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ON THE GROUP PULSE PROCESSES 

III. Power Spectrum of the Processes with Independent Intervals* 

KAREL VOKURKA 

Power spectrum of the nth-order group pulse process with independent intervals among 
reference points (i.e., of the process LB ... B) is derived. The matrix method introduced in an 
earlier paper is extended to the processes B and D so that the power spectrum formula of these 
and of the mixed processes can be easily determined. At the end applications of the pulse pro
cesses are summarized. 

1. INTRODUCTION 

The processes A and B were defined in [ l ] as the processes with independent 
occurrence times of reference points and with independent intervals among reference 
points, respectively. The power spectrum of the nth-order group pulse process 
LA . . . A for arbitrary n was found in [2]. In this paper we want to proceed a bit 
further. Using similar approach as in [2] the power spectrum of the nth-order group 
pulse process LB . . . B for arbitrary n and of the mixed group pulse processes will 
be found. 

In comparison with the processes A the processes B are more complex and so far 
only the process of the order zero was studied in the literature. Its power spectrum 
was derived independently by Churgin [3], Lukes [4], Mazzetti [5] and Banta [6]. 
Results derived here represent, in a certain sense, a generalization of the mentioned 
works. 

The paper is organized in the following way. First, the power spectrum of the 
process BB will be derived in Section 2. Examples of several basic functions associated 
with the process B will be given in Section 3. The procedure used in Section 2 will 
be generalized in Section 4 to obtain the power spectrum of the process LB . . . B. 
In Section 5 the matrix method introduced in [2] for a fast determination of the power 

* This work and the papers referred to here as [1], [2], [8] and [21] are based on author's 
unpublished habilitation thesis [36]. 
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spectrum formula will be extended to include the processes studied here. Power spectra 
of some important processes will be given in Section 6. Several basic differences 
among the processes A, B and D will be discussed in Section 7. At last, applications 
of the pulse processes will be summarized in Section 8. 

2. POWER SPECTRUM OF THE PROCESS BB 

According to the definition of the process BB [ l ] the intervals among the reference 
points on the level zero, 9, and among the reference points on the 1st level, e, are 
independent random variables with probability densities Wj(S) and w1(e). An example 
of a possible realization £(f) of the process BB is shown in Fig. 1. 

frøf 
fi,k 

T£ 

"ci+1 

T ŕ 

Fig. 1. Example of the group pulse process BB. 

The considered group pulse process £(f) may be written in the form [ l ] , [2] 

(i) £(0 = 1 £'/(* -T* - 9*, **) • 
i=-CO fc=J 

Here f(t, a) is a function defining the shape of a pulse, a is a random vector of m 
random pulse patameters and the number of pulses in the ith group was denoted K{. 
Position of the group and pulse reference points was denoted T ; and q>ik, respectively. 

The power spectrum, iV(co), will be determined from the formula [2] 

1 
(2) ІГ(æ) = lim - <\Sт(co)\2} , 

r-»» T 

where ST(co) is a spectrum of a realization £,T(i), truncated in an principal interval 
(0, T) and the symbol < > denotes an ensemble average. 

Following the procedure described in detail elsewhere [2] we shall start by con
sidering a truncated realization £T1(t) consisting of exactly / pulse groups. The spec
trum ST1(co) of this truncated realization will be obtained by taking the Fourier 
transform of £ri(0* At the next step the modulus squared of the spectrum ,|S r i(o))|2 = 
= ST1(co) ST1(co), will be determined. Here the complex conjugate was denoted 

19 



by an asterisk. The resulting expression for |Sr/(ct;)|2 will be formed by a four-fold 
sum. From this four-fold sum the terms for which i = / and k = m simultaneously 
and the terms for which i = J but k + m may be taken out. After this rearrangement 
we obtain [2] 

(3) | S r i H 2 = Z Z|s(co,a,,)|2 + 
1 = 1 4 = 1 

I K, Ki 

+ E E E S(°>> °ik) 5*(ffl> °im) exp [-J0>((pik - (p,-,„)] + 
; = 1 4 = 1 ,„ = i 

4*m 

I Kt I K, 

+ Y Y Y Y 5(C0> °i4j 5*(®> °im) exp [-jO)(T; + Cpik - T, - (?,„,)] . 
i = l 4 = 1 . = 1 m = l 

Now the expectation of (3) on an ensemble of all possible realizations containing 
just I pulse groups may be found. It is convenient to find this expectation for each 
term on the right-hand side of (3) separately. The expectation of the first term 
(i.e., of the two-fold sum) equals simply 

(4) < E Y\s(co,aikf}=KK)<:\S(co,afy. 
; = i 4 = 1 

In determining the expectation of the second term (i.e., of the three-fold sum) 
we shall consider the variables K, a and (p separately. Since the process is of the type 
BB, the argument of the exponential function can be arranged as follows. If k > m, 
then 

9ik - (Pim = £;,m + £; ,m + i + ••• + £ ; , 4 - i 

and if k < m, then 

<Pim ~ <Pik = ~((pik - (Pim) = - ( £ ; , „ , + ••• + £ ; , 4 - l ) • 

Hence the expectation of the exponential functions in the second term over all pos
sible values of the random variable e equals 

< E E e x p l-H(Pik ~ (Pim)]> = Y(Ki ~ k) \£(co) + X?(coj\ = 
4 = 1 m = l 4 = 1 

4*m 

(5) = 2 Re { £ (Kt - k) xl(co)} = Ae(a>, Kt). 
4 = 1 

Here &(«) is a characteristic function of the random variable e and the finite arithme
tic-geometric series (5) was denoted as Ae(a>, K^). Let us assume that \Xc((°)\ < 1 
for a> =t= 0. Then with the exception of co = 0 the sum of the arithmetic-geometric 
series (5) equals [7] 

(6) Ae(co, Kt) = 2 Re P ^ f r [*. - BB(co, Kt)]\. 
U - Xe(0}) J 
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Here we have denoted the sum of the finite geometric series as Be(co, Kt), that is 

(7) 5£(co,/C;) = £ > - > ) , 
fc-i 

which may be summed for co 4= 0 to give 

(8) *XJ = l i *» . 
i - XsH 

If co = 0 then xe(co) = 1 and from (5) and (7) it follows that A6(0, Kt) = K] - Kt 

and Bs(0, Kt) = Kt. 
So far the expectation of the exponential functions in the second term over all 

possible values of the random variable e was found. However, the function A£(co, Kt) 
also depends on the discrete random variable Kt. The expectation of AE(co, Kt) over 
all possible values of K; may be determined from the formula 

(9) <A£(co, K)} = f P(Kt = K) Ae(co, Kt), 
K = 0 

where P(Kt = K) is a probability of an event that there are just K pulses in the ith 
group. The expectation of Bs(co, Kt) over all possible values of Kt can be found 
in the same way. 

Using (5) and (9) the expectation of the three-fold sum in (3) equals 
I K, Kt 

< E E E s(w> °ik) s*(w> °i») exp [-jcofoik ~ <Ptmj]> = 
i = l k = l r a = l 

k*m 

(10) =/<|s(o),a)|>2<A£(co,K)>. 

In the case of the third term (the four-fold sum) it will be proceeded in a similar 
manner. First of all the argument of the exponential function will be arranged. 
Ifi > I, then 

*l + <Plk ~ *l - Vim = -9; + . - . + # £ - ! + £,-,1 + ••• + £i,*-l ~ 

— £ i , l — . . . — £ i , m - l ; 

and if i < /, then 

T( + CPlm - "ti - <PiK = - ( T ; + 9ik - Tj - C0|m) • 
Hence 

(11) < E E I E exp [-JCO(T ; + coik - T, - ,?,_/]> = 
i = 1 fc = 1 i = 1 m = 1 

i * l 

= E E E EzrVjzr>jz* ( ' - 1V) + 
i = l f c=1 1 = 1 m = l 

i > I 

+ E E E E^ i i-"(co)zr fc-»^" !-». 
. i = l k - 1 1 = 1 m - 1 
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Here x9(o>) is a characteristic function of the random variable &. Similarly as in the 
case of the second term the finite geometric series in (11) will be denoted as BE(co, Kt), 
that is 

(12) B„(a>,2Q = I z r » 
t = i 

and 

(13) #(<»,ig = £ > • - > ) . 
m = l 

Therefore, if the left-hand side of (11) is denoted as L(co, Kh Kt) we obtain 

(14) L(co, K„ Kt) = £ £ ^ " " H 5E(«> *«) *«>, XiJ + 
i = l i = l 

i > ! 

+ E Zz:,i-,|H-'.V--i)-»*(», «o. 
i = l 1 = 1 

i < ( 

The expectation of L(co, K„ K,)over all possible values of Kt and iC, may be deter
mined from the formula 

(15) iUco, K, K)y=t t P(Kt = K) P(Ki = M) L(<°> K<> K0 • 
K = 0 M = 0 

Here P(K; = K) and P(.K; = M) are probabilities of an event that there are just K 
and M pulses in the ith and in the Zth group, respectively. 

After substituting (14) in (15) we obtain 

(16) <L(o>, K, K)y = <[\BE(co, K)\}2'£\l - i) [ $ » ) + xV(<»)] • 

The finite arithmetic-geometric series on the right-hand side of (16) may be denoted, 
in accordance with (5), as A&(co, I), so that 

(17) <L(co, K, K)y = (\BE(co, K)\y2 A,(co, I) . 

If \x»{co)\ < 1 for co =(= 0 then A$(co, I) may be expressed in the form similar to '6) 
with B^co, I) given by (8). If co = 0, then As(0,1) = I2 - I and Ba(0, J) = I. 

Using (llj—(17) the expectation of the third term in (3) may be written at last as 
I K, I Ki 

(lg) < I £ £ I s(°>> aik) s*(co, alm) exp [-JGJ(T. + cpik - T, - (p(m)]> = 
i = l f c = l 1 = 1 m = l 

i * i 

= <|s(o>, o)|>2 C\Bt(co, K)\y2 A,(co, I) . 

Now we may return to the equation (3). With respect to (4), (10) and (18) the ex
pectation of (3) equals 

(19) <\STI(co)\2y = 7<iQ <|S(o>, a)|2> + /<|s(fi>, o)|>2 (As(co, K)y + 

+ C\s{co,a)\y2(\BE(o,K)\y2A!)(co,I). 
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The expression (19) represents an average on the ensemble of all truncated realiza
tions that consisted just of I pulse groups. The average on the ensemble of all truncat
ed realizations may be obtained as 

(20) <|ST(co)|2> = >:P(/)<|S r i(co)|2>. 
7 = 0 

Here P(l) is a probability of an event that there are exactly J pulse groups in the in
terval (0, T). Substituting (19) into (20) we have 

(21) <|ST(co)|2> = </> <X> <|s(co, a)|2> + </> <|s(co, a)|>2 <A£(co, X)> + 

+ <|s(co, a)|>2 <|B.(a>, X)|>2 <A,(<o, /)> . 

Now, if the length of the interval (0, T) is increased, the number I of the groups 
included in the interval will also increase. In the limit T-* oo, I -> oo,and we obtain 

(22) lim - £ = l/<3> = <v> . 
r-oo T 

Here <v> is a mean group density. The geometric series <jBa(co,/)> will converge 
for I ~> oo and co + 0, so that it will also hold that 

(23) lim - </39(co, /)> = 0 , co * 0 . 

It also follows from (5) that <A9(0,7)> = <J2> - <T>. With respect to (22) we may 
write therefore 

(24) lim - <AS(0, /)> = lim ~ «J> 2 + a2 - < / » T = <v>2 2n «5(co), co = 0. 
r-oo T r-oo T 

Hence, using (23) and (24) we obtain 

<v>2Re{- *a(f t ) ) 1 , c o ^ O , 
(25) lim i<A 9 ( co , !)}=( U - Z . ( - o ) J 
X J T -OOT V ' \<v>227r5(co), co = 0 . 

Now we may substitute (21) to (2) and take the limit for T-> oo. With respect to (22) 
and (25) and after rearrangement of the terms we finally obtain the expression for 
the power spectrum in the form 

(26) TT(CO) = <v> <X> <|s(co, a)|2> + <v> <|s(co, a)|>2 <A£(co, X)> -

- <v> <|s(a>, a)|>2 <|B£(co,X)|>2 + <v> <|s(co, a)|>2 <|5E(co,X)|>2 Z,(co) + 

+ <v>2<X>2<|s(0,a)|>2 27^(0)). 
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Here we have denoted 

(27) « . ) . i + 2 . _ | r S f e L l . „ + 0 . 

Some properties of the function Zs(co) were studied in [8]. It may be useful to examine 
the functions <A£(co, f_)> and <|B£(co, i_)|>2 in a similar way. This will be done 
in the next section where examples of these functions will also be given. 

3. EXAMPLES OF THE FUNCTIONS AE(co,K) AND |fl£(co, i_)|2 

The functions AE(co, K) and BE(co, K) are defined by the series (5) and (7), respecti
vely. If |&.(co)| < 1 for co 4= 0 then the series may be summed according to the 
formulae (6) and (8J. For co = 0 we obtain from (5) and (7) relations A£(0, K) = K2 — 
- K and BE(0, K) = K or for the averages <A£(0, K)) = <iC2> - <K> and 
<|B£(0, K)\)2 = <i_>2. The functions A£(co, K) and 5£(co, K) are defined for K £ 1. 
If K = 1, then it follows from (5) and (7) that AE(co, l) = 0 and B£(co, 1) = 1. At last, 
when comparing the processes A and B we can see that the functions <A£(co, i_)> 
and <|-6£(co, K)\}2 correspond to the expressions (<i_2> — <iQ) |x,,(co)|2 and 
<i_>2 |x,r(co)|2, respectively. 

Similarly as on the basic level zero the process B may also be either quasiperiodic, 
periodic or aperiodic on higher levels [ l ] . We believe it will be useful to illustrate 
this behaviour of the process B by several examples. 

First let us deal with the quasiperiodic process BQ and let us suppose that the 
random intervals among neighbouring points, s, are normally distributed with the 
probability density 

(28) 
ff,V(2тr) L 2cг£ J 

In this case the characteristic function, xE(co) => xG(to), has three arguments, namely 
the variable co and parameters oE and <[e}. By introducing nondimensional variables 
V= <7£/<e> and x = co<£> the number of arguments may be reduced by one. We 
obtain 

(29) XG(X) = exp [jx - (Vx)2/2] . 

The characteristic functions XG(X) m a y be summed according to the formulae (5) 
and (7). The functions AG(x, K) and \BG(x, K)\2 thus obtained are plotted for several 
values of K and for V = OT in Fig. 2. The functions AG(x,K) and \BG(x, K)\2 have 
an absolute maximum at x = 0 and several local maxima at x = 2/CTC, k = + 1 , 
±2,.... The value of all these maxima is directly proportional to K: with increasing 
K these maxima also grow. The value of the absolute maximum does not depend 
on V; however, the values of the local maxima depend on V strongly. In fact, these 
maxima quickly diminish with growing V. Thus, for example, there is hardly any 
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observable local maximum at x = 2n for V = 0-3 and K = 10. On the other hand, 
if V is sufficiently small the values of the local maxima approach the value of the 
absolute maximum independently on K. In the limit we obtain 

(30) 

(31) 

lim AG(x, K) = AD(x, K), 
v->o 

lim\BG(x,K)\2 = \BD(x,K)\2 

K->0 

Fig. 2. Examples of the functions \BG(x, K)i and AG(x, K). 

where the functions AD(x, K) and BD(x, K) correspond to the deterministic distribu
tion of intervals e (see later). It may also be easily verified that 

(32) ]imAG(A-,K) = 0 

and 

(33) l im|BG(x,X)|2 = 1 . 

In the case of the periodic process D the intervals among neighbouring points, e, 
are deterministically distributed with the probability density 

(34) Wl(e) = 5(e-Tp), Tp > 0 . 

In this case the characteristic function, xjis0) = XDO^)* n a s t w o arguments, namely 
the variable co and a parameter Tp. By introducing a nondimensional variable x = 
= a>Tp the number of arguments will be reduced by one. The characteristic function 
equals now 

(35) XD(X) = exp Qx) 
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and the functions \BD(x, K)\2 and AD(x, K) attain a very simple form 

(36) iBÍv ^ | 2 _ s i n 2 ( ^ / 2 ) 

AD(x,K) = \BD(x,K)\2 - K . (37) 

The functions \BD(x, K)\2 and AD(x, K) are plotted for several values of K in Fig. 3. 
The functions \BD(x, K)\2 and AD(x, K) have maxima at x = 2fcrc, k = 0, ± 1, ± 2 , . . . , 

Fig. 3. Examples of the functions \BD(x, K)\2 and AD(x, K) . 

and at these maxima they attain the values K2 and (K2 - K), respectively. In the 
limit we obtain an important relation [9] 

(38) lim - \BD((o, K)\2 = cop f 6(a> - km,) . 
K^coK fc=-oo 

Here cop = 27c/Tp . 
Finally, let us consider the aperiodic process BA and let us suppose that the random 

variable E is exponentially distributed 

(39) h(e) ~ exp(-є/<є>), є = 0 . 
<£> 

In this case the characteristic function, x8(ca) = ^(oj). has two arguments again, 
namely the variable a and a parameter <e>. By introducing a nondimensional va
riable x = co<£> the number of arguments will be reduced by one. We obtain 

1 
(40) 
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The characteristic functions %E(x) may be summed to give the functions AE(x, K) 
and \BE(x, K)\2. Examples of these functions are plotted for several values of K 
in Fig. 4. 

25i 1 25i 

10'z 1a1 10° 101 10'2 1C1 

Fig 4. Examples of the functions \BE(x, K)\2 and AE(x, K). 

Before concluding this section let us mention four limits that may be useful in 
characterizing the behaviour of the functions AE(x, K) and \BE(x, K)\2: 

(41) lira AE(x, K) = 0 , 
X->00 

(42) l im|B£(x,K)|2 = l , 
x-»oo 

(43) lim AE(x, K) = l\x2, x 4= 0 , 
K-»co 

(44) lim \BE(x, K)\2 = 1 + ljx2 , x + 0 . 
K->co 

4. POWER SPECTRUM OF THE PROCESS LB . . . B 

In Section 2 the power spectrum of the process BB was derived almost step by step. 
Similarly as in the previous paper [2] the procedure will be generalized now to 
obtain the power spectrum of the process LB . . . B. Again, simplified notation will 
be adopted here. Beside the symbols defined in [2] the following simplifications will 
be used 

si,ki.-,kp
 wiH b e replaced by sp , 

ABp(a>, K) will be replaced by Ap , 

and Bep((o, K) will be replaced by Bp . 
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As the derivation is very similar to the one given in [2] only more significant 
departures will be mentioned here. Thus, following the usual procedure the expres
sion for |Sri(co)|2 can be found. This expression contains 2(n + l)-fold sum. From 
this sum(« + 1) simpler units may be taken out. The structure of these units was given 
in [2]. Hence, for example, the pth unit will contain those terms from the 2(H + l)-
fold sum for which it holds simultaneously that 

i - l , k1 = ml, ...., / . „_- = ??.„__, /.„_,,+_ + mn-P+i • 

The pth unit will be formed by the (n + p + l)-fold sum of the terms having the form 

(45) ss*' exp [-ja.(c/>„ - <?,',)] ... exp [-ja>((p„_p+1 - (p'n-p+1)~\ • 

In contrast to the process A where the random variables q>p and cp'p were mutually 
independent now a certain statistical dependence among them exists. However, 
with respect to the definition of the process B, the difference cpp — (p'p equals the sum 
of independent variables ep [ l ] (cf also Section 2 of this paper). Hence, when deter
mining the expectation of |S r i (o)[ 2 (first on a set of the truncated realizations that 
contain just / clusters of the order zero and then on an ensemble of all truncated 
realizations) we obtain 

(46) < | S r H | 2 > = <I> <*_>. . . <X„> <|_|2> + 

+ </> <_-!>... <X„_1><|_|>2<A„> + 

+ </> <__.>... <K„_2>.<|_|>2 <|i.„|>2 <A„_t> + .. . 

... + </><[S|>2<|i.„|>2...<|i.2|>2<A1> + 

+ <|_|>2<|B„|>2 ...<|B1 |>2<Z0(6.,Jf)>. 

Here the function corresponding to the level zero was denoted (,X0(co, /)>. In the 
case of a homogeneous process this function equals [2] 

<Z0(6.J;> = <72>|Zl(co)S2, 

in the case of a periodic process 

<XoM)> = <AD(c_,t)>, 

and in the case of a quasiperiodic or aperiodic process 

<X0(co,/)> = <Afl(co,J)>. 

After substituting (46) into (2) the power spectrum of the process LB . . . B will be 
obtained in the form 

(47) iT(w) = <v> <K t> . . . <X„> <|.|2> + <v> <__,>... <K„_t> <|.|>2 <A„> + 

+ <v> <KX> . . . <X„_2> <|s|>2 <|B„|>2 <A„_X> + . . . + 

+ <v> <|s|>2 <|B„|>2 . . . <|52 |>2 <A,> + <v>2 <|_|>2 <|B„|>2 . . . <|B.|>- Y0(co) . 
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The form of the function Y0((o) for the processes A, B and D was given in [2]. 

If the process is of the type A on the pth level, then it is not difficult to see from 

(45) that in (46) and (47) all <AP> s and <|B„|>2 s will be replaced by «K2

P> -

- <Kp» \xp\
2 s and <K„>2 \Xp\

2 s, respectively. 

5. PROCEDURE FOR FAST DETERMINATION O F THE POWER 

SPECTRUM 

Due to its generality the formula (47) is impractical for determination of the power 

spectrum of a certain process. It was shown in [2] that "matrices" can be used 

conveniently for this purpose. When comparing the power spectrum formulae 

of the processes A and B it can be seen immediately that if the process is of the type B 

on the pth level then a'p and a^s in the pth column of the matrix will be replaced by 

b'p and b'ps, respectively, where the symbols b'p and b"p have the following meaning 

K=<AP>, 

K = <N> 2 • 

The procedure can be illustrated best by an example. Let us consider a process of 

the type DAPB, which can be considered as an alternative to the process DAPAP 

in modelling the Barkhausen voltage, and let us determine its power spectrum. 

We shall start by writing down the matrix of the process DAB. It has the form 

v0 <к,> <к2> <И2> 
v0 <кt> b'г <H>2 

v0 -ì Ь"г <H>2 

vì a\ b'г <И>2 - ь и 

After mutual multiplying the elements in each row and adding all rows together 

we obtain 

W(co) = v0<Kt> <K2> <\s\2> + VoKib'2<\s\>2 + v 0 a i ^ < | s | > 2 + 

+ v2

0albK\s\>2 YD{co). 

Now the symbols a\, a'[, b'2, b"2 and YD(a>) can be replaced by the respective functions 
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so that we have 

iT(co) = v 0 O : D <K2> <|s|2> + v0<K!> <|s|>2 <A2> + 

+ v 0 « K 2 > - < K 1 » < | s | > 2 < | S 2 | > 2 | Z l |
2 + 

+ v2<Xx>2 <|s|>2 <|52 |>2 | Z l |
2 [ - l / v 0 + 2TC f 8(cu - kco0)] . 

k--co 

After taking into account that the points are Poisson distributed on the first level 
we finally obtain 

(48) ir(ofj m v0<2C.> <[K2y <|s|2> + v0<K!> <|s|>2 <A2> + 

+ v2<Xx> <|s|>2 <|52 |>2 \Xl\
22n _f 8(co - kco0). 

6. POWER SPECTRUM OF SOME SPECIAL PROCESSES 

The structural formulae of several special processes were mentioned in [ l ] . In this 
section we want to give their power spectrum. 

Let us first consider a pure periodic process DDD . . . DD. Using relation (37) 
we obtain from (47) 

(49) iT(co) = v0K, ...K„<|s|2> - v0K± ...K„<|s|>2 + 

+ v2<|s |>2 |Bn |2 . . . |51 |227r f S(co - kco0) . 
k~ — co 

The functions \Bp\
2 are given by (36). In the case of the deterministic process it holds 

that <|s|2> = <|s|>2 = \s\2 and the expression (49) will take the form 

(50) iT(co) = v2 |s|2 \Bn\
2 ... \BA2 2n f 8(co - kco0). 

k--«3 

The power spectrum of a pure homogeneous process AAP . . . Ap has the form [2] 

(51) Tr(co) = <v><X1>...<K„><|s|2> + 

+ <v> <K,> .. . <K„_t> <X„>2 <|s|>2 |z„|2 + ... 

... + < v > < K 1 > 2 . . . < K „ > 2 < | s | > 2 W 2 . . . | Z l |
2 + 

+ < V > 2 < J C 1 > 2 . . . < K „ > 2 < | S | > 2 2 T T 5 ( C O ) . 

The process AAP . . . Ap represents a certain generalization of the homogeneous 
Poisson process A, the power spectrum of which can be readily obtained from (51) 
by putting n = 0: 

(52; ir(co) = <v> <|s|2> + <v>2 <|s|>2 2n 5(co). 

The power spectrum of the Poisson periodic process DD D . . . DDAP can be 
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obtained from (47) using (37) in the form 

(53) W(co) = v0)C. . . .£„_,<£„> <|s|2> + 

+ vl<Ky <|s|>2 \In\
2 \Bn_t\

2 ... \B,\2 2n £ 5(co - kco0) . 
k=-a> 

The functions |fip|2 are given by (36) again. For PI = 1 we readily obtain from (53) 
the power spectrum of the process DAP 

(54) W(co) = v0<X,> <|s|2> + vl(Kxy
2 <|s|>2 \Xl\

2 2n £ 8{co - kco0) . 
k= - o o 

The expression (54) was derived in [10], 

7. COMPARISON OF THE PROCESSES A, B AND D 

When comparing the processes A, B and D it can be seen that the process A is 
the most simple. This is a consequence of mutual independence of reference points. 
The simplicity of the process A manifests itself, for example, in the power spectrum 
formula where the numbers of points in groups, Kp, and the characteristic functions, 
Xp, are present in the form of a product in each unit. As there is a certain dependence 
among points of the process B, this process is more complex. This greater 
complexity is also reflected in the power spectrum formula, in which the numbers Kp 

and the characteristic functions xp appear in the form of finite series now. However, 
there are two important exceptions. The first exception regards the process BD, 
which is a very simple process again. It was shown elsewhere [8] that the process BD 

equals the process D on the level zero. In Section 3 this equivalence was extended 
even on higher levels. Thus on any level the processes BD and D are equivalent. 
The second exception regards the process BE. According to the definition [ l ] the 
process A is always homogeneous Poisson on the level zero. An interesting feature 
of the homogeneous Poisson process is that it is both the process with independent 
and uniformly distributed points and the process with independent and exponentially 
distributed intervals among neighbouring points [ l l ] . It follows then that on the 
level zero the processes A and BE are equivalent. However, on higher levels the 
processes A and B are always different. This can be illustrated, for example, by the 
mean group length <^tp>. The mean group length of the process B equals </,;p> = 
= (Kpy <£p>. On the other hand the mean group length ol the process A does not 
depend on <JCp> at all. 

Another difference between the processes A and B concerns the point density 
in groups. On the level zero the point density was denoted <v> (<v> = l/<#>) and 
it is always a constant for stationary processes. Let us denote the point density 
in groups on higher levels as <Ap>. From the definition of the process B it follows [ l ] 
that <ep> = const, and hence <Ap> = 1/<£P> is always constant for processes B. 
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As for the processes A, the point density in groups equals <AP> = (Kp) w^cp),) and 
thus it is constant only in a special case when <pp is uniformly distributed. It follows 
then that the process A can be conveniently used to model a variable point density. 

8. APPLICATIONS OF THE PULSE PROCESSES 

Several applications of the random pulse processes were mentioned in the previous 
papers [ l ] , [2], [8] and [10]. In this section all these applications and some new ones 
will be briefly summarized. 

Applications of the random pulse processes may be roughly divided into three 
groups. The first two groups concern signals and noises, respectively, the third one 
includes all the remaining cases. Let us now pay attention to each group separately. 

The first area where the pulse processes are extensively used is in the signal theory. 
Here they are used to model pulse signals. Thus, for example, the signals in the 
pulse-amplitude-modulation (PAM) and pulse-width-modulation (PWM) systems 
can be modelled by the process D, the signals in the pulse-position-modulation(PPM) 
systems by the process DA1 and at last in the case of the pulse-code-modulation 
(PCM) the process DDD is adequate. In pulse-communication systems the signals 
from several sources are usually transmitted over one common chanel on the princip 
of time-division. If the synchronizing pulses are omitted from analyzes and only 
information transmitting pulses are considered, then these signals may be modelled 
by the processes DDDA1 (PPM) or DDDDD (PCM). To model the whole signal 
more complex processes must be used [12]. 

In applications concerning the signal theory the inner description of the pulse 
processes is usually supposed to be known. It is given by the statistics of the informa
tion source and by the modulation system under consideration. What is sought 
are the outer characteristics (usually the power spectrum) so that efficiency, noise 
immunity etc. of the system could be evaluated analytically. It is often desirable 
to optimize the coding schema according to some criteria, e.g., to minimize the signal 
dc component. This can be done best by analyzing the power spectrum formula 
[13], [14]. Another peculiarity of the pulse signals (as compared with pulse noises 
to be discussed later) concerns pulse overlapping. To avoid lost of transmitted 
information it is demanded that the neighbouring pulses do not overlap. 

It may perhaps be interesting to note here that even such common signals as 
speech and music are impulsive in nature. Both these signals are formed by pulse 
clusters of a rather high order and of a very complex and heavily correlated structure. 
The impulsive character of music produced by some instruments such as a drum 
and piano is evident at the first sight. It may not be so obvious for other instruments 
(e.g., a violin) or speech. However, the existence of the music scales and of the 
alphabet is the best evidence of this assertment. Then risking some oversimplification 
and thus possible rejection by specialists we may say that in speech each vowel 
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or consonant represents a sound pulse, a word represents a pulse group, a sentence 
represents a cluster of pulse groups and so on. In the same way music can be resolved. 
However, it is highly improbable that the group pulse processes will ever be used 
in speech and music research and this comment was meant to demonstrate the 
widespread occurrence of pulse signals only. 

The second broad area where the random pulse processes are extensively used 
is in the noise research. It is typical for this kind of applications that pulses overlap 
without restriction and sometimes very densely. Therefore, direct measurement 
of inner characteristics is usually impossible and only estimates of some outer char
acteristics can be found. Thus the task in the noise research is just reverse to that 
in the signal theory. Now the outer characteristics are taken as a point of departure 
and one tries to estimate the form of the inner ones. This and related questions were 
discussed in greater detail in paper [ l ] . 

Noises can be classified according to a number of criteria. One criterion is whether 
the noise is impulsive (formed by a random pulse sequence) or continuous (not 
formed by a random pulse sequencej. Another criter'on is whether the noise is 
generated by micro-events or by macro-events. 

With respect to the corpuscular nature of the microworld it is evident that all 
micro-event generated noises have impulsive character with pulses typically over
lapping very densely. Perhaps the best known examples of such noises are shot 
and thermal noises that are usually modelled by the process A. The process A was 
also applied by Bevan et al. to a cell membrane noise [15]. 

Another example of a micro-event generated noise can be provided by catho-
doluminescence [16], [17] where a beam of electrons impinges on a luminescent 
material (e.g., a phosphor), each electron generating a shower of photons. If the 
incident electrons form a homogeneous Poisson point process and each electron 
generates an exponentially decaying flux of photons, the number of which is governed 
by the Poisson distribut'on, then the resulting flux of photons can be modelled by the 
process AAg. The same model can also be applied to the scintillation photon counting 
[16] or to Lorentzian flicker noise [17]. 

We believe that a noise in photomultipliers represents further example vvhere 
the group puse processes can be successfully used. If the primary flux is considered 
to be the Poisson homogeneous process and if there are n multiplication stages, 
then the output current can be modelled by the nth-order group pulse process 
AA . . . A. 

Majority of macro-event generated noises are impulsive again. Noise generated 
by turbulent flow can be given as an example of a continuous noise [18]. Cavitation 
noise (models A, AB [19] and DAP [20]), Barkhausen noise (models A, BA + , DAPAP 

[21] and DAPB), impulsive noise in communication [22], [23], impulsive noise due 
to current pulses of cloud-to-ground lightning discharges [24], [25] and [26], 
radio interference produced by corona pulses on a.c. lines [27] and noise due to 
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combustine engines (model D [28] and a model similar to the process DD with 
unequally spaced points on the 1st level [29]) are just a few examples of macro-
event generated pulse noises. 

The third group includes models of such diverse phenomena as telephone traffic 
[30], [31], number of fibers in a cord [31], an electric power system [32], sampled 
signals [33], [34], rver streamflows [35] and many others. 

9. CONCLUSION 

In [1] a classification of several basic processes was submitted. This classification 
was also supplemented by a notation that made it possible to describe the structure 
of a process in the concise form, similarly as a chemical formula describes the struc
ture of a compound. In [2] and in the present work the power spectra of the processes 
included in the classification were determined. As the general formulae obtained 
are impractical for direct use more suitable matrix method was introduced. This 
matrix method represents literally a recipe that makes it possible to find the desired 
formula in a few minutes even by an uninitiate and thus saves precious time for 
other work. 

As mentioned in the previous section the processes A, B and D can be used to 
model a large number of signals, noises and other phenomena. Thanks to their 
relative simplicity they are easy to work with. Naturally, in some cases these simple 
models may represent only a first approximation to the studied phenomena and 
therefore processes with a more complex structure, e.g., with a correlation among 
different pulses or different pulse parameters, may be more appropriate. Though 
several such more complex processes are described in literature (e.g., in [12]-- [14]), 
there is still a lack of general theory. 

We tried to develop a theory that would cover both the signal and noise models. 
We believe such a unifying approach will be even more important with more complex 
processes as it makes it possible to transfer the results of research from one area 
to another. A better insight into the structure of the respective processes is also 
gained. Let us illustrate this with two simple examples and let us first consider 
the process B. After specifying the distribution of intervals among pulses we can 
obtain (among others) either a typical signal model BD or a typical noise model BE 

[8]. The process DA can serve as another example. When the distribution of pulses 
on the 1st level is suitably specified, either the process DA1 , which is a PPM signal 
model or the process DAP, which is a cavitation noise model, result [10]. 

(Received March 9, 1983.) 
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