KYBERNETIKA - VOLUME 20 (1984), NUMBER 1

STATISTICAL LINEAR SPACES

Part I. Properties of ε , η -topology

JIŘÍ MICHÁLEK

The definition of the statistical linear space in the Menger sense (SLM-space) is given in this paper. The ε , η -topology is introduced and the basic properties of SLM-spaces as linear topological spaces are investigated.

0. INTRODUCTION AND PRELIMINARIES

In this paper we shall deal with basic properties of statistical linear spaces in the Menger sense (SLM-space) which are a special case of statistical metric spaces in the Menger sense (SMM-space). SMM-spaces are a generalization of the usual notion of metric spaces in that sense that a metric is replaced by a collection of probability distribution functions. Similarly, SLM-spaces are a generalization of linear normed spaces where a norm is substituted by a suitable family of probability distribution functions.

This paper contains in Section 1 the definition of *SLM*-spaces and the main properties of them together with three examples.

The definition of the ε , η -topology and basic properties of *SLM*-spaces as linear topological spaces are in Section 2. Section 3 contains some properties of ε , η -neighbourhoods from a base for the ε , η -topology. In Section 4 properties of the mapping \mathscr{I} , which is defined on an *SLM*-space and takes its values in the Lévy space of probability distribution functions, are studied.

The notation of an SMM-space is studied in many details in [1]. A detailing discussion of the original Menger definition of the generalized triangular inequality is made there. Under these conclusions the authors suggested the following definition of an SMM-space.

Definition 1. By a statistical metric space in the sense of Menger we shall call a triple (S, \mathcal{K}, T) where S is a nonempty set, \mathcal{K} is a mapping $\mathcal{H} : S \times S \to \mathcal{F}$,

where \mathcal{F} is the set of all one-dimensional probability distribution functions, satisfying $(\mathscr{K}(x, y) = F_{xy}(\cdot))$

- 1. $(F_{xy}(u) = 1$ for u > 0 $\Leftrightarrow x = y$
- 2. $F_{xy}(0) = 0$ for every pair $x, y \in S$
- 3. $F_{xy}(u) = F_{yx}(u)$ for every $u \in \mathbb{R}$ and every pair $x, y \in S$ (\mathbb{R} is the set of reals)
- 4. $F_{xz}(u+v) \ge T(F_{xy}(u), F_{yz}(v))$ for every x, y, $z \in S$ and every $u, v \in \mathbb{R}$ where T is a *t*-norm defined on $(0, 1) \times (0, 1)$ with values in (0, 1) and satisfying properties:
 - (a) T(a, b) = T(b, a); T(a, 1) = a for a > 0
 - (b) $T(a, b) \leq T(c, d)$ for $a \leq c$, $b \leq d$
 - T(T(a, b), c) = T(a, T(b, c))
 - (d) T(0, 0) = 0.

Definition 1 yields immediately that every t-norm T satisfies $T(a, b) \leq \min(a, b)$ where min is a *t*-norm too. Further important examples of *t*-norms are T(a, b) == ab, $T(a, b) = \max(a + b - 1, 0)$. It is worth quoting [10] where one can see a close relation between t-norms and 2-dimensional copulas.

Further, in [1] the ε , η -topology is introduced by the neighbourhoods of the form

$$N_x(\varepsilon, \eta) = \{ y \in S : F_{xy}(\eta) > 1 - \varepsilon \}, \quad x \in S, \quad \eta > 0, \quad 0 < \varepsilon \le 1$$

and under the continuity of the t-norm T it is proved that these neighbourhoods form a base for a Hausdorff topology in S. This topology is called the ε , η -topology. The paper [2] studies the question under which conditions the ε , η -topology is metrizable. If sup T(a, a) = 1 then the system $\mathcal{N} = \{U(\varepsilon, \eta)\}$ where $U(\varepsilon, \eta) = \{(x, y) \in U(\varepsilon, \eta)\}$ $\in S \times S : F_{xy}(\eta) > 1 - \varepsilon$ $(\eta > 0, \varepsilon \in (0, 1))$ is a base of a Hausdorff uniformity in $S \times S$.

The mapping $\mathscr{K}: S \times S \to \mathscr{F}$ where \mathscr{F} is the Lévy space of probability distribution functions is studied in [3]. If $\lim T(a, v) = a$ uniformly in (0, 1), then \mathscr{K} is uniformly continuous with respect to the ε , η -topology in $S \times S$.

The problem of a completion of SMM-spaces is solved in [4]. It is proved (under certain conditions on the t-norm T) that every SMM-space can be (up to an isomorphism) completed by the maintaince of the *t*-norm in the unique way.

In [5] it is suggested one of the possible generalizations of the triangular inequality. The demand 4 in Definition 1 is replaced by 4': $(F_{xy}(u) = 1 \text{ and } F_{yz}(v) = 1) \Rightarrow$ $\Rightarrow F_{xx}(u+v) = 1$, which is of course weaker than 4 in Definition 1. Further, in this paper a relation between the mapping \mathcal{K} (mentioned above) and a certain class of semimetrics on S is studied and it is proved, in the case of the t-norm $T = \min(a, b)$ the existence of a probability space (D, \mathcal{B}, μ) where D contains some semimetrics on S, all sets of the form $\{d \in D : d(x, y) > u\}$ $x, y \in S, u \in \mathbb{R}$ belong to \mathscr{B} and

$$\mu\{d \in D : d(x, y) > u\} = F_{xy}(u).$$

0

At the beginning the theory of *SMM*-spaces belonged rather to the functional analysis than to the probability theory; e.g. many articles are devoted to problems of fixed points of mappings defined on *SMM*-spaces. Recently, some papers occurred where the connection with the probability theory is quite evident, see, e.g. [7], [8], [9].

1. DEFINITION OF SML-SPACE, BASIC PROPERTIES, EXAMPLES

In this paper a special case of statistical metric spaces is considered. The definition of *SMM*-spaces is based on that fact that although the distance of two points is a fixed nonnegative number, an observer can measure this distance with certain errors. His measurements are affected by errors and from this point of view a distance is a random variable with its distribution function. Similarly, we can consider the case of a normed linear space, where a norm is the distance measured from the zero element. Properties of a norm and Definition 1 of the *SMM*-space lead us to the following definition of the linear statistical space.

Definition 2. Let S be a real linear space, let \mathscr{F} be the set of all probability distribution functions defined on the real line \mathscr{R} . Let $\mathscr{J}: S \to \mathscr{F}$ be a given mapping. For every $x \in S$ let us denote $\mathscr{J}(x) = F_x \in \mathscr{F}$ and we demand that \mathscr{J} satisfies:

- 1. $x = 0 \Leftrightarrow F_x = H$ where H(u) = 0 $u \leq 0$; H(u) = 1 u > 0
- 2. $F_{\lambda x}(u) = F_x(u/|\lambda|)$ for every $x \in S$ and every $\lambda \neq 0$.
- 3. $F_x(u) = 0$ for every $u \leq 0$ and every $x \in S$.
- T(F_x(u), F_y(v)) ≤ F_{x+y}(u + v) for every u, v ∈ R and every pair x, y ∈ S where T is a t-norm satisfying (a), (b), (c), (d) in Definition 1.

Under these conditions the triple (S, \mathscr{J}, T) is called a linear statistical space in the Menger sense (SLM-space).

Example 1. Let $S = \mathbb{R}$, let G be a distribution function with G(0) = 0 and $G \neq H$. If $x \in S$ let us define

$$\mathscr{J}(x) = F_x(\cdot) = G\left(\frac{\cdot}{|x|}\right)$$
 for $x \neq 0$

$$\mathcal{J}(0) = H(\cdot)$$
 and $T(a, b) = \min(a, b);$

then $(\mathbb{R}, \mathscr{J}, \min)$ is an SLM-space. As we assume $G \neq H$ then x = 0 if and only if $F_x = H$. Further, $F_x(0) = 0$ for every $x \in \mathbb{R}$ thanks to the assumption G(0) = 0. Thus, we have

$$F_{\lambda x}(u) = G\left(\frac{u}{|\lambda x|}\right) = G\left(\frac{u}{|\lambda| |x|}\right) = G\left(\frac{u}{|\lambda| |x|}\right) = F_x\left(\frac{u}{|\lambda|}\right)$$

for every $\lambda \in \mathbb{R}$, $\lambda \neq 0$ and every $x \in \mathbb{R}$. The main problem is to prove the triangular

inequality in the form

(*)
$$F_{x+y}(u+v) \ge \min \left(F_x(u), F_y(v)\right), \text{ i.e.}$$
$$G\left(\frac{u+v}{|x+y|}\right) \ge \min \left(G\left(\frac{u}{|x|}\right), G\left(\frac{v}{|y|}\right)\right).$$

If $u \leq 0$ or $v \leq 0$ then the inequality (*) is true because G(0) = 0. In the case u > 0and v > 0, x = 0 or y = 0 or x + y = 0 the generalized triangular inequality is trivial. As the function G is nondecreasing, the inequality (*) for u > 0, v > 0, |x + y| > 0, |x| > 0, |y| > 0 follows from the inequality

$$\frac{u+v}{|x+y|} \ge \min\left(\frac{u}{|x|}, \frac{v}{|y|}\right).$$

Indeed, let us assume u > 0, v > 0, |x + y| > 0 and $(u + v)/|x + y| > \min(u/|x|, v/|y|)$. It implies that simultaneously (u + v)/|x + y| > u/|x| and (u + v)/|x + y| > v/|y|, thus (u + v)|x| > u|x + y| and (u + v)|y| > v|x + y|, what gives |x| + |y| > |x + y| and that is a contradiction. This completes the proof of that fact that $(\mathbb{R}, \mathcal{J}, \min)$ is an SLM-space.

Example 2. Let S be the set of all real sequences, i.e. $S = \{x : x = (x_1, x_2, x_3, ... \}$ $\ldots, x_n, \ldots)$, where the operations of addition and scalar multiplication are defined coordinatewisely. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = 1$. Let us define the mapping $\mathcal{J}: S \to \mathcal{F}$ in the following way:

if $x = (x_1, x_2, x_3, ..., x_n, ...)$ then we put

In the case if $\sum_{i=1}^{\infty} |x_i| < \infty$ we must consider two possibilities:

a) $\sum_{i=1}^{\infty} |x_i|$ contains infinitely many non-zero elements, then $F_x(u) = 1$ for $u \ge \sum_{i=1}^{\infty} |x_i|$

b) $\sum_{i=1}^{\infty} |x_i|$ contains finitely many non-zero elements only, then $F_x(u) = 1$ for u > 1 $> \sum_{i=1}^{\infty} |x_i|.$

We do not eliminate the case of an empty interval.

As a *t*-norm we choose again the function min (a, b). Then the triple (S, \mathcal{J}, \min) is an SLM-space. Surely, $F_x = H$ if and only if x = 0 because for every $x \neq 0$ at

least one coordinate x_i differs from zero. Further, $F_{\lambda x}(u) = F_x(u/|\lambda|)$ for every $x \in S$, $\lambda \neq 0$, $u \in \mathbb{R}$ because if $\lambda \neq 0$, u > 0, x = 0 then $\lambda x = 0$ and $F_{\lambda x}(u) = 1$. If $u \leq 0$ then for every $x \in S$ it is $F_x(u) = 0$ hence $F_{\lambda x}(u) = 0$ also for every $\lambda \in \mathbb{R}$. Now, in the last case $\lambda \neq 0$, u > 0, $x \neq 0$ we have

$$F_x\left(\frac{u}{|\lambda|}\right) = \sum_{i=1}^n a_i \quad \text{if and only if } \sum_{i=1}^n |x_i| < \frac{u}{|\lambda|} \le \sum_{i=1}^{n+1} |x_i|,$$

what is

$$\sum_{i=1}^n |\lambda x_i| < u \leq \sum_{i=1}^{n+1} |\lambda x_i|.$$

The previous inequality expresses the value of $F_{\lambda x}$ at the point u, i.e.

$$F_{\lambda x}(u) = \sum_{i=1}^{n} a_i \quad \text{if and only if} \quad \sum_{i=1}^{n} |\lambda x_i| < u \leq \sum_{i=1}^{n+1} |\lambda x_i|.$$

At the end we must verify the generalized triangular inequality with the *t*-norm min. If $u + v \in (\sum_{i=1}^{n} |x_i + y_i|, \sum_{i=1}^{n+1} |x_i + y_i|)$ then either $u \leq \sum_{i=1}^{n+1} |x_i|$ or $v \leq \sum_{i=1}^{n+1} |y_i|$, hence either $F_x(u) \leq \sum_{i=1}^{n} a_i$ or $F_y(v) \leq \sum_{i=1}^{n} a_i$, but in every case the inequality min $(F_x(u), F_y(v)) \leq F_{x+y}(u + v)$ holds. The case $F_x(u) = 1$ is investigated in a similar way.

Example 3. Let $(\Omega, \mathscr{A}, \mathsf{P})$ be a probability space. Two random variables ξ , η on Ω with $\mathsf{P}\{\omega : \xi(\omega) = \eta(\omega)\} = 1$ shall belong to the same class of equivalence. Let S denote these classes of equivalence on Ω . Evidently, S is a linear space. Let us define a mapping \mathscr{J} in the following way:

$$\mathscr{J}(\xi) [u] = \mathsf{P}\{\omega : |\xi(\omega)| < u\} = F_{\xi}(u), \, \xi \in S, \, u \in \mathbb{R} \, .$$

As a t-norm we choose $m(a, b) = \max(a + b + b - 1, 0)$. Then the triple (S, \mathcal{J}, m) is an SLM-space.

It is clear that for every $\lambda \neq 0$ and $\xi \in S$ it holds

$$\mathsf{P}\{\omega: |\lambda\xi(\omega)| < u\} = \mathsf{P}\left\{\omega: |\xi(\omega)| < \frac{u}{|\lambda|}\right\}$$

and hence $F_{\lambda\xi}(u) = F_{\xi}(u/|\lambda|)$. Similarly, $P\{\omega : |\xi(\omega)| < u\} = 0$ for $u \leq 0$ gives $F_{\xi}(u) = 0$ for every $u \leq 0$. Surely, $F_{\xi}(u) = H(u)$ for every $u \in \mathbb{R}$ if and only if $\xi = 0$. The validity of the generalized triangular inequality is based on the results in [10]. It holds that the joint distribution function $G_{\xi,\eta}(\cdot, \cdot)$ of $\xi, \eta \in S$ can be expressed as a function of their marginal distribution functions $g_{\xi}(\cdot), g_{\eta}(\cdot) \cdot G_{\xi,\eta}(u,v) = C(g_{\xi}(u), g_{\eta}(v))$ where C is a 2-dimensional copula generally depending on a couple ξ, η . This copula C is a function defined on $\langle 0, 1 \rangle \times \langle 0, 1 \rangle$ satisfying the following inequality

$$\min(a, b) \ge C(a, b) \ge m(a, b).$$

The inclusions $\{\omega: |\xi(\omega) + \eta(\omega)| < u + v\} \supset \{\omega: |\xi(\omega)| + |\eta(\omega)| < u + v\} \supset \{\omega: |\xi(\omega)| + |\eta(\omega)| < u + v\}$ $\supset \{\omega : |\xi(\omega)| < u, |\eta(\omega)| < v\}$ give

$$F_{\xi+\eta}(u+v) = \mathsf{P}\{\omega : |\xi(\omega) + \eta(\omega)| < u+v\} \ge$$
$$\mathsf{P}\{\omega : |\xi(\omega)| < u, |\eta(\omega)| < v\} = C(F_{\xi}(u), F_{\eta}(v)) \ge m(F_{\xi}(u), F_{\eta}(v)).$$

It proves the validity of the generalized triangular inequality with the *t*-norm m_{t}

Theorem 1. Every SLM-space is an SMM-space with the same t-norm.

Proof. Let (S, \mathcal{J}, T) be an SLM-space. Let us define the mapping $\mathscr{K}(x, y) =$ $= \mathscr{J}(x - y), \mathscr{K} : S \times S \to \mathscr{F}$. Then the triple (S, \mathscr{K}, T) is an SMM-space. $\mathscr{J}(x) =$ = H if and only if x = 0. The mapping \mathscr{K} is surely symmetric, because $\mathscr{J}(x - y) =$ = $\mathscr{J}(y-x)$. If we denote $\mathscr{K}(x, y) = F_{xy}$, $\mathscr{J}(x) = F_x$, then the generalized triangular inequality holds, because

$$T(F_{xy}(u), F_{yz}(v)) = T(F_{x-y}(u), F_{y-z}(v)) \leq F_{x-z}(u+v) = F_{xz}(u+v).$$

Remark. Let S be an n-dimensional real linear space. Then the triple (S, \mathcal{J}, T) is an SLM-space if and only if to every *n*-tuple of real numbers $(\lambda_1, \lambda_2, ..., \lambda_n)$ a probability distribution function $F_{(\lambda_1,\lambda_2,\dots,\lambda_n)}$ corresponds such that

- 1. $F_{(\lambda_1,\lambda_2,...,\lambda_n)} = H$ if and only if $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$ 2. $F_{(\mu\lambda_1,\mu\lambda_2,...,\mu\lambda_n)}(u) = F_{(\lambda_1,\lambda_2,...,\lambda_n)}(u/|\mu|)$ for every $\mu \neq 0$, $u \in \mathbb{R}$ and every *n*-tuple $(\lambda_1, \lambda_2, \ldots, \lambda_n)$
- 3. $F_{(\lambda_1,\lambda_2,\dots,\lambda_n)}(0) = 0$ for every *n*-tuple $(\lambda_1, \lambda_2, \dots, \lambda_n)$
- 4. $T(F_{(\lambda_1,\lambda_2,\cdots,\lambda_n)}(u), F_{(\mu_1,\mu_2,\cdots,\mu_n)}(v)) \leq F_{(\lambda_1+\mu_1,\lambda_2+\mu_2,\cdots,\lambda_n+\mu_n)}(u+v) \text{ for every } n\text{-tuple} \\ (\lambda_1, \lambda_2, \dots, \lambda_n) \text{ and } (\mu_1, \mu_2, \dots, \mu_n) \text{ and every } u, v \in \mathbb{R} (T \text{ is a } t\text{-norm}).$

2. TOPOLOGY IN SLM-SPACES

≧

We shall use usual notions in the topology and in the theory of linear topological spaces; see, e.g. [11]. Only the notions important for us shall be defined explicitly.

Definition 4. Let (S, \mathcal{J}, T) be a statistical linear space in the sense of Menger, let $x \in S$, $0 < \varepsilon \leq 1$, $\eta > 0$. Then the subset of S

$$O(x,\varepsilon,\eta) = \{z \in S : F_{x-z}(\eta) > 1-\varepsilon\}$$

is called the ε , η -neighbourhood of the point x.

As the space S is linear, it is sufficient to introduce neighbourhoods of the zero element only, i.e. the neighbourhoods of the form $O(\varepsilon, \eta) = \{z : F_z(\eta) > 1 - \varepsilon\}$. We shall assume the continuity of the *t*-norm T on $(0, 1) \times (0, 1)$. Under this assumption it is possible to prove that the collection of ε , η -neighbourhoods forms

a base of a topology in the space (S, \mathscr{J}, T) . It is clear that $0 \in O(\varepsilon, \eta)$ for every $0 < \varepsilon \leq 1$, $\eta > 0$, because $F_0(\eta) = H(\eta) = 1 > 1 - \varepsilon$. Further, if two ε, η -neighbourhoods $O(\varepsilon, \eta)$, $O(\varepsilon', \eta')$ are given, then there exists a neighbourhood $O(\varepsilon^*, \eta^*)$ such that

$$O(\varepsilon^*, \eta^*) \subset O(\varepsilon, \eta) \cap O(\varepsilon', \eta').$$

It is sufficient to put $\varepsilon^* = \min(\varepsilon, \varepsilon'), \eta^* = \min(\eta, \eta')$ because

$$O(\varepsilon, \eta) \cap O(\varepsilon', \eta') = \{ z \in S : F_z(\eta) > 1 - \varepsilon, F_z(\eta') >$$

> 1 - \varepsilon' \zeta \{ z : F_z(\min (\eta, \eta')) > 1 - \min (\varepsilon, \varepsilon')\} = O(\varepsilon^*, \eta^*)

Similarly, if $\varepsilon \leq \varepsilon', \eta \leq \eta'$ then

$$O(\varepsilon,\eta) \subset O(\varepsilon',\eta')$$
.

The last property which is necessary for a base of neighbourhoods in a topology is that for every ε , η -neighbourhood $O(\varepsilon, \eta)$ and every $y \in O(\varepsilon, \eta)$ there exists such an ε , η -neighbourhood that $O(y, \varepsilon^*, \eta^*) \subset O(\varepsilon, \eta)$. Let $O(\varepsilon, \eta)$ and y be given. As the function F_y being a probability distribution function is left continuous at η , there exist $\eta_0 < \eta$, $\varepsilon_0 < \varepsilon$ that $F_y(\eta_0) > 1 - \varepsilon_0 > 1 - \varepsilon$. Now, we choose η^* such that $0 < \eta^* < \eta - \eta_0$ and ε^* such that $T(1 - \varepsilon_0, 1 - \varepsilon^*) > 1 - \varepsilon$ (such an ε^* exists because the t-norm T is assumed continuous and T(a, 1) = a). Let $s \in O(y, \varepsilon^*,$ η^*) then $F_s(\eta) \ge T(F_y(\eta_0), F_{y-s}(\eta - \eta_0)) \ge T(F_y(\eta_0), F_{y-s}(\eta^*)) \ge T(1 - \varepsilon_0, 1 - - \varepsilon^*) > 1 - \varepsilon$ and $s \in O(\varepsilon, \eta)$.

Definition 5. The topology generated under the continuity of the *t*-norm T by the base $\mathscr{U} = \{O(\varepsilon, \eta) : 0 < \varepsilon \leq 1, \eta > 0\}$ of the neighbourhoods of the zero element in (S, \mathscr{J}, T) will be called the ε, η -topology.

Definition 6. A sequence $\{x_n\}_{n=1}^{\infty} \subset (S, \mathcal{J}, T)$ will be called F-convergent at $x \in S$, if

$$\lim F_{x_n-x}(u) = H(u)$$

for every $u \in \mathbb{R}$ (in symbols $x_n \xrightarrow{F} x$).

Lemma 1. A sequence $\{x_n\}_{n=1}^{\infty} \subset (S, \mathcal{J}, T)$ is F-convergent at $x \in S$ if and only if

 $\left(\forall \varepsilon \in (0, 1) \forall \eta > 0 \exists n_0 \forall n \ge n_0\right) \Rightarrow (x_n \in O(\varepsilon, \eta)).$

Proof. If $\lim F_{x_n}(u) = H(u)$, u > 0, t is $\lim F_{x_n}(u) = 1$, then

 $(\forall u > 0 \ \forall \varepsilon \in (0, 1) \exists n_0 \ \forall n \ge n_0) \Rightarrow F_{x_n}(u) > 1 - \varepsilon \Leftrightarrow x_n \in O(\varepsilon, u) .$

Conversely, if $(\forall \varepsilon \in (0, 1) \forall \eta > 0 \exists n_0 \forall n \ge n_0) \Rightarrow x_n \in O(\varepsilon, \eta) \Rightarrow F_{x_n}(\eta) > 1 - \varepsilon$, it is precisely that $\lim_{n \to \infty} F_{x_n}(\eta) = 1$ for every $\eta > 0$. If $u \le 0$ we have $F_{x_n}(u) = 0$ for every n.

Theorem 2. Every SLM-space (S, \mathcal{J}, T) with a continuous *t*-norm is with respect

to the ε , η -topology a Hausdorff linear topological space with a countable base of neighbourhoods of the zero element and hence it is metrizable.

Proof. If we choose any sequences $\{\varepsilon_n\}_1^{\infty}$, $\{\eta_n\}_1^{\infty}$ such that $\varepsilon_n \downarrow 0$, $\eta_n \downarrow 0$ then $\{O(\varepsilon_n, \eta_n)\}_1^{\infty}$ is a base of neighbourhoods of the origin for the ε , η -topology, because for every $O(\varepsilon, \eta)$ we can find a pair ε_{n_0} , η_{n_0} such that $\varepsilon_{n_0} \leq \varepsilon$, $\eta_{n_0} \leq \eta$ and hence $O(\varepsilon_{n_0}, \eta_{n_0}) \subset O(\varepsilon, \eta)$.

This space will be a Hausdorff space if and only if $\bigcap_{U\in\mathscr{B}(0)} U = \{0\}$ where $\mathscr{B}(0)$ is a base of neighbourhoods of the origin for the ε , η -topology. In our case it is necessary to prove that $\bigcap_{0 \le \varepsilon \le 1, \eta > 0} O(\varepsilon, \eta) = \{0\}$. Let us suppose that $x \in \bigcap_{\varepsilon, \eta} O(\varepsilon, \eta)$. Then for every $\eta > 0$ and every $\varepsilon \in (0, 1)$ $F_x(\eta) > 1 - \varepsilon$, in other words $F_x(\eta) = 1$ for every $\eta > 0$. It implies that x = 0 in S. We have proved that a countable base of the origin for the ε, η -topology exists and hence the ε, η -topology is metrizable.

Using Lemma 1 and the existence of a countable base for the ε , η -topology at the origin we can easily prove that linear operations and the ε , η -topology are consistent. Let $\lambda_n \to \lambda$ in reals, let $x_n \to x$ in S in the ε , η -topology. Then $\lambda_n x_n - \lambda x = \lambda_n (x_n - x) + (\lambda_n - \lambda) x$ and the generalized triangular inequality proves immediately continuity of scalar multiplication in the product topology. In a similar way, using the generalized triangular inequality of addition in S in the product topology.

Theorem 3. Let (S, \mathcal{J}, T) be a statistical linear space with the *t*-norm *T* satisfying $\lim_{a \in I, b \in I} T(a, b) = 1$. Then (S, \mathcal{J}, T) with the topology defined by the *F*-convergence $\lim_{a \in I, b \in I} x$ is a linear topological space.

Proof. When $x_n \xrightarrow{F} x$ then evidently for every subsequence $\{x_{n_k}\}_1^{\infty} \subset \{x_n\}_1^{\infty} x_{n_k} \xrightarrow{F} x$ also. Further, for every stationary sequence $\{x_n\}_1^{\infty}$, i.e. $x_n = x$ for every $n \ge n_0$, it holds that $x_n \xrightarrow{F} x$.

If $x_n \stackrel{F}{\mapsto} x$, i.e. there exists at least one $u_0 > 0$ that $F_{x_n-x}(u_0) \mapsto 1$, then an $\varepsilon_0 > 0$ and subsequence $\{x_{n_k}\}_1^{\infty} \subset \{x_n\}$ must exist such that for every subsequence $\{x_k^*\}_1^{\infty} \subset \{x_{n_k}\}_1^{\infty} F_{x^*_k-x}(u_0) \leq 1 - \varepsilon_0$, in other words $x_k^* \stackrel{F}{\to} x$.

In this way we have verified all demands put on the topological convergence and we must prove further that this convergence and linear operations defined on S are in accordance. When $x_n \xrightarrow{F} x$, $y_n \xrightarrow{F} y$ then using the generalized triangular inequality we obtain

$$F_{x_n+y_n}(2\eta) \ge T(F_{x_n}(\eta), F_{y_n}(\eta)) \ge T(1-\varepsilon, 1-\varepsilon)$$

for a suitable large *n* and the left continuity at [1,1] of the *t*-norm implies that $T(1-\varepsilon, 1-\varepsilon) \to 1$ if $\varepsilon \to 0$. Similarly, as it was done in the proof of Theorem 3 we can prove that $x_n \xrightarrow{F} x$, $\lambda_n \to \lambda$ imply that $\lambda_n x_n \xrightarrow{F} \lambda x$, too. It follows from the left continuity at [1, 1] of the *t*-norm *T* that every *F*-convergent sequence has a unique limit

point, because

$$F_{x_0-y_0}(2\eta) \geq T(F_{x_n-x_0}(\eta), F_{x_n-y_0}(\eta)) > T(1-\varepsilon, 1-\varepsilon)$$

for a suitable large natural *n* and every $\eta > 0$.

Remark. If the *t*-norm *T* is continuous then as we proved in Lemma 1 and Theorem 3, the ε , η -topology and the *F*-convergence are equivalent. Generally, this equivalence need not hold without the assumption of the continuity of the *t*-norm *T*, because ε , η -neighbourhoods need not form a base of neighbourhoods of the origin in *S* for the topology generated by the *F*-convergence.

In further considerations we shall deal with continuous *t*-norms only. In this case every statistical linear space (S, \mathcal{J}, T) has the metrizable v, η -topology and the question of its normability is interesting for us.

Definition 7. A subset $A \subset S$ where (S, τ) is a linear topological space with a topology τ is called bounded in topology τ if for every τ -neighbourhood U of the origin in S there exists $\lambda > 0$ that

$$A \subset \lambda U$$
.

In our case of an *SLM*-space (S, \mathcal{J}, T) a subset $A \subset S$ is ε, η -bounded if and only if for every $O(\varepsilon, \eta)$ there exists $\lambda(\varepsilon, \eta) > 0$ that

$$A \subset \lambda(\varepsilon, \eta) \cdot O(\varepsilon, \eta) = O(\varepsilon, \lambda(\varepsilon, \eta) \cdot \eta))$$

In other words, the ε , η -boundedness of A can be expressed as follows: a subset A is ε , η -bounded if and only if for every sequence $\{x_n\}_1^\infty \subset A$ and every sequence $\{\lambda_n\}_{n=1}^\infty$, $\lambda_n \to 0$ of reals $\lambda_n x_n \xrightarrow{F} 0$ also in S.

Now, we use very important criterion of normability of linear topological spaces due to Kolmogorov, see [11]. A Hausdorff linear topological space is normable if and only if there exists a bounded convex neighbourhood of the origin in it. If U is such a neighbourhood then the norm in question can be expressed as

$$\|x\| = \inf \{\lambda > 0 : x \in \lambda U\}, \quad x \in S$$

In the case of an *SLM*-space (S, \mathcal{J}, T) if such a neighbourhood $O(\varepsilon_0, \eta_0)$ exists, then a possible norm $\|\cdot\|$ has the form

$$\|x\| = \inf \{\lambda > 0 : x \in \lambda \ O(\varepsilon_0, \eta_0)\} =$$

= inf $\{\lambda > 0 : x \in O(\varepsilon_0, \lambda \eta_0) =$
= inf $\{\lambda > 0 : F_x(\lambda \eta_0) > 1 - \varepsilon_0\}.$

With this question of normability an important property is connected as the following Theorem 4 states.

In the next Theorem 4 we shall need the following notation:

 $\overline{\operatorname{conv}} A$ is the absolutely convex hull of A, $\operatorname{conv} A$ is the convex hull of A.

Theorem 4. Let an *SLM*-space (S, \mathcal{J}, T) be finite-dimensional. Then the ε , η -topology is normable and is equivalent to the usual Euclidean topology.

Proof. We suppose that the space (S, \mathcal{J}, T) is finite-dimensional and hence every $x \in S$ can be expressed in the form

$$x = \sum_{i=1}^n \lambda_i e_i ;$$

 $(e_1, e_2, ..., e_n)$ is any linear base in S. As the number of the elements in a base is finite, we can find an ε , η -neighbourhood $O(\varepsilon, \eta)$ which contains all elements of the base. Further, every $x \in \overline{\text{conv}}(e_1, e_2, ..., e_n)$ can be expressed as an absolutely convex combination of $e_1, e_2, ..., e_n$, i.e. $x = \sum_{i=1}^n \mu_i e_i, \sum_{i=1}^n |\mu_i| \leq 1$, and because conv $O(\varepsilon, \eta)$ is also absolutely convex in S then $\overline{\text{conv}}(e_1, e_2, ..., e_n) \subset \text{conv } O(\varepsilon, \eta)$.

Now, it is necessary to prove that conv $(e_1, e_2, ..., e_n)$ is at the same time a neighbourhood of the zero element in the ε , η -topology; for this fact it is sufficient to find $O(\varepsilon^*, \eta^*)$ such that

$$O(\varepsilon^*, \eta^*) \subset \overline{\operatorname{conv}}(e_1, e_2, ..., e_n).$$

Let us suppose, that such a neighbourhood does not exist, i.e. for every $O(e, \eta)$ there exists at least one point $x_0 \in O(e, \eta)$ so that $x_0 \notin \overline{\text{conv}}(e_1, e_2, ..., e_n)$. Taking $e_n \downarrow 0$, $\eta_n \downarrow 0$ we can construct a sequence $\{x_m\}_1^\infty$ which has the zero element as its limit point, let us say $x_m = \sum_{i=1}^n \lambda_i^m e_i$, but $x_m \notin \overline{\text{conv}}(e_1, e_2, ..., e_n)$, i.e. $\sum_{i=1}^n |\lambda_i^m| > 1$. First, we can suppose that $M \ge \sum_{i=1}^n |\lambda_i^m| > 1$ for all m, where $M < +\infty$. Then there exists a subsequence $\{\lambda_1^{m_k}, \lambda_2^{m_k}, ..., \lambda_n^{m_k}\}$ that is convergent and hence

$$\begin{aligned} x_{m_k} &= \sum_{i=1}^n \lambda_i^{m_k} e_i \stackrel{F}{\longrightarrow} x_0 \quad \text{but} \quad x_0 \neq 0 \quad \text{because} \\ x_0 &= \sum_{i=1}^n \lambda_i^0 e_i, \quad \lambda_i^0 = \lim_k \lambda_i^{m_k} \quad \text{and} \quad \sum_{i=1}^n \left| \lambda_i^0 \right| \ge 1. \end{aligned}$$

If there exists a subsequence $\sum_{i=1}^{n} |\lambda_i^{m_k}|$ unbounded from above, i.e.

$$\lim_{k}\sum_{i=1}^{n}\left|\lambda_{i}^{m_{k}}\right| = +\infty ,$$

then we can consider the sequence

$$x_{m_k}^* = \sum_{i=1}^n \frac{\lambda_i^{m_k}}{\sum\limits_{j=1}^n |\lambda_j^{m_k}|} e_i = \frac{1}{\sum\limits_{j=1}^n |\lambda_j^{m_k}|} x_{m_k},$$

1	~
h	1

instead of the original $\{x_m\}_m$. However, at the same time, we have $x_{m_k}^* = \sum_{i=1}^n \mu_i^{m_k} e_i$ with $\sum_{i=1}^n |\mu_i^{m_k}| = 1$ and this case can be transformed to the previous one. This fact proves that $\overline{\operatorname{conv}}(e_1, e_2, ..., e_n)$ must be a neighbourhood of the zero element in the ε, η -topology. The boundedness of $\overline{\operatorname{conv}}(e_1, e_2, ..., e_n)$ is clear, because if $\{x_m\}_1^\infty$ is any sequence from $\overline{\operatorname{conv}}(e_1, e_2, ..., e_n)$, $\lim_m \varrho_m = 0, \varrho_m \in \mathbb{R}$ then

$$\begin{split} \varrho_{m} x_{m} &= \varrho_{m} \sum_{i=1}^{n} \lambda_{i}^{m} e_{i}, \sum_{i=1}^{n} \left| \lambda_{i}^{m} \right| \leq 1 \text{ and} \\ F_{\varrho_{m} x_{m}} \left(u \right) \geq T^{(n)} \left(\left(F_{e_{1}} \left(\frac{u}{\left| \varrho_{m} \lambda_{1}^{m} \right|} \right), \dots, F_{e_{n}} \left(\frac{u}{\left| \varrho_{m} \lambda_{n}^{m} \right|} \right) \right); \\ \left(T^{(n)} (a_{1}, a_{2}, \dots, a_{n}) = T(a_{1}, T(a_{2}, \dots, T(a_{n-1}, a_{n}) \dots)) \,, \end{split}$$

with $|\lambda_i^n| \leq 1$ and this fact implies that $\varrho_n x_n \stackrel{F}{\longrightarrow} 0$. We proved that in the case of a finite dimensional *SLM*-space (S, \mathcal{J}, T) the ε , η -topology is equivalent to the topology generated by the coordinate convergence and the ε , η -topology is normable.

Lemma 2. Every SLM-space (S, \mathcal{J}, T) where $T(a, b) = \min(a, b)$ is a locally convex linear topological space.

Proof. The proof is very simple. Let us consider any ε , η -neighbourhood $O(\varepsilon, \eta)$ in (S, \mathscr{J}, T) and let $x, y \in O(\varepsilon, \eta), \alpha \in \langle 0, 1 \rangle$, then $F_x(\eta) > 1 - \varepsilon$, $F_y(\eta) > 1 - \varepsilon$ and hence

 $F_{\alpha x + (1-\alpha)y}(\eta) \ge \min \left(F_{\alpha x}(\alpha \eta), F_{(1-\alpha)y}((1-\alpha)\eta) \right) = \min \left(F_x(\eta), F_y(\eta) \right) > 1 - \varepsilon . \square$

3. PROPERTIES OF ε , η -NEIGHBOURHOODS

Lemma 3. Let $O(\varepsilon, \eta)$ be an ε, η -neighbourhood of the zero element in an *SLM*-space (S, \mathcal{J}, T) . Then for every $|\lambda| \leq 1, \lambda \in \mathbb{R}$ and every $x \in O(\varepsilon, \eta)$

$$\lambda x \in O(\varepsilon, \eta)$$

Proof. Let $x \in O(\varepsilon, \eta)$, i.e. $F_x(\eta) > 1 - \varepsilon$ then $F_{\lambda x}(\eta) = F_x(\eta | \lambda|) \ge F_x(\eta) > 1 - \varepsilon$ and hence $\lambda x \in O(\varepsilon, \eta)$.

Lemma 4. Every ε , η -neighbourhood $O(\varepsilon, \eta)$ is a symmetric set.

Proof. If $x \in O(\varepsilon, \eta)$ then $F_{-x}(\eta) = F_x(\eta) > 1 - \varepsilon$ also, what implies that $-x \in \varepsilon O(\varepsilon, \eta)$.

Lemma 5. Let an ε , η -neighbourhood $O(\varepsilon, \eta)$ be given. Then for every $x \in (S, \mathscr{J}, T)$ there exists a $\lambda > 0$ such that $x \in \mu O(\varepsilon, \eta)$ for every μ , $|\mu| \ge \lambda$. This property is called the absorbing property of ε , η -neighbourhoods.

Proof. Since for every $x \in (S, \mathscr{J}, T) \lim_{u \to \infty} F_x(u) = 1$, i.e. for every $\varepsilon > 0$ there exists $u_x(\varepsilon) > 0$ such that for every $u \ge u_x(\varepsilon)$ we have $F_x(u) > 1 - \varepsilon$, it is evident

exists $u_x(\varepsilon) > 0$ such that for every $u \ge u_x(\varepsilon)$ we have $F_x(u) > 1 - \varepsilon$, it is evident to put $\lambda = u_x(\varepsilon)/\eta$. If μ is an arbitrary real number with $|\mu| \ge \lambda$ then $F_x(|\mu| \eta) \ge$ $\ge F_x(u_x(\varepsilon)) > 1 - \varepsilon$ and hence $x \in O(\varepsilon, |\mu| \lambda)$. As every $O(\varepsilon, \eta)$ is a symmetric set, then $O(\varepsilon, |\mu| \eta) = \mu \cdot O(\varepsilon, \eta)$.

Lemma 6. If an ε , η -neighbourhood $O(\varepsilon, \eta)$ is a convex set, then it is an absolutely convex set in (S, \mathcal{J}, T) .

Proof. It follows immediately from Lemma 3 and Lemma 4.

Lemma 7. For every ε , η -neighbourhood of the zero element in (S, \mathcal{J}, T)

$$S = \bigcup_{n=1}^{\infty} O(\varepsilon, n \cdot \eta) \,.$$

Proof. Let $x \in (S, \mathcal{J}, T)$ and let $O(\varepsilon, \eta)$ be an arbitrary ε, η -neighbourhood of the zero element in S. As Lemma 5 states for the chosen $\varepsilon > 0$ there exists $u(\varepsilon) > 0$ such that $F_x(u(\varepsilon)) > 1 - \varepsilon$. Now, it is sufficient to choose a natural n in such a way that $n \cdot \eta \ge u(\varepsilon)$, at this moment $x \in O(\varepsilon, n\eta) = n \cdot O(\varepsilon, \eta)$. This proves that $S = \bigcup_{n=1}^{\infty} n \cdot O(\varepsilon, \eta)$.

Lemma 8. Let x_0 be a cluster point of an ε , η -neighbourhood $O(\varepsilon, \eta)$ in an SLM-space (S, \mathscr{J}, T) . Then

$$\lim_{u \to \eta^+} F_{x_0}(u) \ge 1 - \varepsilon$$

Proof. Let $\{x_n\} \subset O(\hat{s}, \eta), x_n \xrightarrow{F} x_0$, let $\lambda > 1$. Then, according to the generalized triangular inequality

$$F_{x_0}(\lambda \eta) \geq T(F_{x_n-x_0}((\lambda-1)\eta), F_{x_n}(\eta)) \geq T(F_{x_n-x_0}((\lambda-1)\eta), 1-\varepsilon)$$

for every natural *n* because $x_n \in O(\varepsilon, \eta)$. But $x_n \stackrel{F}{\longrightarrow} x_0$, i.e. $F_{x_n-x_0}((\lambda - 1)\eta) > 1 - \varepsilon'$ for a suitable large *n* and hence $F_{x_0}(\lambda \eta) \ge T(1 - \varepsilon', 1 - \varepsilon)$. As ε' is quite arbitrary, the *t*-norm *T* is continuous and T(a, 1) = a for a > 0, this implies $F_{x_0}(\lambda \eta) \ge 1 - \varepsilon$ for every $\lambda > 1$. $F_{x_0}(\cdot)$ is a probability distribution function, therefore the limit $\lim_{u \to \eta^+} F_{x_0}(u)$ must exist and in this case $\lim_{u \to \eta^+} F_{x_0}(u) \ge 1 - \varepsilon$.

Lemma 9. If $O(\varepsilon, \eta)$ is a convex set in an *SLM*-space (S, \mathscr{J}, T) then its closure $\overline{O(\varepsilon, \eta)}$ in the ε, η -topology can be described as

$$\overline{O(\varepsilon,\eta)} = \{x \in S : \inf\{\lambda > 0 : F_x(\lambda\eta) > 1 - \varepsilon\} \le 1\}.$$

Proof. If $O(\varepsilon, \eta)$ is a convex set in (S, \mathcal{J}, T) then it is at the same time absolutely convex and absorbing. Let us define a functional (Minkowski functional)

$$p_{e\eta}(x) = \inf \{\lambda > 0 : x \in O(\varepsilon, \lambda\eta)\} =$$

= $\inf \{\lambda > 0 : F_x(\lambda\eta) > 1 - \varepsilon\}.$

From the properties of the ε , η -neighbourhood $O(\varepsilon, \eta)$ mentioned above it follows that $p_{\varepsilon\eta}(\cdot)$ is a seminorm defined on S. As $O(\varepsilon, \eta)$ is a neighbourhood in the ε , η -topology this seminorm $p_{\varepsilon\eta}(\cdot)$ is continuous in the ε , η -topology, and the closure $\overline{O(\varepsilon, \eta)}$ can be expressed as

$$\overline{O(\varepsilon,\eta)} = \{x \in S : \inf\{\lambda > 0 : F_x(\lambda\eta) > 1 - \varepsilon\} \le 1\} = \{x : n_{1-\varepsilon}(x) \le \eta\}$$

where $n_{1-\varepsilon}(x) = \inf\{\lambda > 0 : F_x(\lambda) > 1 - \varepsilon\}.$

4. PROPERTIES OF MAPPING J

Let an *SLM*-space (S, \mathcal{J}, T) be given. The mapping \mathcal{J} is defined on the linear space S with values in the set \mathcal{F} of all probability distribution functions defined on real numbers. In \mathcal{F} we can introduce a metric L defined by

$$L(F, G) = \inf \{h > 0 : F(u - h) - h \leq G(u) \leq F(u + h) + h \text{ for every } u \in \mathbb{R}\};$$

this metric is called Lévy's metric and the pair (\mathcal{F}, L) is a complete metric space.

Definition 9. Let (S, \mathscr{J}, T) and (S, \mathscr{J}', T') be two *SLM*-spaces defined on the same linear space S. We shall say that (S, \mathscr{J}, T) and (S, \mathscr{J}', T') are topologically equivalent if the mappings $\mathscr{J}, \mathscr{J}'$ define equivalent ε, η -topologies.

Theorem 5. SLM-spaces (S, \mathcal{J}, T) , (S, \mathcal{J}', T') are topologically equivalent if and only if the mapping $L(\mathcal{J}(\cdot), \mathcal{J}'(\cdot))$ defined on S is continuous at 0 in both the ε , η -topologies.

Proof. If the ε , η -topologies are equivalent, i.e. if $x_n \stackrel{F}{\longrightarrow} 0$ in (S, \mathscr{J}, T) then $x_n \stackrel{F}{\longrightarrow} 0$ in (S, \mathscr{J}', T') and vice versa, then $\mathscr{J}(x_n)(u) = F_{x_n}(u) \to H(u)$, $\mathscr{J}'(x_n)(u) = F'_{x_n}(u) \to H(u)$ for every $u \in \mathbb{R}$ what can be expressed also in the form $L(\mathscr{J}(x_n), H))_{n \to \infty} 0$, $L(\mathscr{J}'(x_n), H)) \to 0$. From the triangular inequality in the metric space (\mathscr{F}, L)

 $L(\mathscr{J}(x_n), \mathscr{J}'(x_n)) \leq L(\mathscr{J}(x_n), H) + L(\mathscr{J}'(x_n), H))$

it immediately follows that

$$\lim L(\mathscr{J}(x_n), \mathscr{J}'(x_n)) = 0.$$

Conversely, if $x_n \xrightarrow{F} 0$ in (S, \mathscr{J}, T) , i.e. $L(\mathcal{F}_{x_n}, H) \to 0$ and we assume that $L(\mathscr{J}(x_n), \mathscr{J}'(x_n)) \to 0$ also, then $L(\mathscr{J}'(x_n), H) \leq L(\mathscr{J}(x_n), H) + L(\mathscr{J}(x_n), \mathscr{J}'(x_n))$ for every n and hence $\lim_{n \to \infty} L(\mathscr{J}'(x_n), H) = 0$. This fact says that $x_n \xrightarrow{F} 0$ in (S, \mathscr{J}', T') and the

 ε , η -topology in (S, \mathscr{J}, T) is stronger than the ε , η -topology in (S, \mathscr{J}', T') . In a similar way we can prove the opposite implication what completes the proof of Theorem 5. \Box

Theorem 6. Let an *SLM*-space (S, \mathcal{J}, T) be given. Then the mapping $\mathcal{J} : S \to \mathcal{J}(\mathcal{F}, L)$ is uniformly continuous in the ε, η -topology.

Proof. The *t*-norm *T* is continuous on $\langle 0, 1 \rangle \times \langle 0, 1 \rangle$ and therefore *T* is uniformly continuous on $\langle 0, 1 \rangle \times \langle 0, 1 \rangle$ and $\lim_{x \to 1} T(a, x) = a$ uniform in *a*. It means that $(\forall \eta > 0 \exists \varepsilon \in (0, 1) \forall a \in \langle 0, 1 \rangle) \Rightarrow T(a, 1 - \varepsilon) > a - \eta$. Let $x_n \to x_0$ in the ε , η -topology, we can find a natural number n_0 such that for every $n \ge n_0$

$$x_n \in O(x_0, \varepsilon, \eta) \Leftrightarrow F_{x_n - x_0}(\eta) > 1 - \varepsilon$$
.

Let $u \in \mathbb{R}$ be arbitrary, then

 $F_{x_0}(u + \eta) \ge T(F_{x_0 - x_n}(\eta), F_{x_n}(u)) \ge T(F_{x_n}(u), 1 - \varepsilon) > F_{x_n}(u) - \eta.$

From this inequality we obtain that $F_{x_0}(u + \eta) + \eta > F_{x_n}(u)$. In a similar way we can prove the opposite inequality $F_{x_n}(u) > F_{x_0}(u - \eta) - \eta$. Both the obtained inequalities express together that $L(F_{x_n}, F_{x_0}) < \eta$. The continuity of the mapping \mathcal{J} in the ε , η -topology is proved. It is necessary to note that a choice of ε and η does not depend on x_n , x_0 and the continuity of \mathcal{J} can be expressed in a stronger form as follows $(\forall \eta > 0 \ \forall \varepsilon \in (0, 1) \ \forall x, y \in S, x - y \in O(\varepsilon, \eta)) \Rightarrow L(F_x, F_y) < \eta$. This implication means, of course, the uniform continuity of the mapping \mathcal{J} in the ε , η -topology.

Theorem 7. A set $K \subset (S, \mathcal{J}, T)$ is bounded in the ε , η -topology if and only if the image $\mathcal{J}(K)$ in (\mathcal{F}, I) is compact.

Proof. Let K be a bounded subset in (S, \mathcal{J}, T) . It means that for every ε, η -neighbourhood $O(\varepsilon, \eta)$ there exists an $\alpha = \alpha(\varepsilon, \eta) \in \mathbb{R}$ such that for every real $\lambda, |\lambda| \ge \alpha$

$$K \subset \lambda \ O(\varepsilon, \eta) = O(\varepsilon, |\lambda| |\eta)$$

Let $\mathscr{J}(K) = \{F_x : x \in K\}$. If we choose the neighbourhood $O(\varepsilon, 1)$ then for every $\lambda, |\lambda| \ge \alpha(\varepsilon, 1)$ $K \subset O(\varepsilon, |\lambda|)$. It implies that $\mathscr{J}(K) \subset \mathscr{J}(O(\varepsilon, |\lambda|))$ what means for every $|\lambda| \ge \alpha(\varepsilon, 1)$ and every $x \in K$ $F_x(|\lambda|) > 1 - \varepsilon$. We have proved that for every $F \in \mathscr{J}(K)$ and every $u \ge \alpha(\varepsilon, 1)$

$$F(u) > 1 - \varepsilon$$

This fact can be expressed in the form $\lim_{u\to\infty} F_x(u) = 1$ uniformly in $x \in K$. As we know that the subset $\mathscr{J}(K)$ is compact in (\mathscr{F}, L) if and only if

$$\lim_{u \to \infty} F(u) = 1, \quad \lim_{u \to -\infty} F(u) = 0 \quad \text{uniformly in } \mathscr{J}(K)$$

the necessary part of the proof is finished. Let us suppose that $\mathscr{J}(K)$ is compact in $(\mathscr{F}, L), K \subset (S, \mathscr{J}, T)$. Then $\lim F_x(u) = 1$ uniformly in $x \in K$, i.e.

$$\left(\forall \varepsilon \in \left(0, \, 1\right\rangle \, \exists \alpha \, = \, \alpha(\varepsilon) \, \forall u \, \geq \, \alpha \, \forall x \in K\right) \Rightarrow F_x(u) > 1 \, - \, \varepsilon \; .$$

Let $\{x_n\}_{1}^{\infty}$ be an arbitrary sequence in K and let $\lambda_n \to 0$ in reals. Then

$$F_{\lambda_n x_n}(u) = F_{x_n}\left(\frac{u}{|\lambda_n|}\right) > 1 - \varepsilon \text{ for } u \ge \alpha |\lambda_n|.$$

7	1
i	T

As $\lambda_n \to 0$, then for every u > 0 there exists such a natural n_0 that $u \ge \alpha |\lambda_n|$ for every $n \ge n_0$. So, for $u \ge u_0$ we have $\lambda_n x_n \in O(\varepsilon, u)$. The convergence $\lambda_n x_n \stackrel{F}{\longrightarrow} 0$ is proved and hence the subset K is bounded in the ε, η -topology.

Theorem 8. An SLM-space (S, \mathcal{J}, T) with the *t*-norm $T = \min$ is normable if and only if there exists such an ε , η -neighbourhood $O(\varepsilon, \eta)$ of the zero element that its image $\mathcal{J}(O(\varepsilon, \eta))$ is compact in (\mathcal{F}, L) .

Proof. This statement immediately follows from Theorem 7 and Criterion of normability.

(Received September 2, 1981.)

REFERENCES

- [1] B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960 I), 313-335.
- [2] B. Schweizer, A. Sklar and E. Thorp: The metrization of statistical metric spaces. Pacific J. Math. 10 (1960 I), 673-677.
- [3] B. Schweizer: On the uniform continuity of the probabilistic distance. Z. Warsch. verw. Gebiete 5 (1966), 357-360.
- [4] H. Sherwood: On the completion of probabilistic metric spaces. Z. Wahrsch. verw. Gebiete 6 (1966), 62-64.
- [5] N. Nishura: Constructive method in probabilistic metric spaces. Fundamenta Mathematicae, Nr. 67 (1970), 115-124.
- [6] K. Menger: Statistical metric. Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.
- [7] P. S. Marcus: Probabilistic metric spaces constructed from stationary Markov chains. Aequationes Math. 15 (1977), 1-3, 169-171.
- [8] R. Moynihan: Probabilistic metric spaces induced by Markov chains. Z. Wahrsch. verw. Gebiete 35 (1976), 2, 177-187.
- [9] H. Sherwood: A note on PM-spaces determined by measure preserving transformation. Z. Wahrsch. verw. Gebiete 33 (1975/76), 4, 353--354.
- [10] S. Sklar: Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 6, 449-460.
- [11] J. L. Kelley and I. Namioka: Linear Topological Spaces. Van Nostrand, New York 1963.

RNDr. Jiří Michálek, CSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation – Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 182 08 Praha 8. Czechoslovakia.

< . .