STATISTICAL LINEAR SPACES

Part I. Properties of ε, η-topology

JIŘí MICHÁLEK

The definition of the statistical linear space in the Menger sense ($S L M$-space) is given in this paper. The ε, η-topology is introduced and the basic properties of SLM-spaces as linear topological spaces are investigated.

0. INTRODUCTION AND PRELIMINARIES

In this paper we shall deal with basic properties of statistical linear spaces in the Menger sense (SLM-space) which are a special case of statistical metric spaces in the Menger sense ($S M M$-space). $S M M$-spaces are a generalization of the usual notion of metric spaces in that sense that a metric is replaced by a collection of probability distribution functions. Similarly, $S L M$-spaces are a generalization of linear normed spaces where a norm is substituted by a suitable family of probability distribution functions.

This paper contains in Section 1 the definition of $S L M$-spaces and the main properties of them together with three examples.

The definition of the ε, η-topology and basic properties of $S L M$-spaces as linear topological spaces are in Section 2. Section 3 contains some properties of ε, η-neighbourhoods from a base for the ε, η-topology. In Section 4 properties of the mapping \mathscr{J}, which is defined on an $S L M$-space and takes its values in the Levy space of probability distribution functions, are studied.

The notation of an $S M M$-space is studied in many details in [1]. A detailing discussion of the original Menger definition of the generalized triangular inequality is made there. Under these conclusions the authors suggested the following definition of an $S M M$-space.

Definition 1. By a statistical metric space in the sense of Menger we shall call a triple (S, \mathscr{K}, T) where S is a nonempty set, \mathscr{K} is a mapping $\mathscr{K}: S \times S \rightarrow \mathscr{F}$,
where \mathscr{F} is the set of all onc-dimensional probability distribution functions, satisfying $\left(\mathscr{K}(x, y)=F_{x y}(\cdot)\right)$

1. $\left(F_{x y}(u)=1 \quad\right.$ for $\left.\quad u>0\right) \Leftrightarrow x=y$
2. $F_{x y}(0)=0 \quad$ for every pair $x, y \in S$
3. $F_{x y}(u)=F_{y x}(u)$ for every $u \in \mathbb{R}$ and every pair $x, y \in S$ (\mathbb{R} is the set of reals)
4. $F_{x z}(u+v) \geqq T\left(F_{x y}(u), F_{y z}(v)\right)$ for every $x, y, z \in S$ and every $u, v \in \mathbb{R}$ where T is a t-norm defined on $\langle 0,1\rangle \times\langle 0,1\rangle$ with values in $\langle 0,1\rangle$ and satisfying properties:
(a) $T(a, b)=T(b, a) ; T(a, 1)=a$ for $a>0$
(b) $T(a, b) \leqq T(c, d)$ for $a \leqq c, \quad b \leqq d$ $T(T(a, b), c)=T(a, T(b, c))$
(d) $T(0,0)=0$.

Definition 1 yields immediately that every t-norm T satisfies $T(a, b) \leqq \min (a, b)$ where min is a t-norm too. Further important examples of t-norms are $T(a, b)=$ $=a b, T(a, b)=\max (a+b-1,0)$. It is worth quoting [10] where one can see a close relation between t-norms and 2 -dimensional copulas.
Further, in [1] the ε, η-topology is introduced by the neighbourhoods of the form

$$
N_{x}(\varepsilon, \eta)=\left\{y \in S: F_{x y}(\eta)>1-\varepsilon\right\}, \quad x \in S, \quad \eta>0, \quad 0<\varepsilon \leqq 1
$$

and under the continuity of the t-norm T it is proved that these neighbourhoods form a base for a Hausdorff topology in S. This topology is called the ε, η-topology. The paper [2] studies the question under which conditions the ε, η-topology is metrizable. If $\sup T(a, a)=1$ then the system $\mathscr{N}=\{U(\varepsilon, \eta)\}$ where $U(\varepsilon, \eta)=\{(x, y) \in$ $\left.\in S \times S: \stackrel{a<1}{:} F_{x y}(\eta)>1-\varepsilon\right\} \quad(\eta>0, \varepsilon \in(0,1\rangle)$ is a base of a Hausdorff uniformity in $S \times S$.
The mapping $\mathscr{K}: S \times S \rightarrow \mathscr{F}$ where \mathscr{F} is the Lévy space of probability distribution functions is studied in [3]. If $\lim T(a, v)=a$ uniformly in $\langle 0,1\rangle$, then \mathscr{K} is $v \dagger 1$ uniformly continuous with respect to the ε, η-topology in $S \times S$.
The problem of a completion of $S M M$-spaces is solved in [4]. It is proved (under certain conditions on the t-norm T) that every $S M M$-space can be (up to an isomorphism) completed by the maintaince of the t-norm in the unique way.
In [5] it is suggested one of the possible generalizations of the triangular inequality. The demand 4 in Definition 1 is replaced by $4^{\prime}:\left(F_{x y}(u)=1\right.$ and $\left.F_{y z}(v)=1\right) \Rightarrow$ $\Rightarrow F_{x z}(u+v)=1$, which is of course weaker than 4 in Definition 1. Further, in this paper a relation between the mapping \mathscr{K} (mentioned above) and a certain class of semimetrics on S is studied and it is proved, in the case of the t-norm $T=\min (a, b)$ the existence of a probability space (D, \mathscr{B}, μ) where D contains some semimetrics on S, all sets, of the form $\{d \in D: d(x, y)>u\} x, y \in S, u \in \mathbb{R}$ belong to \mathscr{B} and

$$
\mu\{d \in D: d(x, y)>u\}=F_{x y}(u) .
$$

At the beginning the theory of $S M M$-spaces belonged rather to the functional analysis than to the probability theory; e.g. many articles are devoted to problems of fixed points of mappings defined on $S M M$-spaces. Recently, some papers occurred where the connection with the probability theory is quite evident, see, e.g. [7], [8], [9].

1. DEFINITION OF SML-SPACE, BASIC PROPERTIES, EXAMPLES

In this paper a special case of statistical metric spaces is considered. The definition of $S M M$-spaces is based on that fact that although the distance of two points is a fixed nonnegative number, an observer can measure this distance with certain errors. His measurements are affected by errors and from this point of view a distance is a random variable with its distribution function. Similarly, we can consider the case of a normed linear space, where a norm is the distance measured from the zero element. Properties of a norm and Definition 1 of the $S M M$-space lead us to the following definition of the linear statistical space.

Definition 2. Let S be a real linear space, let \mathscr{F} be the set of all probability distribution functions defined on the real line \mathbb{R}. Let $\mathscr{J}: S \rightarrow \mathscr{F}$ be a given mapping. For every $x \in S$ let us denote $\mathscr{F}(x)=F_{x} \in \mathscr{F}$ and we demand that \mathscr{J} satisfies:

1. $x=0 \Leftrightarrow F_{x}=H$ where $H(u)=0 u \leqq 0 ; H(u)=1 u>0$
2. $F_{\lambda x}(u)=F_{x}(u| | \lambda \mid)$ for every $x \in S$ and every $\lambda \neq 0$.
3. $F_{x}(u)=0$ for every $u \leqq 0$ and every $x \in S$.
4. $T\left(F_{x}(u), F_{y}(v)\right) \leqq F_{x+y}(u+v)$ for every $u, v \in \mathbb{R}$ and every pair $x, y \in S$ where T is a t-norm satisfying (a), (b), (c), (d) in Definition 1.
Under these conditions the triple (S, \mathscr{F}, T) is called a linear statistical space in the Menger sense (SLM-space).

Example 1. Let $S=\mathbb{R}$, let G be a distribution function with $G(0)=0$ and $G \neq H$. If $x \in S$ let us define

$$
\begin{gathered}
\mathscr{J}(x)=F_{x}(\cdot)=G\left(\frac{\cdot}{|x|}\right) \text { for } x \neq 0 \\
\mathscr{J}(0)=H(\cdot) \text { and } T(a, b)=\min (a, b)
\end{gathered}
$$

then $(\mathbb{R}, \mathscr{J}, \min)$ is an $S L M$-space. As we assume $G \neq H$ then $x=0$ if and only if $F_{x}=H$. Further, $F_{x}(0)=0$ for every $x \in \mathbb{R}$ thanks to the assumption $G(0)=0$. Thus, we have

$$
F_{\lambda x}(u)=G\left(\frac{u}{|\lambda x|}\right)=G\left(\frac{u}{|\lambda||x|}\right)=G\left(\frac{u}{|\lambda|} \frac{1}{|x|}\right)=F_{x}\left(\frac{u}{|\lambda|}\right)
$$

for every $\lambda \in \mathbb{R}, \lambda \neq 0$ and every $x \in \mathbb{R}$. The main problem is to prove the triangular
inequality in the form

$$
\begin{align*}
& F_{x+y}(u+v) \geqq \min \left(F_{x}(u), F_{y}(v)\right), \text { i.e. } \\
& G\left(\frac{u+v}{|x+y|}\right) \geqq \min \left(G\left(\frac{u}{|x|}\right), G\left(\frac{v}{|y|}\right)\right) . \tag{*}
\end{align*}
$$

If $u \leqq 0$ or $v \leqq 0$ then the inequality $(*)$ is true because $G(0)=0$. In the case $u>0$ and $v>0, x=0$ or $y=0$ or $x+y=0$ the generalized triangular inequality is trivial. As the function G is nondecreasing, the inequality (*) for $u>0, v>0$, $|x+y|>0,|x|>0,|y|>0$ follows from the inequality

$$
\frac{u+v}{|x+y|} \geqq \min \left(\frac{u}{|x|}, \frac{v}{|y|}\right)
$$

Indeed, let us assume $u>0, v>0,|x+y|>0$ and $(u+v)||x+y|>\min (u t|x|$, $\left.v^{\prime}|y|\right)$. It implies that simultaneously $(u+v)||x+y|>u||x|$ and $(u+v)||x+y|>$ $>v| | y \mid$, thus $(u+v)|x|>u|x+y|$ and $(u+v)|y|>v|x+y|$, what gives $|x|+$ $+|y|>|x+y|$ and that is a contradiction. This completes the proof of that fact that $(\mathbb{R}, \mathscr{J}, \mathrm{min})$ is an SLM-space.
Example 2. Let S be the set of all real sequences, i.e. $S=\left\{x: x=\left(x_{1}, x_{2}, x_{3}, \ldots\right.\right.$ $\left.\left.\ldots, x_{n}, \ldots\right)\right\}$, where the operations of addition and scalar multiplication are defined coordinatewisely. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_{n}=1$. Let us define the mapping $\mathscr{J}: S \rightarrow \mathscr{F}$ in the following way:
if $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right)$ then we put

$$
\begin{array}{lll}
F_{x}(u)=0 & \text { for } & u \leqq\left|x_{1}\right| \\
F_{x}(u)=a_{1} & \text { for } & \left|x_{1}\right|<u \leqq\left|x_{1}\right|+\left|x_{2}\right| \\
F_{x}(u)=a_{1}+a_{2} & \text { for } & \left|x_{1}\right|+\left|x_{2}\right|<u \leqq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right| \\
& \vdots & \vdots \\
F_{x}(u) & =\sum_{i=1}^{n} a_{i} & \text { for } \\
& \vdots & \sum_{i=1}^{n}\left|x_{i}\right|<u \leqq \sum_{i=1}^{n+1}\left|x_{i}\right| \\
& \vdots & \vdots
\end{array}
$$

In the case if $\sum_{i=1}^{\infty}\left|x_{i}\right|<\infty$ we must consider two possibilities:
a) $\sum_{i=1}^{\infty}\left|x_{i}\right|$ contains infinitely many non-zero elements, then $F_{x}(u)=1$ for $u \geqq \sum_{i=1}^{\infty}\left|x_{i}\right|$
b) $\sum_{i=1}^{\infty}\left|x_{i}\right|$ contains finitely many non-zero elements only, then $F_{x}(u)=1$ for $u>$ $>\sum_{i=1}^{\infty}\left|x_{i}\right|$.
We do not eliminate the case of an empty interval.
As a t-norm we choose again the function $\min (a, b)$. Then the triple (S, \mathscr{J}, \min) is an SLM-space. Surely, $F_{x}=H$ if and only if $x=0$ because for every $x \neq 0$ at
least one coordinate x_{i} differs from zero. Further, $F_{\lambda x}(u)=F_{\lambda}(u| | \lambda \mid)$ for every $x \in S, \lambda \neq 0, u \in \mathbb{R}$ because if $\lambda \neq 0, u>0, x=0$ then $\lambda x=0$ and $F_{\lambda x}(u)=1$. If $u \leqq 0$ then for every $x \in S$ it is $F_{x}(u)=0$ hence $F_{\lambda x}(u)=0$ also for every $\lambda \in \mathbb{R}$. Now, in the last case $\lambda \neq 0, u>0, x \neq 0$ we have

$$
F_{x}\left(\frac{u}{|\lambda|}\right)=\sum_{i=1}^{n} a_{i} \text { if and only if } \sum_{i=1}^{n}\left|x_{i}\right|<\frac{u}{|\lambda|} \leqq \sum_{i=1}^{n+1}\left|x_{i}\right|
$$

what is

$$
\sum_{i=1}^{n}\left|\lambda x_{i}\right|<u \leqq \sum_{i=1}^{n+1}\left|\lambda x_{i}\right|
$$

The previous inequality expresses the value of $F_{\lambda x}$ at the point u, i.e.

$$
F_{\lambda x}(u)=\sum_{i=1}^{n} a_{i} \text { if and only if } \sum_{i=1}^{n}\left|\lambda x_{i}\right|<u \leqq \sum_{i=1}^{n+1}\left|\lambda x_{i}\right|
$$

At the end we must verify the generalized triangular inequality with the t-norm min. If $u+v \in\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|, \sum_{i=1}^{n+1}\left|x_{i}+y_{i}\right|\right\rangle$ then either $u \leqq \sum_{i=1}^{n+1}\left|x_{i}\right|$ or $v \leqq \sum_{i=1}^{n+1}\left|y_{i}\right|$, hence either $F_{x}(u) \leqq \sum_{i=1}^{n} a_{i}$ or $F_{y}(v) \leqq \sum_{i=1}^{n} a_{i}$, but in every case the inequality $\min \left(F_{x}(u)\right.$, $\left.F_{y}(v)\right) \leqq F_{x+y}(u+v)$ holds. The case $F_{x}(u)=1$ is investigated in a similar way.

Example 3. Let $(\Omega, \mathscr{A}, \mathrm{P})$ be a probability space. Two random variables ξ, η on Ω with $\mathrm{P}\{\omega: \xi(\omega)=\eta(\omega)\}=1$ shall belong to the same class of equivalence. Let S denote these classes of equivalence on Ω. Evidently, S is a linear space. Let us define a mapping \mathscr{J} in the following way:

$$
\mathscr{J}(\xi)[u]=\mathrm{P}\{\omega:|\xi(\omega)|<u\}=F_{\xi}(u), \xi \in S, u \in \mathbb{R}
$$

As a t-norm we choose $m(a, b)=\max (a+b+b-1,0)$. Then the triple (S, \mathscr{J}, m) is an $S L M$-space.

It is clear that for every $\lambda \neq 0$ and $\xi \in S$ it holds

$$
\mathrm{P}\{\omega:|\lambda \xi(\omega)|<u\}=\mathrm{P}\left\{\omega:|\xi(\omega)|<\frac{u}{|\lambda|}\right\}
$$

and hence $F_{\lambda \xi}(u)=F_{\xi}(u /|\lambda|)$. Similarly, $\mathrm{P}\{\omega:|\xi(\omega)|<u\}=0$ for $u \leqq 0$ gives $F_{\xi}(u)=0$ tor every $u \leqq 0$. Surely, $F_{\xi}(u)=H(u)$ for every $u \in \mathbb{R}$ if and only if $\xi=0$. The validity of the generalized triangular inequality is based on the results in [10]. It holds that the joint distribution function $G_{\xi, \eta}(\cdot, \cdot)$ of $\xi, \eta \in S$ can be expressed as a function of their marginal distribution functions $g_{\xi}(\cdot), g_{\eta}(\cdot) G_{\xi, \eta}(u, v)=$ $=C\left(g_{\xi}(u), g_{\eta}(v)\right)$ where C is a 2-dimensional copula generally depending on a couple ξ, η. This copula C is a function defined on $\langle 0,1\rangle \times\langle 0,1\rangle$ satisfying the following inequality

$$
\min (a, b) \geqq C(a, b) \geqq m(a, b)
$$

The inclusions $\{\omega:|\xi(\omega)+\eta(\omega)|<u+v\} \supset\{\omega:|\xi(\omega)|+|\eta(\omega)|<u+v\} \supset$ $\supset\{\omega:|\xi(\omega)|<u,|\eta(\omega)|<v\}$ give

$$
\begin{gathered}
F_{\xi+\eta}(u+v)=\mathrm{P}\{\omega:|\xi(\omega)+\eta(\omega)|<u+v\} \geqq \\
\geqq \mathrm{P}\{\omega:|\xi(\omega)|<u,|\eta(\omega)|<v\}=C\left(F_{\xi}(u), F_{\eta}(v)\right) \geqq m\left(F_{\xi}(u), F_{\eta}(v)\right) .
\end{gathered}
$$

It proves the validity of the generalized triangular inequality with the t-norm m.
Theorem 1. Every $S L M$-space is an $S M M$-space with the same t-norm.
Proof. Let (S, \mathscr{J}, T) be an SLM-space. Let us define the mapping $\mathscr{K}(x, y)=$ $=\mathscr{F}(x-y), \mathscr{K}: S \times S \rightarrow \mathscr{F}$. Then the triple (S, \mathscr{K}, T) is an $S M M$-space. $\mathscr{J}(x)=$
$=H$ if and only if $x=0$. The mapping \mathscr{K} is surely symmetric, because $\mathscr{J}(x-y)=$
$=\mathscr{J}(y-x)$. If we denote $\mathscr{K}(x, y)=F_{x y}, \mathscr{J}(x)=F_{x}$, then the generalized triangular inequality holds, because

$$
T\left(F_{x y}(u), F_{y z}(v)\right)=T\left(F_{x-y}(u), F_{y-z}(v)\right) \leqq F_{x-z}(u+v)=F_{x z}(u+v) .
$$

Remark. Let S be an n-dimensional real linear space. Then the triple (S, \mathscr{J}, T) is an $S L M$-space if and only if to every n-tuple of real numbers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ a probability distribution function $F_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)}$ corresponds such that

1. $F_{\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)}=H$ if and only if $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=0$
2. $F_{\left(\mu \lambda_{1}, \mu \lambda_{2}, \cdots, \mu \lambda_{n}\right)}(u)=F_{\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)}(u \| \mu \mid)$ for every $\mu \neq 0, u \in \mathbb{R}$ and every n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
3. $F_{\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)}(0)=0$ for every n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
4. $\left.T\left(F_{\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)}(u), F_{\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)}\right)(v)\right) \leqq F_{\left(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{2}, \cdots, \lambda_{n}+\mu_{n}\right)}(u+v)$ for every n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ and every $u, v \in \mathbb{R}(T$ is a t-norm $)$.

2. TOPOLOGY IN SLM-SPACES

We shall use usual notions in the topology and in the theory of linear topological spaces; see, e.g. [11]. Only the notions important for us shall be defined explicitly.

Definition 4. Let $(S, \mathscr{\mathscr { L }}, T)$ be a statistical linear space in the sense of Menger, let $x \in S, 0<\varepsilon \leqq 1, \eta>0$. Then the subset of S

$$
O(x, \varepsilon, \eta)=\left\{z \in S: F_{x-z}(\eta)>1-\varepsilon\right\}
$$

is called the ε, η-neighbourhood of the point x.
As the space S is linear, it is sufficient to introduce neighbourhoods of the zero element only, i.e. the neighbourhoods of the form $O(\varepsilon, \eta)=\left\{z: F_{z}(\eta)>1-\varepsilon\right\}$. We shall assume the continuity of the t-norm T on $\langle 0,1\rangle \times\langle 0,1\rangle$. Under this assumption it is possible to prove that the collection of ε, η-neighbourhoods forms
a base of a topology in the space (S, \mathscr{F}, T). It is clear that $0 \in O(\varepsilon, \eta)$ for every $0<\varepsilon \leqq 1, \eta>0$, because $F_{0}(\eta)=H(\eta)=1>1-\varepsilon$. Further, if two ε, η-neighbourhoods $O(\varepsilon, \eta), O\left(\varepsilon^{\prime}, \eta^{\prime}\right)$ are given, then there exists a neighbourhood $O\left(\varepsilon^{*}, \eta^{*}\right)$ such that

$$
O\left(\varepsilon^{*}, \eta^{*}\right) \subset O(\varepsilon, \eta) \cap O\left(\varepsilon^{\prime} \cdot \eta^{\prime}\right)
$$

It is sufficient to put $\varepsilon^{*}=\min \left(\varepsilon, \varepsilon^{\prime}\right), \eta^{*}=\min \left(\eta, \eta^{\prime}\right)$ because

$$
\begin{gathered}
O(\varepsilon, \eta) \cap O\left(\varepsilon^{\prime}, \eta^{\prime}\right)=\left\{z \in S: F_{z}(\eta)>1-\varepsilon, F_{z}\left(\eta^{\prime}\right)>\right. \\
\left.>1-\varepsilon^{\prime}\right\} \supset\left\{z: F_{z}\left(\min \left(\eta, \eta^{\prime}\right)\right)>1-\min \left(\varepsilon, \varepsilon^{\prime}\right)\right\}=O\left(\varepsilon^{*}, \eta^{*}\right) .
\end{gathered}
$$

Similarly, if $\varepsilon \leqq \varepsilon^{\prime}, \eta \leqq \eta^{\prime}$ then

$$
O(\varepsilon, \eta) \subset O\left(\varepsilon^{\prime}, \eta^{\prime}\right)
$$

The last property which is necessary for a base of neighbourhoods in a topology is that for every ε, η-neighbourhood $O(\varepsilon, \eta)$ and every $y \in O(\varepsilon, \eta)$ there exists such an ε, η-neighbourhood that $O\left(y, \varepsilon^{*}, \eta^{*}\right) \subset O(\varepsilon, \eta)$. Let $O(\varepsilon, \eta)$ and y be given. As the function F_{y} being a probability distribution function is left continuous at η, there exist $\eta_{0}<\eta, \varepsilon_{0}<\varepsilon$ that $F_{y}\left(\eta_{0}\right)>1-\varepsilon_{0}>1-\varepsilon$. Now, we choose η^{*} such that $0<\eta^{*}<\eta-\eta_{0}$ and ε^{*} such that $T\left(1-\varepsilon_{0}, 1-\varepsilon^{*}\right)>1-\varepsilon$ (such an ε^{*} exists because the t-norm T is assumed continuous and $T(a, 1)=a)$. Let $s \in O\left(y, \varepsilon^{*}\right.$, $\left.\eta^{*}\right)$ then $F_{s}(\eta) \geqq T\left(F_{y}\left(\eta_{0}\right), F_{y-s}\left(\eta-\eta_{0}\right)\right) \geqq T\left(F_{y}\left(\eta_{0}\right), F_{y-s}\left(\eta^{*}\right)\right) \geqq T\left(1-\varepsilon_{0}, 1-\right.$ $\left.-\varepsilon^{*}\right)>1-\varepsilon$ and $s \in O(\varepsilon, \eta)$.

Definition 5. The topology generated under the continuity of the t-norm T by the base $\mathscr{U}=\{O(\varepsilon, \eta): 0<\varepsilon \leqq 1, \eta>0\}$ of the neighbourhoods of the zero element in (S, \mathscr{J}, T) will be called the ε, η-toporogy.

Definition 6. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset(S, \mathscr{J}, T)$ will be called F-convergent at $x \in S$, if

$$
\lim _{n \rightarrow \infty} F_{x_{n}-x}(u)=H(u)
$$

for every $u \in \mathbb{R}\left(\right.$ in symbols $\left.x_{n} \xrightarrow{F} x\right)$.
Lemma 1. A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset(S, \mathscr{F}, T)$ is F-convergent at $x \in S$ if and only if

$$
\left(\forall \varepsilon \in(0,1\rangle \forall \eta>0 \exists n_{0} \forall n \geqq n_{0}\right) \Rightarrow\left(x_{n} \in O(\varepsilon, \eta)\right)
$$

Proof. If $\lim _{n \rightarrow \infty} F_{x_{n}}(u)=H(u), u>0, \cdot \mathrm{t}$ is $\lim _{n \rightarrow \infty} F_{x_{n}}(u)=1$, then

$$
\left(\forall u>0 \forall \varepsilon \in\left(0,1>\exists n_{0} \forall n \geqq n_{0}\right) \Rightarrow F_{x_{n}}(u)>1-\varepsilon \Leftrightarrow x_{n} \in O(\varepsilon, u)\right.
$$

Conversely, if $\left(\forall \varepsilon \in\left(0,1>\forall \eta>0 \exists n_{0} \forall n \geqq n_{0}\right) \Rightarrow x_{n} \in O(\varepsilon, \eta) \Leftrightarrow F_{x_{n}}(\eta)>1-\varepsilon\right.$, it is precisely that $\lim _{n \rightarrow \infty} F_{x_{n}}(\eta)=1$ for every $\eta>0$. If $u \leqq 0$ we have $F_{x_{n}}(u)=0$ for every n.

Theorem 2. Every $S L M$-space (S, \mathscr{F}, T) with a continuous t-norm is with respect
to the ε, η-topology a Hausdorff linear topological space with a countable base of neighbourhoods of the zero element and hence it is metrizable.

Proof. If we choose any sequences $\left\{\varepsilon_{n}\right\}_{1}^{\infty},\left\{\eta_{n}\right\}_{1}^{\infty}$ sucn that $\varepsilon_{n} \downarrow 0, \eta_{n} \downarrow 0$ then $\left\{O\left(\varepsilon_{n}, \eta_{n}\right)\right\}_{1}^{\infty}$ is a base of neighbourhoods of the origin for the ε, η-topology, because for every $O(\varepsilon, \eta)$ we can find a pair $\varepsilon_{n_{0}}, \eta_{n_{0}}$ such that $\varepsilon_{n_{0}} \leqq \varepsilon, \eta_{n_{0}} \leqq \eta$ and hence $O\left(\varepsilon_{n_{0}}, \eta_{n_{0}}\right) \subset O(\varepsilon, \eta)$.
This space will be a Hausdorff space if and only if $\bigcap_{U \in \mathscr{F}(0)} U=\{0\}$ where $\mathscr{B}(0)$ is a base of neighbourhoods of the origin for the ε, η-topology. In our case it is necessary to prove that $\bigcap_{0<\varepsilon \leq 1, \eta>0} O(\varepsilon, \eta)=\{0\}$. Let us suppose that $x \in \bigcap_{\varepsilon, \eta} O(\varepsilon, \eta)$. Then for every $\eta>0$ and every $\varepsilon \in(0,1) F_{x}(\eta)>1-\varepsilon$, in other words $F_{x}(\eta)=1$ for every $\eta>0$. It implies that $x=0$ in S. We have proved that a countable base of the origin for the ε, η-topology exists and hence the ε, η-topology is metrizable.
Using Lemma 1 and the existence of a countable base for the ε, η-topology at the origin we can easily prove that linear operations and the ε, η-topology are consistent. Let $\lambda_{n} \rightarrow \lambda$ in reals, let $x_{n} \rightarrow x$ in S in the ε, η-topology. Then $\lambda_{n} x_{n}-\lambda x=\lambda_{n}\left(x_{n}-x\right)+$ $+\left(\lambda_{n}-\lambda\right) x$ and the generalized triangular inequality proves immediately continuity of scalar multiplication in the product topology. In a similar way, using the generalized triangular incquality again, one can prove continuity of addition in S in the product topology.

Theorem 3. Let (S, \mathscr{J}, T) be a statistical linear space with the t-norm T satisfying $\lim T(a, b)=1$. Then (S, \mathscr{F}, T) with the topology defined by the F-convergence $a \uparrow 1, b \uparrow 1$
is a linear topological space.
Proof. When $x_{n} \xrightarrow{F} x$ then evidently for every subsequence $\left\{x_{n_{k}}\right\}_{1}^{\infty} \subset\left\{x_{n}\right\}_{1}^{\infty} x_{n_{k}} \xrightarrow{F} x$ also. Further, for every stationary sequence $\left\{x_{n}\right\}_{1}^{\infty}$, i.e. $x_{n}=x$ for every $n \geqq n_{0}$, it holds that $x_{n} \xrightarrow{F} x$.
If $x_{n} \stackrel{F}{\rightarrow} x$, i.e. there exists at least one $u_{0}>0$ that $F_{x_{n}-x}\left(u_{0}\right) \rightarrow 1$, then an $\varepsilon_{0}>0$ and subsequence $\left\{x_{n_{n}}\right\}_{1}^{\infty} \subset\left\{x_{n}\right\}$ must exist such that for every subsequence $\left\{x_{k}^{*}\right\}_{1}^{\infty} \subset$ $\subset\left\{x_{n_{k}}\right\}_{1}^{\infty} F_{x^{*} k-x}\left(u_{0}\right) \leqq 1-\varepsilon_{0}$, in other words $x_{k}^{*} \underset{\rightarrow}{f}$.
In this way we have verified all demands put on the topological convergence and we must prove further that this convergence and linear operations defined on S are in accordance. When $x_{n} \xrightarrow{F} x, y_{n} \xrightarrow{F} y$ then using the generalized triangular inequality we obtain

$$
F_{x_{n}+y_{n}}(2 \eta) \geqq T\left(F_{x_{n}}(\eta), F_{y_{n}}(\eta)\right) \geqq T(1-\varepsilon, 1-\varepsilon)
$$

for a suitable large n and the left continuity at $[1,1]$ of the t-norm implies that $T(1-\varepsilon$, $1-\varepsilon) \rightarrow 1$ if $\varepsilon \rightarrow 0$. Similarly, as it was done in the proof of Theorem 3 we can prove that $x_{n} \xrightarrow{F} x, \lambda_{n} \rightarrow \lambda$ imply that $\lambda_{n} x_{n} \xrightarrow{F} \lambda x$, too. It follows from the lett continuity at $[1,1]$ of the t-norm T that every F-convergent sequence has a unique limit
point, because

$$
F_{x_{0}-y_{0}}(2 \eta) \geqq T\left(F_{x_{n}-x_{0}}(\eta), F_{x_{n}-y_{0}}(\eta)\right)>T(1-\varepsilon, 1-\varepsilon)
$$

for a suitable large natural n and every $\eta>0$.
Remark. If the t-norm $T_{\text {is }}$ continuous then as we proved in Lemma 1 and Theorem 3 , the ε, η-topology and the F-convergence are equivalent. Generally, this equivalence need not hold without the assumption of the continuity of the t-norm T, because ε, η-neighbourhoods need not form a base of neighbourhoods of the origin in S for the topology generated by the F-convergence.

In further considerations we shall deal with continuous t-norms only. In this case every statistical linear space (S, \mathscr{F}, T) has the metrizable ε, η-topology and the question of its normability is interesting for us.

Definition 7. A subset $A \subset S$ where (S, τ) is a linear topological space with a topo$\log y \tau$ is called bounded in topology τ if for every τ-neighbourhood U of the origin in S there exists $\lambda>0$ that

$$
A \subset \lambda U
$$

In our case of an $S L M$-space (S, \mathscr{J}, T) a subset $A \subset S$ is ε, η-bounded if and only if for every $O(\varepsilon, \eta)$ there exists $\lambda(\varepsilon, \eta)>0$ that

$$
A \subset \lambda(\varepsilon, \eta) \cdot O(\varepsilon, \eta)=O(\varepsilon, \lambda(\varepsilon, \eta) \cdot \eta))
$$

In other words, the ε, η-boundedness of A can be expressed as follows: a subset A is ε, η-bounded if and only if for every sequence $\left\{x_{n}\right\}_{1}^{\infty} \subset A$ and every sequence $\left\{\lambda_{n}\right\}_{1}^{\infty}, \lambda_{n} \rightarrow 0$ of reals $\lambda_{n} x_{n} \xrightarrow{F} 0$ also in S.

Now, we use very important criterion of normability of linear topological spaces due to Kolmogorov, see [11]. A Hausdorff linear topological space is normable if and only if there exists a bounded convex neighbourhood of the origin in it. If U is such a neighbourhood then the norm in question can be expressed as

$$
\|x\|=\inf \{\lambda>0: x \in \lambda U\}, \quad x \in S
$$

In the case of an $S L M$-space (S, \mathscr{J}, T) if such a neighbourhood $O\left(\varepsilon_{0}, \eta_{0}\right)$ exists, then a possible norm $\|\cdot\|$ has the form

$$
\begin{aligned}
\|x\| & =\inf \left\{\lambda>0: x \in \lambda O\left(\varepsilon_{0}, \eta_{0}\right)\right\}= \\
& =\inf \left\{\lambda>0: x \in O\left(\varepsilon_{0}, \lambda \eta_{0}\right)=\right. \\
& =\inf \left\{\lambda>0: F_{x}\left(\lambda \eta_{0}\right)>1-\varepsilon_{0}\right\}
\end{aligned}
$$

With this question of normability an important property is connected as the following Theorem 4 states.

In the next Theorem 4 we shall need the following notation:
$\stackrel{\rightharpoonup}{\operatorname{conv}} A$ is the absolutely convex hull of A, conv A is the convex hull of A.
Theorem 4. Let an $S L M$-space (S, \mathscr{F}, T) be finite-dimensional. Then the ε, η-topology is normable and is equivalent to the usual Euclidean topology.

Proof. We suppose that the space (S, \mathscr{F}, T) is finite-dimensional and hence every $x \in S$ can be expressed in the form

$$
x=\sum_{i=1}^{n} \lambda_{i} e_{i}
$$

$\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is any linear base in S. As the number of the elements in a base is finite, we can find an ε, η-neighbourhood $O(\varepsilon, \eta)$ which contains all elements of the base. Further, every $x \in \overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ can be expressed as an absolutely convex combination of $e_{1}, e_{2}, \ldots, e_{n}$, i.e. $x=\sum_{i=1}^{n} \mu_{i} e_{i}, \sum_{i=1}^{n}\left|\mu_{i}\right| \leqq 1$, and because conv $O(\varepsilon, \eta)$ is also absolutely convex in S then $\overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right) \subset \operatorname{conv} O(\varepsilon, \eta)$.

Now, it is necessary to prove that conv $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is at the same time a neighbourhood of the zero element in the ε, η-topology; for this fact it is sufficient to find $O\left(\varepsilon^{*}, \eta^{*}\right)$ such that

$$
O\left(\varepsilon^{*}, \eta^{*}\right) \subset \overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

Let us suppose, that such a neighbourhood does not exist, i.e. for every $O(\varepsilon, \eta)$ there exists at least one point $x_{0} \in O(\varepsilon, \eta)$ so that $x_{0} \notin \overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Taking $\varepsilon_{n} \downarrow 0, \eta_{n} \downarrow 0$ we can construct a sequence $\left\{x_{m}\right\}_{1}^{\infty}$ which has the zero element as its limit point, let us say $x_{m}=\sum_{i=1}^{n} \lambda_{n}^{m} e_{i}$, but $x_{m} \notin \overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, i.e. $\sum_{i=1}^{n}\left|\lambda_{i}^{m}\right|>1$. First, we can suppose that $M \geqq \sum_{i=1}\left|\lambda_{i}^{m}\right|>1$ for all m, where $M<+\infty$. Then there exists a subsequence $\left\{\lambda_{1}^{m_{k}} ; \lambda_{2}^{m_{k}}, \ldots, \lambda_{n}^{m_{k}}\right\}$ that is convergent and hence

$$
\begin{gathered}
x_{m_{k}}=\sum_{i=1}^{n} \lambda_{i}^{m_{k}} e_{i} \xrightarrow{F} x_{0} \quad \text { but } \quad x_{0} \neq 0 \quad \text { because } \\
x_{0}=\sum_{i=1}^{n} \lambda_{i}^{0} e_{i}, \quad \lambda_{i}^{0}=\lim _{k} \lambda_{i}^{m_{k}} \quad \text { and } \quad \sum_{i=1}^{n}\left|\lambda_{i}^{0}\right| \geqq 1
\end{gathered}
$$

If there exists a subsequence $\sum_{i=1}^{n}\left|\lambda_{i}^{m_{k}}\right|$ unbounded from above, i.e.

$$
\lim _{k} \sum_{i=1}^{n}\left|\lambda_{i}^{m_{k}}\right|=+\infty
$$

then we can consider the sequence

$$
x_{m_{k}}^{*}=\sum_{i=1}^{n} \frac{\lambda_{i}^{m_{k}}}{\sum_{j=1}^{n}\left|\lambda_{j}^{m_{k}}\right|} e_{i}=\frac{1}{\sum_{j=1}^{n}\left|\lambda_{j}^{m_{k}}\right|} x_{m_{k}}
$$

 with $\sum_{i=1}^{n}\left|\mu_{i}^{m_{k}}\right|=1$ and this case can be transformed to the previous one. This fact proves that $\overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ must be a neighbourhood of the zero element in the ε, η-topology. The boundedness of $\overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is clear, because if $\left\{x_{m}\right\}_{1}^{\infty}$ is any sequence from $\overline{\operatorname{conv}}\left(e_{1}, e_{2}, \ldots, e_{n}\right), \lim \varrho_{m}=0, \varrho_{m} \in \mathbb{R}$ then

$$
\begin{gathered}
\varrho_{m} x_{m}=\varrho_{m} \sum_{i=1}^{n} \lambda_{i}^{m} e_{i}, \sum_{i=1}^{n}\left|\lambda_{i}^{m}\right| \leqq 1 \text { and } \\
F_{\varrho m} x_{m}(u) \geqq T^{(n)}\left(\left(F_{e_{1}}\left(\frac{u}{\left|\varrho_{m} \lambda_{1}^{m \mid}\right|}\right), \ldots, F_{\varepsilon_{n}}\left(\frac{u}{\left|\varrho_{m} \lambda_{n}^{m}\right|}\right)\right)\right. \\
\left(T^{(n)}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=T\left(a_{1}, T\left(a_{2}, \ldots, T\left(a_{n-1}, a_{n}\right) \ldots\right)\right),\right.
\end{gathered}
$$

with $\left|\lambda_{i}^{m}\right| \leqq 1$ and this fact implies that $\varrho_{n} x_{n} \xrightarrow{F} 0$. We proved that in the case of a finite dimensional $S L M$-space (S, \mathscr{F}, T) the ε, η-topology is equivalent to the topology generated by the coordinate convergence and the ε, η-topology is normable.

Lemma 2. Every $S L M$-space (S, \mathscr{J}, T) where $T(a, b)=\min (a, b)$ is a locally convex linear topological space.

Proof. The proof is very simple. Let us consider any ε, η-neighbourhood $O(\varepsilon, \eta)$ in (S, \mathscr{F}, T) and let $x, y \in O(\varepsilon, \eta), \alpha \in\langle 0,1\rangle$, then $F_{x}(\eta)>1-\varepsilon, F_{y}(\eta)>1-\varepsilon$ and hence

$$
F_{\alpha, x \div(1-\alpha) y}(\eta) \geqq \min \left(F_{\alpha x}(\alpha \eta), F_{(1-\alpha) y}((1-\alpha) \eta)\right)=\min \left(F_{x}(\eta), F_{y}(\eta)\right)>1-\varepsilon
$$

3. PROPERTIES OF ε, η-NEIGHBOURHOODS

Lemma 3. Let $O(\varepsilon, \eta)$ be an ε, η-neighbourhood of the zero element in an SLMspace (S, \mathscr{F}, T). Then for every $|\lambda| \leqq 1, \lambda \in \mathbb{R}$ and every $x \in O(\varepsilon, \eta)$

$$
\lambda x \in O(\varepsilon, \eta)
$$

Proof. Let $x \in O(\varepsilon, \eta)$, i.e. $F_{x}(\eta)>1-\varepsilon$ then $F_{i x}(\eta)=F_{x}(\eta| | \lambda \mid) \geqq F_{x}(\eta)>1-\varepsilon$ and hence $\lambda x \in O(\varepsilon, \eta)$.

Lemma 4. Every ε, η-neighbourhood $O(\varepsilon, \eta)$ is a symmetric set.
Proof. If $x \in O(\varepsilon, \eta)$ then $F_{-x}(\eta)=F_{x}(\eta)>1-\varepsilon$ also, what implies that $-x \in$ $\in O(\varepsilon, \eta)$.

Lemma 5. Let an ε, η-neighbourhood $O(\varepsilon, \eta)$ be given. Then for every $x \in(S, \mathscr{F}, T)$ there exists a $\lambda>0$ such that $x \in \mu O(\varepsilon, \eta)$ for every $\mu,|\mu| \geqq \lambda$. This property is called the absorbing property of ε, η-neighbourhoods.

Proof. Since for every $x \in(S, \mathscr{F}, T) \lim _{n \rightarrow \infty} F_{x}(u)=1$, i.e. for every $\varepsilon>0$ there exists $u_{x}(\varepsilon)>0$ such that for every $u \geqq u_{x}(\varepsilon)$ we have $F_{x}(u)>1-\varepsilon$, it is evident to put $\lambda=u_{x}(\varepsilon) / \eta$. If μ is an arbitrary real number with $|\mu| \geqq \lambda$ then $F_{x}(|\mu| \eta) \geqq$ $\geqq F_{x}\left(u_{x}(\varepsilon)\right)>1-\varepsilon$ and hence $x \in O(\varepsilon,|\mu| \lambda)$. As every $O(\varepsilon, \eta)$ is a symmetric set, then $O(\varepsilon,|\mu| \eta)=\mu . O(\varepsilon, \eta)$.

Lemma 6. If an ε, η-neighbourhood $O(\varepsilon, \eta)$ is a convex set, then it is an absolutely convex set in (S, \mathscr{F}, T).

Proof. It follows immediately from Lemma 3 and Lemma 4.
Lemma 7. For every ε, η-neighbourhood of the zero element in (S, \mathscr{J}, T)

$$
S=\bigcup_{n=1}^{\infty} O(\varepsilon, n \cdot \eta)
$$

Proof. Let $x \in(S, \mathscr{J}, T)$ and let $O(\varepsilon, \eta)$ be an arbitrary ε, η-neighbourhood of the zero element in S. As Lemma 5 states for the chosen $\varepsilon>0$ there exists $u(\varepsilon)>0$ such that $F_{x}(u(\varepsilon))>1-\varepsilon$. Now, it is sufficient to choose a natural n in such a way that $n \cdot \eta \geqq u(\varepsilon)$, at this moment $x \in O(\varepsilon, n \eta)=n \cdot O(\varepsilon, \eta)$. This proves that $S=$ $=\bigcup_{n=1}^{\infty} n \cdot O(\varepsilon, \eta)$.

Lemma 8. Let x_{0} be a cluster point of an ε, η-neighbourhood $O(\varepsilon, \eta)$ in an $S L M$ space (S, \mathscr{J}, T). Then

$$
\lim _{u \rightarrow \eta^{+}} F_{x_{0}}(u) \geqq 1-\varepsilon
$$

Proof. Let $\left\{x_{n}\right\} \subset O(\varepsilon, \eta), x_{n} \xrightarrow{F} x_{0}$, let $\lambda>1$. Then, according to the generalized triangular inequality

$$
F_{x_{0}}(\lambda \eta) \geqq T\left(F_{x_{n}-x_{0}}((\lambda-1) \eta), F_{x_{n}}(\eta)\right) \geqq T\left(F_{x_{n}-x_{0}}((\lambda-1) \eta), 1-\varepsilon\right)
$$

for every natural n because $x_{n} \in O(\varepsilon, \eta)$. But $x_{n} \xrightarrow{F} x_{0}$, i.e. $F_{x_{n}-x_{0}}((\lambda-1) \eta)>1-\varepsilon^{\prime}$ for' a suitable large n and hence $F_{x_{0}}(\lambda \eta) \geqq T\left(1-\varepsilon^{\prime}, 1-\varepsilon\right)$. As ε^{\prime} is quite arbitrary, the t-norm T is continuous and $T(a, 1)=a$ for $a>0$, this implies $F_{x_{0}}(\lambda \eta) \geqq 1-\varepsilon$ for every $\lambda>1 . F_{x_{0}}(\cdot)$ is a probability distribution function, therefore the limit $\lim _{u \rightarrow u^{+}} F_{x_{0}}(u)$ must exist and in this case $\lim _{u \rightarrow u^{+}} F_{x_{0}}(u) \geqq 1-\varepsilon$.

Lemma 9. If $O(\varepsilon, \eta)$ is a convex set in an $S L M$-space (S, \mathscr{J}, T) then its closure $\overline{O(\varepsilon, \eta)}$ in the ε, η-topology can be described as

$$
\overline{O(\varepsilon, \eta)}=\left\{x \in S: \inf \left\{\lambda>0: F_{x}(\lambda \eta)>1-\varepsilon\right\} \leqq 1\right\}
$$

Proof. If $O(\varepsilon, \eta)$ is a convex set in (S, \mathscr{F}, T) then it is at the same time absolutely convex and absorbing. Let us define a functional (Minkowski functional)

$$
\begin{aligned}
& p_{\varepsilon \eta}(x)=\inf \{\lambda>0: x \in O(\varepsilon, \lambda \eta)\}= \\
& =\inf \left\{\lambda>0: F_{x}(\lambda \eta)>1-\varepsilon\right\} .
\end{aligned}
$$

From the properties of the ε, η-neighbourhood $O(\varepsilon, \eta)$ mentioned above it follows that $p_{\varepsilon \eta}(\cdot)$ is a seminorm defined on S. As $O(\varepsilon, \eta)$ is a neighbourhood in the ε, η-topology this seminorm $p_{\varepsilon \eta}(\cdot)$ is continuous in the ε, η-topology, and the closure $\overline{O(\varepsilon, \eta)}$ can be expressed as

$$
\overline{O(\varepsilon, \eta)}=\left\{x \in S: \inf \left\{\lambda>0: F_{x}(\lambda \eta)>1-\varepsilon\right\} \leqq 1\right\}=\left\{x: n_{1-\varepsilon}(x) \leqq \eta\right\}
$$

where $n_{1-\varepsilon}(x)=\inf \left\{\lambda>0: F_{x}(\lambda)>1-\varepsilon\right\}$.

4. PROPERTIES OF MAPPING \mathscr{I}

Let an $S L M$-space (S, \mathscr{J}, T) be given. The mapping \mathscr{F} is defined on the linear space S with values in the set \mathscr{F} of all probability distribution functions defined on real numbers. In \mathscr{F} we can introduce a metric L defined by

$$
L(F, G)=\inf \{h>0: F(u-h)-h \leqq G(u) \leqq F(u+h)+h \text { for every } u \in \mathbb{R}\}
$$

this metric is called Lévy's metric and the pair (\mathscr{F}, L) is a complete metric space.
Definition 9. Let (S, \mathscr{J}, T) and $\left(S, \mathscr{J}^{\prime}, T^{\prime}\right)$ be two $S L M$-spaces defined on the same linear space S. We shall say that (S, \mathscr{J}, T) and $\left(S, \mathscr{J}^{\prime}, T^{\prime}\right)$ are topologically equivalent if the mappings $\mathscr{J}, \mathscr{J}^{\prime}$ define equivalent ε, η-topologies.

Theorem 5. SLM-spaces $(S, \mathscr{J}, T),\left(S, \mathscr{J}^{\prime}, T^{\prime}\right)$ are topologically equivalent if and only if the mapping $L\left(\mathscr{J}(\cdot), \mathscr{J}^{\prime}(\cdot)\right)$ defined on S is continuous at 0 in both the ε, η^{-} topologies.

Proof. If the ε, η-topologies are equivalent, i.e. if $x_{n} \xrightarrow{F} 0$ in (S, \mathscr{J}, T) then $x_{n} \xrightarrow{F} 0$ in $\left(S, \mathscr{J}^{\prime}, T^{\prime}\right)$ and vice versa, then $\mathscr{J}\left(x_{n}\right)(u)=F_{x_{n}}(u) \rightarrow H(u), \mathscr{J}^{\prime}\left(x_{n}\right)(u)=$ $=F_{x_{n}}^{\prime}(u) \rightarrow H(u)$ for every $u \in \mathbb{R}$ what can $b z$ expressed also in the form $\left.\left.\left.L\left(\mathscr{J}\left(x_{n}\right), H\right)\right)\right)_{n \rightarrow \infty} 0, L\left(\mathscr{J}^{\prime}\left(x_{n}\right), H\right)\right) \rightarrow 0$. From the triangular inequality in the metric space (\mathscr{F}, L)

$$
\left.\left.L\left(\mathscr{F}\left(x_{n}\right), \mathscr{J}^{\prime}\left(x_{n}\right)\right) \leqq L\left(\mathscr{F}\left(x_{n}\right), H\right)\right)+L\left(\mathscr{J}^{\prime}\left(x_{n}\right), H\right)\right)
$$

it inmediately follows that

$$
\lim _{n \rightarrow \infty} L\left(\mathscr{J}\left(x_{n}\right), \mathscr{J}^{\prime}\left(x_{n}\right)\right)=0
$$

Conversely, if $\lambda_{n} \xrightarrow{F} 0$ in (S, \mathscr{F}, T), i.e. $L\left(F_{x_{n}}, H\right) \rightarrow 0$ and we assume that $L\left(\mathscr{F}\left(x_{n}\right)\right.$, $\left.\mathscr{F}^{\prime}\left(x_{n}\right)\right) \rightarrow 0$ also, then $L\left(\mathscr{F}^{\prime}\left(x_{n}\right), H\right) \leqq L\left(\mathscr{J}\left(x_{n}\right), H\right)+L\left(\mathscr{J}\left(x_{n}\right), \mathscr{J}^{\prime}\left(x_{n}\right)\right)$ for every n and hence $\lim _{n \rightarrow \infty} L\left(\mathscr{J}^{\prime}\left(x_{n}\right), H\right)=0$. This fact says that $x_{n} \xrightarrow{F} 0$ in $\left(S, \mathscr{J}^{\prime}, T^{\prime}\right)$ and the ε, η-topology in (S, \mathscr{F}, T) is stronger than the ε, η-topology in $\left(S, \mathcal{F}^{\prime}, T^{\prime}\right)$. In a similar way we can prove the opposite implication what completes the proof of Theorem 5 .

Theorem 6. Let an $S L M$-space (S, \mathscr{F}, T) be given. Then the mapping $\mathscr{F}: S \rightarrow$ $\rightarrow(\mathscr{F}, L)$ is uniformly continuous in the ε, η-topology.

Proof. The t-norm T is continuous on $\langle 0,1\rangle \times\langle 0,1\rangle$ and therefore T is uniformly continuous on $\langle 0,1\rangle \times\langle 0,1\rangle$ and $\lim T(a, x)=a$ uniform in a. It means that $(\forall \eta>0 \exists \varepsilon \in(0,1) \forall a \in\langle 0,1\rangle) \Rightarrow T(a, 1-\varepsilon)>a-\eta$. Let $x_{n} \rightarrow x_{0}$ in the ε, η-topology, we can find a natural number n_{0} such that for every $n \geqq n_{0}$

$$
x_{n} \in O\left(x_{0}, \varepsilon, \eta\right) \Leftrightarrow F_{x_{n}-x_{0}}(\eta)>1-\varepsilon
$$

Let $u \in \mathbb{R}$ be arbitrary, then

$$
F_{x_{0}}(u+\eta) \geqq T\left(F_{x_{0}-x_{n}}(\eta), F_{x_{n}}(u)\right) \geqq T\left(F_{x_{n}}(u), 1-\varepsilon\right)>F_{x_{n}}(u)-\eta
$$

From this inequality we obtain that $F_{x_{0}}(u+\eta)+\eta>F_{x_{n}}(u)$. In a similar way we can prove the opposite inequality $F_{x_{n}}(u)>F_{x_{0}}(u-\eta)-\eta$. Both the obtained inequalities express together that $L\left(F_{x_{n}}, F_{x_{0}}\right)<\eta$. The continuity of the mapping \mathscr{F} in the ε, η-topology is proved. It is necessary to note that a choice of ε and η does not depend on x_{n}, x_{0} and the continuity of \mathscr{F} can be expressed in a stronger form as follows $(\forall \eta>0 \forall \varepsilon \in(0,1) \forall x, y \in S, x-y \in O(\varepsilon, \eta)) \Rightarrow L\left(F_{x}, F_{y}\right)<\eta$. This implication means, of course, the uniform continuity of the mapping $\mathscr{\mathscr { }}$ in the ε, η-topology.

Theorem 7. A set $K \subset(S, \mathscr{J}, T)$ is bounded in the ε, η-topology if and only if the image $\mathscr{F}(K)$ in (\mathscr{F}, I) is compact.

Proof. Let K be a bounded subset in (S, \mathscr{F}, T). It means that for every ε, η-neighbourhood $O(\varepsilon, \eta)$ there exists an $\alpha=\alpha(\varepsilon, \eta) \in \mathbb{R}$ such that for every real $\lambda,|\lambda| \geqq \alpha$

$$
K \subset \lambda O(\varepsilon, \eta)=O(\varepsilon,|\lambda| \eta)
$$

Let $\mathscr{F}(K)=\left\{F_{x}: x \in K\right\}$. If we choose the neighbourhood $O(\varepsilon, 1)$ then for every $\lambda,|\lambda| \geqq \alpha(\varepsilon, 1) K \subset O(\varepsilon,|\lambda|)$. It implies that $\mathscr{J}(K) \subset \mathscr{J}(O(\varepsilon .|\lambda|))$ what means for every $|\lambda| \geqq \alpha(\varepsilon, 1)$ and every $x \in K F_{x}(|\lambda|)>1-\varepsilon$. We have proved that for every $F \in \mathscr{J}(K)$ and every $u \geqq \alpha(\varepsilon, 1)$

$$
F(u)>1-\varepsilon .
$$

This fact can be expressed in the form $\lim F_{x}(u)=1$ uniformly in $x \in K$. As we know that the subset $\mathscr{F}(K)$ is compact in (\mathscr{F}, L) if and only if

$$
\lim _{u \rightarrow \infty} F(u)=1, \quad \lim _{u \rightarrow-\infty} F(u)=0 \quad \text { uniformly in } \mathscr{J}(K)
$$

the necessary part of the proof is finished. Let us suppose that $\mathscr{J}(K)$ is compact in $(\mathscr{F}, L), K \subset(S, \mathscr{F}, T)$. Then $\lim _{u \rightarrow \infty} F_{x}(u)=1$ uniformly in $x \in K$, i.e.

$$
(\forall \varepsilon \in(0,1\rangle \exists \alpha=\alpha(\varepsilon) \forall u \geqq \alpha \forall x \in K) \Rightarrow F_{x}(u)>1-\varepsilon .
$$

Let $\left\{x_{n}\right\}_{1}^{\infty}$ be an arbitrary sequence in K and let $\lambda_{n} \rightarrow 0$ in reals. Then

$$
F_{\lambda_{n} x_{n}}(u)=F_{x_{n}}\left(\frac{u}{\left|\lambda_{n}\right|}\right)>1-\varepsilon \text { for } u \geqq \alpha\left|\lambda_{n}\right|
$$

As $\lambda_{n} \rightarrow 0$, then for every $u>0$ there exists such a natural n_{0} that $u \geqq \alpha\left|\lambda_{n}\right|$ for every $n \geqq n_{0}$. So, for $u \geqq u_{0}$ we have $\lambda_{n} x_{n} \in O(\varepsilon, u)$. The convergence $\lambda_{n} x_{n} \xrightarrow{F} 0$ is proved and hence the subset K is bounded in the ε, η-topology.

Theorem 8. An $S L M$-space (S, \mathcal{J}, T) with the t-norm $T=\min$ is normable if and only if there exists such an ε, η-neighbourhood $O(\varepsilon, \eta)$ of the zero element that its image $\mathscr{J}(O(\varepsilon, \eta))$ is compact in (\mathscr{F}, L).

Proof. This statement immediately follows from Theorem 7 and Criterion of normability.
(Received September 2, 1981.)

REFERENCES

[1] B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960 I), 313-335.
[2] B. Schweizer, A. Sklar and E. Thorp: The metrization of statistical metric spaces. Pacific J. Math. IO (1960 I), 673-677.
[3] B. Schweizer: On the uniform continuity of the probabilistic distance. Z. Warsch. verw. Gebiete 5 (1966), 357-360.
[4] H. Sherwood: On the completion of probabilistic metric spaces. Z. Wahrsch. verw. Gebiete 6 (1966), 62-64.
[5] N. Nishura: Constructive method in probabilistic metric spaces. Fundamenta Mathematicae, Nr. 67 (1970), 115-124.
[6] K. Menger: Statistical metric. Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.
[7] P. S. Marcus: Probabilistic metric spaces constructed from stationary Markov chains. Aequationes Math. 15 (1977), 1-3, 169-- 171.
[8] R. Moynihan: Probabilistic metric spaces induced by Markov chains. Z. Wahrsch. verw. Gebiete 35 (1976), 2, 177-187.
[9] H. Sherwood: A note on $P M$-spaces determined by measure preserving transformation. Z. Wahrsch. verw. Gebiete 33 (1975/76), 4, 353-~354
[10] S. Sklar: Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 6, 449-460.
[11] J. L. Kelley and I. Namioka: Linear Topological Spaces. Van Nostrand, New York 1963.

RNDr. Jiří Michálek, CSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou věži 4, 18208 Praha 8. Czechoslovakia.

