))/j2(0)] Q*"1) 

as n -* oo. 

Proof. It follows from (AT) and from Lemma A.2 of Ruppert and Carroll [19] that 

(2.40) n~l<2 t wJXt - cj p(a)) = op(rT
1/4), j = 1, .... p . 

i= 1 

Moreover, 

(2.41) n-^iCij^0(E)=Op(\), j=1,... , p. 
i - 1 

The rest of the proof follows from Lemma 2.1 analogously as in the proof of Theorem 
2.L :: i. D 

3. TRIMMED LSE AND ITS ASYMPTOTIC DISTRIBUTION 

Let «1; a2 be fixed, 0 < <xx < a2 < 1. Let Xu ..., X„ be independent observations, X ; 

distributed according to the d.f. F(x — c\f}), i = 1, ..., n. The following set of condi
tions (B) is assumed to hold for the d.f. F: 

(B.l) F is absolutely continuous with the density j . 
(B.2) 0 < f(x) < oo for F'1^) - e < x < F _ 1(a2) + e, e > 0. 
(B.3) The derivative j ' of / exists and is bounded in neighbourhoods of F _ t (aj ) 

andF~ ' (a 2 ) . 
Assume that the matrix C„ satisfies (A.l)-(A.4) and that the matrix Q of (2.3) 
is positively definite. 

Let P(xi) and /J(a2) be the regression quantiles, defined through the minimization 
(2.5) for the extended model (2.4). The solution of the minimization (2.5) is generally 
not uniquely determined; suppose that a rule is given which selects a unique solution 
of (2.5) for a = au a2. 

Let A be the diagonal n x n matrix with the diagonal 

(3.1) a- = a- = 1° if Xi ~ di ̂  ° r Xi ~ d[ %**) 
" ' [1 otherwise, i = 1, ...,n . 
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Denote L„(au a2) the trimmed LSE corresponding to the extended model (2.3). 
According to Koenker and Bassett [16], L„(a,,a2)is calculated as the ordinary LSE 
after trimming-offX,- with a,- = 0, / = 1, ..., n, i.e., 

(3.2) L . K «2) = (D'AD)- (D'AX) 

where X = (Xu ...,X„)'. Notice that L„(au<x2) — (L0, Lu ..., Lp)' is, in fact, 
an estimator of p = (0, pu ..., /?p)'. We suggest L*(alr a2) = L„* = (L„ ..., Lp)' 
as an estimate of J8 = (/?1; ..., /?p)' and we shall call it the trimmed LSE of ft. The 
following theorem gives an asymptotic representation and the asymptotic distribution 
ofL*(a l sa2) . 

Theorem 3.1. Let Xu ...,X„ be independent observations, X,- distributed accord
ing to the d.f. F(x — cj/f), ;' = 1, ..., n, where fiettp is an unknown parameter. 
Assume that the design matrix C„ satisfies the conditions f A.1)-(A.4) and that the 
matrix Q of (2.3) is positively definite. Assume that the d.f. F satisfies the conditions 
(B.1)-(B.3). Then (i) 

(3.3) L*(a.,«2) - P = n - ' ( a 2 - a , ) " 1 | |Q2 1 j Q22 | | V d | ,/,(£,.) + 0p(n~^) 
i = 1 

as n -» co, where the matrix | |Q2 1 ! Q22 | | is given by the block decomposition (2.33) 
of Q 1 and 

( * - > . ) if x < E " 1 ( a 1 ) 
(3.4) «/<*) = <U if E-J(ai) g x g E-»(a2) 

[ E - ^ a , ) if E"1(a2)<x. 
(ii) 
(3.5) <e{nV\L*(«u a2) - /?)} - . r p (0 , «r-(o.., a2, E) Q " ' ) 

where the matrix Q is given by (2.32) and 

(3.6) o2(xu a2, E) = (a2 - a . ) " 2 j f" (F~ \u) - 8f d« + 

+ a i (F-»(« . ) - <5)2 + (1 - a 2 ) (E" ' (a 2 ) - <5)2 -

- [ a ^ E - ^ a , ) - S) + (1 - a 2 ) ( E ^ ( a 2 ) - <5)]2| 

where 

(3.7) 5 = £(«., a2 ,E) - (a2 - a , ) " 1 P V » d« . 

Theorem 3.1 will be proved with the aid of two lemmas. 

Lemma 3.1. Let Yu ..., Y„ be independent random variables, identically distributed 
according to the absolutely continuous d.f. F; assume that 0 < f(x) < co and f'(x) 
exists and is bounded in a neighbourhood of E_1(a), 0 < a < 1. Denote 

(3.8) Tj(t) = « - " 2 t dt,Y,I[Yt = E-3(a) + n-
ll2d[t\ , 

i = i 
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j = 0,..., p; t 6 » ' + 1 . Then, under the conditions (A.1)-(A.4), 

(3.9) sup |T,(t) - Tj(0) - n"1 F"1(a)/(F-1(a)£ £ dudiktk\ = op(n"1/4), 
||t || P i = l k = 0 

j = 0,...,p 
for every fixed K > 0, as n -* oo. 

Proof. The proof is analogous to that of Lemma 2.1: Denote 

(3.10) T°(t) = T,( t)-ET , ( t ) , j = 0,...,p 
and 
(3.11) Si(t) » F_1(a) + n-1/2d,'t, i = 1, ..., n. 

Then, for u, t e Rp+1, u ^ t, 
f « r«((t) 

(3.12) E(n1/4|T/(t) - T»|)4 ^ - ' I d l x4 dF(x) + 
l-'=i JstM 

+ 1 1 4 4 x2dF(x) x 2 d F ( x ) U 
i = l i = l JS,(u) Ji,(u) J 

1*1 

= n - ^ l l l d t - n - ^ ^ t - u)(F-\a)Yf(F-\a)) + 

+ [ £ 4 n - 1 / 2 < ( t - u)]2(F-1(a))4/2(F"1(a))} + 
i = i 

+ o(n-1/4) 11 - it|| = 0(1) ||t - u||2 + o(n"1/4) ||t - u|| , 

as n -* co, where the integral bounds should be written in the reverse order if ne
cessary. Again, using the extension of Theorem 12.1 of Billingsley [5] to the vector 
arguments, we get from (3.12) 

(3.13) max sup |T°(t)| = op(n-1/4). 
o s ; s P | [ t | | S K 

It remains to prove 

(3.14) sup n1/4|E[T,(t) - T,(0)] - n"1 F~\a)f(F-\a)i fdtjdiktk\ = 
||t||§K (=11 = 0 

= 0(1) , as n —> GO . 

It will be proved in the following steps: 
(3.15) |E[T,(t) - T,(0)] - n"1 F-WfiF-^iwft ^ 

» I r»i(t) I 
» - 1 / 2 1 4 | [*/(*) - -7-1(«)/(-?-J(«))] dx ^ 

;=i |JF-'(«) I 

= « - i / 2 £ i4i r,(< r I 'M + J / , WI dy dx= 
i = i <Jf-»(«) JF-'(°0 

^^""^iNW-^-^iitp 
1 = 1 

where, again, the integral bounds should be eventually reversed. • 
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Lemma 3.2. Denote 

(3.36) UJk(t) **n~
li .WC1! = F-'(a) + n-^d'tt\ , 

i = 1 

j . k — 0,..., p and t e ft'*1. Then, under the conditions of Lemma 3.1, 

(3.17) sup \UJk(t)~«qJk\-^0 
Ht||gK 

for every fixed K > 0 and j , k — 0,..., p, as n -* oo; qJk are the elements of matrix 
Q of (2.3). 

Proof. The proof is quite analogous to that of Lemma 3.1. 

Proof of Theorem 3.1. It follows from Lemma 3.2 

(3.18) n'D'AD = (a2 -«t)Q + op(l) 
as n —> oo. By (3.1), 

(3.19) DAE = X d,{Ir£. - F~ !(a2) < d;(#a2) - /J(a2))] -
; = i 

- 7[E; - F~\ai) < d'0(«t) - /S(«0)]} £; 

hence, it follows from Lemma 3.1 and Lemma 2.2, 

(3.20) n-^D'AE = „--/- f <.;{d,:[(0(a2) - />(a2)) E-'(a2)/(F-»(«,)) -
; = i 

-(f9(a1)-/?(a1))F-1(a1)f(r-1(a1)] + 

+ £J [ / - J ( a0 = E{< /- '(a,)]} + op(«"1/4) 

and this, combined with (2.13) of Theorem 2.1 and with (3.18) gives 

(3.21) n1/2(L„(«i, a2) - fi) = n-"\a2 - a,)'1 <T1 £ <*,#(£,•) - y) + o^"1'4) 
;= i 

with 
(3.22) y = a1F-1(a1) + (l-«2)F-1(a2) 

and this further implies (3.3). The asymptotic distribution of L*(«u a2) then follows 
from (3.3). • 

4. CONCLUDING REMARKS 

Under a general design satisfying the conditions (A.l) — (A.4), the regression 
model (1.1) was extended by a dummy intercept P0(=0). The first component /J0(a) 
of the a-regression quantile was then shown to be a consistent estimator of F_1(a) 
while (/?i(a),..., Pp(a))' was shown to be a consistent estimator of j} = (pu ..., Pp)'. 

The first component L0 of the trimmed LSE L„(a,, a2) for the extended model is 
a consistent estimator of d(ax,ix2,F) of (3.8) while L^a^ a2) = (Lu...,Lp)' was 
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shown to be a consistent estimator of fi = (/?.,. . . , /?p)' with the asymptotic covariance 
matrix <r2(a1, a2, E)^"1. ••..,, 

It follows from Jureckova [10] that L*(al5 a2) is asymptotically equivalent to 
the M-estimator Mn which is defined as a solution of the system of equations 

(4.1) t (ctJ - cj) Hxt - c;.t) = o, j = l,..., P 

with respect to t e # p . 

On the other hand, let R„ denote an R-estimator of p based on ranks, generated 
by a score-function q>(u), 0 < u < 1, as suggested by the author in [8] or in a modi
fied form by Jaeckel [7] and by Koul [17]. Again, it follows from [10] that R„ is 
asymptotically equivalent to L*(txu a2), provided 

IE_1(ai) if u < a.y •'•'• 

F~l(u) if aj g u ^ a2 

E_1(a2) if a2 < u . 
Because the ranks are translation invariant, R„ is not able to estimate the intercept 

even if this is non-zero (the intercept should be estimated separately, cf. Jureckova 
[9]). The trimmed LSE always needs to have an intercept involved in the model, 
possibly an artificial one, to yield an asymptotically unbiased estimator of /J. The 
M-estimator works in the model without as well as with the intercept; the choice 
of the matrix \\(cu - Cj)\\ (i = 1, ..., n; j = 1, ...,p) guarantees the asymptotic 
unbiasedness of Mn even if both F and if/ are asymmetric. 

(Received November 11, 1983.) 
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