A SUPPLEMENT TO GOTTWALD'S NOTE ON FUZZY CARDINALS

MACIEJ WYGRALAK

We supplement the review of fuzzy cardinality definitions placed in [3]. To be exact, we present approaches in which cardinality of a finite fuzzy subset is expressed by a fuzzy natural number and indicate the most appropriate one.
S. Gottwald placed in [3] a comparative review of approaches to the problem how to define fuzzy cardinality, i.e. how to count elements of a universe which are in its fuzzy subset. In accordance with the concepts presented in [3], cardinality of a fuzzy subset was defined either as a non-negative real number or as a family of usual cardinals. In this note we shall present and compare such approaches in which cardinality of finite fuzzy subset is expressed by means of a fuzzy number. To this end, we must introduce some notation and terminology.

Throughout this note, by a fuzzy subset A of some fixed universal set U we shall mean a function $A: U \rightarrow I$, where $I:=[0,1]$ with $:=$ standing for "equals by the definition". Membership grade of an element $x \in U$ in A will be denoted by $A(x)$. The classical subset $\{x: A(x)>0\}$ will be called support of A and denoted supp (A). If support of a fuzzy subset is finite, then that subset is called finite, too. Throughout the paper we shall assume that A is finite and $\operatorname{card}(\operatorname{supp}(A))=n$, where $\operatorname{card}(M)$ denotes the usual cardinality of a classical subset M of U. The subset $A_{t}:=$ $:=\{x: A(x) \geqq t\}$, where $t \in I_{0}$ and $I_{0}:=(0,1]$, is called t-level set of A. The sequence

$$
a_{0} \geqq a_{1} \geqq a_{2} \geqq \ldots \geqq a_{n}>a_{n+1}=a_{n+2}=a_{n+3}=\ldots
$$

is defined in the following way: $a_{0}:=1, a_{i}(1 \leqq i \leqq n)$ denotes the i th element in descending sequence consisting of positive membership grades in $A, a_{i}:=0$ for $i>n$.

Let $N:=\{0,1,2, \ldots\}$. If $F: N \rightarrow I$ (i.e. $U:=N$), the F will be called fuzzy natural number (in short, fn-number). F is said to be convex iff $F(j) \geqq \min (F(i)$,
$F(k)$) for each triplet $i \leqq j \leqq k$ (cf. [4]). Let \oplus denote addition of fn-numbers. Then the fn-number $\mathrm{F} \oplus \mathrm{G}$ is defined by membership grades

$$
(F \oplus G)(k):=\sup _{i+j=k} \min (F(i), G(j)) .
$$

As a chronologically first fuzzy approach to cardinality of finite fuzzy subsets, we shall consider the fn-number FGCount ${ }_{A}^{0}$ (see $[1,7]$) with membership grades

$$
\text { FGCount }_{A}^{0}(k):=\left\{\begin{array}{l}
\max \left\{t \in I_{0}: \operatorname{card}\left(A_{t}\right)=k\right\}, \\
0 \text { if } \operatorname{card}\left(A_{t}\right) \neq k \text { for each } t .
\end{array}\right.
$$

The values $\mathrm{FGCount}_{A}^{0}(k)$ may be considered degrees to which cardinality of A equals k. One can easy notice (see [1]) that $\mathrm{FGCount}_{A}^{0}$
(a) is always normalized, i.e. there exists a natural number h such that $\mathrm{FGCount}_{A}^{0}(h)=$ $=1$,
(b) is strictly decreasing on its support,
(c) is a non-convex fn-number,
(d) does not fulfil the additivity property
$\mathrm{FGCount}_{A}^{0} \oplus \mathrm{FGCount}_{B}^{0}=\mathrm{FGCount}_{A \cap B}^{0} \oplus \mathrm{FGCount}_{A \cup B}^{0}$,
where $A \cap B$ and $A \cup B$ denote (resp.) intersection and union of A and B, i.e. $(A \cap B)(x):=\min (A(x), B(x)),(A \cup B)(x):=\max (A(x), B(x))$.
In order to avoid the lack of convexity, an important modification of the definition of FGCount ${ }_{A}^{0}$ was proposed in [2] and [8]. As a consequence, we get then a new fn-number defining fuzzy cardinality, namely the $\mathrm{FGCount}_{A}$ where

$$
\text { FGCount }_{A}(k):=\left\{\begin{array}{l}
\max \left\{t \in I_{0}: \operatorname{card}\left(A_{t}\right) \geqq k\right\}, \\
0 \text { if card }\left(A_{t}\right)<k \text { for each } t .
\end{array}\right.
$$

Let T be a finite fn-number such that $T(0)=g_{0}, T(1)=g_{1}, \ldots, T(s)=g_{s}$ and $T(r)=0$ for $r=s+1, s+2, \ldots$. In such a case we shall use the following "vectorial" notation $T=\left(g_{0}, g_{1}, \ldots, g_{s}\right)$.
It is easy to prove (see e.g. [2], [6], [8]) that the following propositions are valid:
(a) $\operatorname{FGCount}_{A}(k)=\max _{j \geq k} \mathrm{FGCount}_{A}^{0}(j)$.
(b) FGCount $_{A}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Hence FGCount $_{A}$ is convex.
(c) If $A \subset B$, then $\mathrm{FGCount}_{A} \subset \mathrm{FGCount}_{B}$ (monotonicity).

Remark. $Y \subset Z:=(Y(x) \leqq Z(x)$ for all $x \in U)$.
(d) $\mathrm{FGCount}_{A} \oplus \mathrm{FGCount}_{B}=\mathrm{FGCount}_{A \cap B} \oplus \mathrm{FGCount}_{A \cup B}$ (additivity).

Let D denote a classical n-element subset of U. Then, contrary to expectation, we get $\mathrm{FGCount}{ }_{D}=(1,1, \ldots, 1)$ with support of $\mathrm{FGCount}_{D}$ consisting of $n+1$ elements. This result is sensible provided that $\mathrm{FGCount}_{A}(k)$ defines degree to which A has at least rather than exactly k elements. Thus FGCount, as definition of fuzzy cardinality, is unsatisfactory. Namely, for classical subsets it does not collapse to
usual cardinal number. That is why a next definition of fuzzy cardinality was introduced in [2]. To be exact, the new definition is again a simple modification of the previous one.

Let $\mathscr{L}_{k}(A)$ denote the family of k-element classical subsets (of U) containing A_{1}. Then fuzzy cardinality of A will be defined by the finite fn-number Crd_{A} with membership grades

$$
\operatorname{Crd}_{A}(k):=\left\{\begin{array}{l}
\max _{Z_{\in} \mathscr{L}_{k}(A)} \min A(x) \\
0 \text { if } \mathscr{L}_{k}(A) \text { is empty }
\end{array}\right.
$$

(if A_{1} is empty, what implies $\mathscr{L}_{0}(A)=\{\emptyset\}$, we additionally put $\min _{x \in \emptyset} A(x):=1$).
One can consider $\operatorname{Crd}_{A}(k)$ to be degree to which cardinality of A equals k. It is easy to verify that (cf. [2], [6])
(a) $\operatorname{Crd}_{A}=\left(0,0, \ldots, 0,1, a_{m+1}, a_{m+2}, \ldots, a_{n}\right)$, where $m:=\operatorname{card}\left(A_{1}\right)$ and the constant sequence composed of zeros is m-element one. Thus Crd_{A} is always convex.
(b) $\operatorname{Crd}_{D}=(0, \ldots, 0,1)$ with the figure one placed at the $(n+1)$ th position and D as previously.
(c) $\mathrm{Crd}_{A} \oplus \mathrm{Crd}_{B}=\mathrm{Crd}_{A \cap B} \oplus \mathrm{Crd}_{A \cup B}$.
(d) $\mathrm{Crd}_{A}=\mathrm{FGCount}{ }_{A}$ iff card $\left(A_{1}\right)=0$.

Unfortunately, the monotonicity does not hold for Crd-cardinality. But it is quite obvious that property (b) excludes, in principle, monotonicity. On the other hand, property (b) is, from the practical as well set-theoretical points of view, more important than monotonicity.

This is well-known that the theory of fuzzy subsets is closely connected with the Łukasiewicz many-valued logic (see e.g. [5]). Indeed, it suffices to interpret each membership grade $A(x)$ as representing the truth-value of the statement " x is in A ". Therefore, the next approach is based on that logic.

Let $\mathscr{P}_{k}(A)$ denote the family of all the k-element classical subsets of $\operatorname{supp}(A)$. Moreover, let $p \rightarrow q:=\min (1,1-p+q)$ (Lukasiewicz implication operator) and $p \leftrightarrow q:=\min (p \rightarrow q, q \rightarrow p)$ for $p, q \in I$. Then $\operatorname{deg}(R, S):=\inf _{x \in U}(R(x) \leftrightarrow S(x))$ for arbitrary fuzzy subsets R and S of U. One can consider $\operatorname{deg}(R, S)$ to be degree to which R equals S. Let us define finite fn-number Cd_{A} by means of membership grades

$$
\mathrm{Cd}_{A}(k):=\left\{\begin{array}{l}
\max \left\{\operatorname{deg}(A, Y): Y \in \mathscr{P}_{k}(A)\right\} \\
0 \text { if } \mathscr{P}_{k}(A) \text { is empty } .
\end{array}\right.
$$

Then $\mathrm{Cd}_{A}(k)$ will be considered degree to which A has exactly k elements. This is, in fact, a quality of the best (using the criterion $\operatorname{deg}(A, Y)$) approximation of A by elements from $\mathscr{P}_{k}(A)$. One can easy verify (see [6]) that
(a) $\mathrm{Cd}_{A}(k)=\min \left(a_{k}, 1-a_{k+1}\right)$ for $k=0,1,2, \ldots$
(b) For the classical n-element subset D of U we get $\mathrm{Cd}_{D}(n)=1$ and $\mathrm{Cd}_{D}(j)=0$ for $j \neq n$.
(c) $\mathrm{Cd}_{A}=\left(1-a_{1}, 1-a_{2}, \ldots, 1-a_{p}, a_{p}, a_{p+1}, \ldots, a_{n}\right)$, where $p:=\min \left\{l: a_{l}+\right.$ $\left.+a_{i+1} \leqq 1\right\}$. Hence Cd_{A} is always convex.
(d) At most one cardinal number is "favoured", i.e. there exists at most one natural number k_{f} such that $\mathrm{Cd}_{A}\left(k_{f}\right)>0.5$.
(e) FGCount $_{A}=2 \mathrm{Cd}_{0.5 A}$, where membership grades in $0.5 A$ and $2 \mathrm{Cd}_{0.5 A}$ are defined as follows: $(0.5 A)(x):=0.5 A(x)$ and $\left(2 \mathrm{Cd}_{0.5 A}\right)(k):=\min \left(1,2 \mathrm{Cd}_{0.54}(k)\right)$.
(f) $\mathrm{Cd}_{A} \oplus \mathrm{Cd}_{B}=\mathrm{Cd}_{A \cap B} \oplus \mathrm{Cd}_{A \cup B}$.
(g) Let A^{c} denote the complement of A, i.e. $A^{c}(x):=1-A(x)$. If U is finite and $\operatorname{card}(U)=m$, then $\mathrm{Cd}_{A c}(j)=\mathrm{Cd}_{A}(m-j)$ for $j=0,1, \ldots, m$.
One can easy give counterexamples that both the important properties (d) and (g) do not hold for FGCount A_{A} and Crd_{A}. Obviously (g) is a counterpart of the elementary law card $\left(D^{c}\right)=m-\operatorname{card}(D)$, where D denotes now a classical subset of m-element universe.

To summarize the discussion, it seems to be more suitable to define cardinality of a finite fuzzy subset as a fuzzy natural rather than positive real number (or a family consisting of usual cardinals). Then the fn-number Cd_{A} is, from the settheoretical point of view, defined in a most natural way and fulfills many natural postulates (see e.g. properties (b), (f), (g)) except the monotonicity (what is, however, explicable).
(Received March 3, 1983.)
REFERENCES
[1] D. Dubois: Propriétés de la cardinalité floue d'un ensemble flou fini. BUSEFAL 5 (1981), P. Sabatier Univ., Toulouse, France, 11-12.
[2] D. Dubois: A new definition of the fuzzy cardinality of finite fuzzy sets preserving the classical additivity property. BUSEFAL 8 (1981), P. Sabatier Univ., Toulouse, France, 65-67.
[3] S. Gottwald: A note on fuzzy cardinals. Kybernetika 16 (1980), 156-158.
[4] M. Mizumoto and K. Tanaka: Some properties of fuzzy numbers. In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, Eds.), North-Holland, Amsterdam 1979, 153-164.
[5] M. Wygralak: A few words on the importance of Jan Łukasiewicz works for fuzzy subsets theory. In: Proc. 8th Symp. on Numerical Methods and Appl. of Math., Academy of Economy Poznań, Poland (Sept., 1982), in print.
[6] M. Wygralak: On fuzzy cardinalities and fuzzy binomial coefficient. Fuzzy Sets and Systems (submitted).
[7] L. A. Zadeh: A theory of approximate reasoning. In: Machine Intelligence, Vol. 9. (J. E. Hayes, D. Michie, L. I. Mikulich, Eds.), John Wiley and Sons, New York 1979, 149-194.
[8] L. A. Zadeh: Fuzzy probabilities and their role in decision analysis. In: Proc. IFAC Symp. on Theory and Appl. of Digital Control, New Delhi (January, 1982).

Dr. Maciej Wygralak, Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań. Poland.

