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Advances in entropy theory of measure theoretic dynamical systems during the period 1970 
to 1980 are described, with particular emphasis on ideas and results relevant from the point 
of view of information theory. The survey is completed by a commented sample of information 
theoretic papers which are based on recent ideas of ergodic theory. An attempt is made to explain 
the results from ergodic theory in a language appropriate for an information theorist, and future 
perspectives of interplay between ergodic and information theories are discussed. 

R E F E R E N C E S  

[1] M. A. Ackoglu, A. del Junco, and M. Rahe: Finitary codes between Markov processes. 
Z. Wahrsch. verw. Gebiete 47 (1979), 305—314. 

[2] R. L. Adler, W. Goodwyn, and B. Weiss: Equivalence of topological Markov shifts. 
Israel J. Math. 27 (1977), 4 9 - 6 3 . 

[3] R. L. Adler, A. G. Konheim, and M. H. McAndrew: Topological entropy. Trans. Amer. 
Math. Soc. 114 (1965), 309-319. 

[4] R. L. Adler and B. Marcus: Topological entropy and equivalence of dynamical systems. 
Memoirs Amer. Math. Soc. 219 (1979). 

[5] R. L. Adler and B. Weiss: Similarity of the automorphisms of the torus. Memoirs Amer. 
Math. Soc. 98 (1970). 

[6] V. M. Alekseev: Symbolic Dynamics (in Russian). Math. Institute, AN USSR, Kiev 1976. 
[7] V. M. Alekseev and M. V. Jakobson: Symbolic dynamics and hyperbolic dynamical systems 

(in Russian). Supplement to R. Bowen: Methods of Symbolic Dynamics (in Russian). Mir, 
Moskva 1979, pp. 196-240. 

[8] R. B. Ash: Information Theory. J. Wiley, New York 1965. 
[9] T. Berger: Rate Distortion Theory. Prentice Hall, Englewood Cliff's 1971. 

[10] T. Berger: Information singular processes. IEEE Trans. Inform. Theory IT-20 (1975), 
502-511. . 

[11] P. Billingsley: Ergodic Theory and Information. J. Wiley, New York—London—Sydney 
1965. 

[12] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York—London-
Sydney—Toronto 1968. 

[13] R. E. Blahut: Computation of channel capacity and rate-distortion functions. IEEE Trans. 
Inform. Theory IT-18 (1972), 460-473. 

[14] H. Blasbalg and R. van Blerkom: Message compression. IRE Trans. Space Electron. 
Telemech. 1962, 228-338. 

[15] J. R. Blum and D. L. Hanson: On invariant probability measures I. Pacific J. Math. 10 
(1960), 1125-1240. 

[16] J. R. Blum and D. L. Hanson: On the isomorphism problem for Bernoulli schemes. Bull. 
Amer. Math. Soc. 63 (1963), 221-223. 

[17] R. Bowen: Symbolic dynamics for hyperbolic systems. Amer. J. Math. 95 (1973), 429—459. 
[18] R. Bowen: Topological entropy for non-compact sets. Trans. Amer. Math. Soc. 184 (1973), 

413-423 . 
[19] R. Bowen: Smooth partitions of Anosov diffeomorphisms are weak Bernoulli. Israel 

J. Math. 27(1975), 95-100. 
[20] R. Bowen: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. 

(Lecture Notes in Mathematics 470.) Springer-Verlag, Berlin—Heidelberg—New York 
1975. 

[21] R. Bowen and D. Ruelle: The ergodic theory of Axiom A flows. Invent. Mathematicae 29 
(1975), 181-202. 



[22] R. C. Bradley, Jr.: On the strong mixing and weak Bernoulli conditions. Z. Wahrsch. 
verw. Gebiete 51 (1980), 4 9 - 5 4 . 

[23] A. A. Brudno: Entropy and algorithmic complexity of trajectories of a dynamical system 
(in Russian). Preprint, VNIISI, Moskva 1980. 

[24] E. Coven and M. Paul: Endomorphisms of irreducible shifts of finite type. Math. Systems 
Theory 8(1974), 165-175. 

[25] L. D. Davisson: Universal noiseless coding. IEEE Trans. Inform. Theory IT-19 (1973), 
783-795. 

[26] L. D. Davisson and R. M. Gray: A simplified proof of the sliding-block source coding 
theorem and its universal extension. Proc. Int. Conf. on Communication, Vol. 2, pp. 
34.4.1 — 34.4.5. Toronto, Canada 1978. 

[27] A. del Junco and M. Rahe: Finitary codings and weak Bernoulli partitions. Proc. Amer. 
Math. Soc. 75 (1979), 259-364. 

[28] M. Denker: Finite generators for ergodic .measure-preserving transformations. Z. Wahrsch. 
verw. Gebiete 29 (1974), 4 5 - 5 5 . 

[29] M. Denker: Generators and almost topological isomorphisms. Astérisque 59 (1977), 
2 3 - 3 5 . . 

[30] M. Denker, C. Grillenberger, and K. Sigmund: Ergodic Theory on Compact Spaces. 
(Lecture Notes in Mathematics 527.) Springer-Verlag, Berlin—Heidelberg—New York 1976. 

[31] M. Denker and M. Keane: Almost topological dynamical systems. Israel J. Math. 34 (1979), 
139-160. 

[32] M. Denker and M. Keane: Finitary codes and the law of the iterated logarithm. Z. Wahrsch. 
verw. Gebiete 52 (1980), 321-331. 

[33] J. G. Dunham: Abstract alphabet sliding-block entropy compression coding with a fidelity 
criterion. Ann. Probab. 8 (1980), 1085-1092. 

[34] R. Fellgett and W. Parry: Endomorphisms of a Lebesgue space II. Israel J. Math. 21 
(1975), 167-172. 

[35] B. M. Fitingoff: Optimal coding in case of unknown and changing message statistics 
(in Russian). Problemy Peredachi Informacii 2 (1966), 3—11. 

[36] B. M. Fitingoff: The compression of discrete information (in Russian). Problemy Peredachi 
Informacii 3 (1967), 2 8 - 3 6 . 

[37] R. J. Fontana, R. M. Gray, and J. C. Kieffer: Asymptotically mean stationary channels. 
IEEE Trans. Inform. Theory IT-27 (1981), 308-316. 

[38] N. Friedman and D. S. Ornstein: On the isomorphism of weak Bernoulli transformations. 
Adv. in Math. 5 (1970), 365-394. 

[39] R. G. Gallager: Information Theory and Reliable Communication. J. Wiley, New York 
1968. 

[40] F. R. Gantmacher: The Theory of Matrices. Vols. I and II. Chelsea, New York 1959. 
[41] R. M. Gray: Sliding-block source coding. IEEE Trans. Inform. Theory IT-21 (1975), 

357-368. 
[42] R. M. Gray and L. D. Davisson: The ergodic decomposition of stationary discrete random 

processes. IEEE Trans. Inform. Theory IT-20 (1974), 625 — 636. 
[43] R. M. Gray and L. D. Davisson: Source coding theorems without the ergodic assumption. 

IEEE Trans. Inform. Theory IT-20 (1974), 502-516. 
[44] R. M. Gray and J. C. Kieffer: Mutual information rate, distortion, and quantization 

in metric spaces. IEEE Trans. Inform. Theory IT-26 (1980), 412—422. 

[45] R. M. Gray and J. C. Kieffer: Asymptotically mean stationary measures. Ann. Probab. 

(1980), 962-973. 

[46] R. M. Gray, D. L. Neuhoff, and J. K. Omura: Process definitions of distortion-rate function 
and source coding theorems. IEEE Trans. Inform. Theory IT-21 (1975), 524—532. 



[47] R. M. Gray, D. L. Neuhoff, and D. S. Ornstein: Non Ыock source coding with a fidelity 
criterion. Ann. Probab. 3 (1975), 478-491. 

[48] R. M. Gray, D. L. Neuhoff, and P. C. Shields: A generalization of Ornstein's S-distance 

with applications to information theory. Ann. Probab. 3 (1975), 315 — 328. 
[49] R. M. Gray and D. S. Ornstein: Sliding-block joint source/noisy channel coding theorems. 

IEEE Trans. Inform. Theory IT-22 (1976), 683-690. 
[50] R. M. Gray and D. S. Ornstein: Block coding for discrete stationary ŕ?-continuous noisy 

channels. IEEE Trans. Inform. Theory IT-25 (1979), 292-306. 

[51] R. M. Gray, D. S. Ornstein, and R. L. Dobrushin: Block synchronization, sliding-block 
coding, invulnerable sources, and zero-error codes for discrete noisy channels. Ann. Probab. 
8 (1980), 639-674. 

[52] C. Grillenberger and U. Krengel: On marginaldistributionsandisomorphisms of stationary 
processes. Math. Z. 149, (1976), 131-154. 

[53] B. Hajek: Information-singularity and recoverability of random processes. IEEE Trans. 
Inform. Theory IT-28 (1983), 422-429. 

[54] P. R. Halmos: Measure Theory. D. Van Nostrand, Princeton N. J. 1950. 

[55] P. R. Halmos: Lectures on Ergodic Theory. Chelsea, New York 1953. 

[56] G. Hansel and J. P. Raoult: Ergodicité, uniformité et unique ergodicité. Indiana Univ. 
Math. J. 23 (1973), 221-237. 

[57] R. Heim: On the algorithmic foundations of information theory. IEEETrans. Inform. 
Theory 1T-25 (1979), 557-566. 

[58] R. I. Jewett: The prevalence of uniquely ergodic systems. J. Math. and Mech. 19 (1970), 
717-729. 

[59] M. Keane: Coding problems in ergodic theory. Proc. Int. Conf. on Math. Physics. Came-
rino, Italy, 1974. 

[60] M. Keane and M. Smorodinsky: A class of finitary codes. Israel J. Math. 26 (1977), 
352-371. 

[61] M. Keane and M. Smorodinsky: Bernoulli schemes of the same entropy are finitarily 
isomorphic. Ann. Math. 109 (1979). 397—406. 

[62] M. Keane and M. Smorodinsky: The finitary isomorphism theorem for Markov shifts. 
Bull. (New Series) Amer. Math. Soc. 1 (1979), 436-438. 

[63] A. I. Khinchine: Mathematical Foundations of Information Theory. Dover, New York 
1957. 

[64] J. C. Kieffer: On approximation of stationary measures by periodic and ergodic measures. 
Ann. Probab. 2 (1974), 530-534. 

[65] J. C. Kieffer: A generalized Shannon-McMillan theorem for the action of an amenable 
group on a probability space. Ann. Probab. 3 (1975), 1031 — 1037. 

[66] J. C. Kieffer: Block coding for an ergodic source relative to a zero-one valued fidelity 
criterion. IEEE Trans. Inform. Theory IT-24 (1978), 432—438. 

[67] J. C. Kieffer: A unified approach to weak universal source coding. IEEE Trans. Inform. 
Theory IT-24 (1978), 674-682. 

[68] J. C. Kieffer: On the minimum rate for strong universal block coding of a class of ergodic 
sources. IEEE Trans. Inform. Theory IT-26 (1980), 693-702. 

[69] J. C. Kieffer: On the transmission of Bernoulli sources over stationary channels. Ann. 
Probab. 8 (1980), 942-961. 

[70] J. C. Kieffer: On coding a stationary process to achieve a given marginal distribution. 
Ann. Probab. 8 (1980), 131-141. 

[71] J. C. Kieffer: Extensions of source codirig theorems for block codes to sliding-Ыock codes. 
IEEE Trans. Inform. Theory IT-26 (1970), 679-692. 



[72] J. C. Kieffer: Stationary coding over stationary channels. Z. Wahrsch. verw. Gebiete 56 
(1981), 113-136. 

[73] J. C. Kieffer: Block coding for weakly continuous channels. IEEE Trans. Inform. Theory 
IT-27 (1981), 721-727. 

[74] J. C. Kieffer: Perfect transmission over a discrete memoryless channel requires infinite 

expected coding time. J. Combin. Inform. System Sci. 5 (1980), 317—322. 

[75] J. C. Kieffer: Sliding-Ыock coding for weakly continuous channels. IEEE Trans. Inform. 
Theory IT-28 (1982), 2 - 1 0 . 

[76] J. C. Kieffer: Characterizations of <?-total boundedness for classes of B sources. IEEE 
Trans. Inform. Theory IT-28 (1982), 2 6 - 3 5 . 

[77] J. C. Kieffer: On obtaining a stationary process isomorphic to a given process with a desired 

distribution. Preprint, Univ. of Missouri at Rolla, 1982. 

[78] J. C. Kieffer: Generators with prescribed marginals for nonergodic automorphisms. 
Lecture presented at the 9th Prague Conf. Inform. Theory, Prague, June 1982. 

[79] J. C. Kieffer and M. Rahe: Selecting universal partitions in ergodic theory. Ann. Probab. 
9 (1981), 705-709. 

[80] A. N. Kolmogorov: A new metric invariant of transitive dynamical systems and auto-

morphisms of Lebesgue spaces (in Russian). Doklady AN SSSR 119 (1958), 862—864. 

[81] A. N. Kolmogorov: The three approaches to the definition of the concept "amount 
of information" (in Russian). Problemy Peredachi Informacii 5 (1965), 3 — 7. 

[82] I. P. Kornfeľd, Ya. G. Sinai, and S. V. Fomin: Ergodic Theory (in Russian). Nauka, 
Moskva 1980. 

[83] U. Krengel: Recent results on generators in ergodic theory. Trans. бth Conf. Inform. 

Theory e t c , Academia, Prague 1973, 465 — 482. 

[84] U. Krengel: Discussion of Professoťs Ornstein's paper (see [45]). Ann. Probab. 1 (1973). 
[85] W. Krieger: On entropy and generators of measure-preservińg transformations. Trans. 

Amer. Math. Soc. 119 (1970), 453-464. Erratum: ibid. 168 (1972), 519. 
[86] W. Krieger: On unique ergodicity. Proc. бth Berkeley Symp. Math. Stat. Prob., Vol. I. 

University of California Press, Los Angeles 1972, 327—346. 
[87] N. Kryloff and N. Bogoliouboff: La théorie générale de la mesure dans son. application 

à ľétude des systémes dynamiques de )a mécanique non linéaire. Ann. Math. 38 (1937), 
65-113. 

[88] A. G. Kushnirenko: On metric invariants of entropy type (in Russian). Uspehi Mat. 
Nauk 22 (1967), 57-65. 

[89] A. Leon-Garcia, L. D. Davisson, and D. L. Neuhoff: New results on coding of stationary 
nonergodic sources. IEEE Trans. Inform. Theory IT-25 (1979), 137—144. 

[90] K. M. Mackenthun and M. B. Pursley: Variable-rate universal block source coding subject 
to a fidelity criterion. IEEE Trans. Inform. Theory IT-24 (1978), 349 — 360. 

[91] B. Marcus: Factors and extensions of full shifts. Monatsh. Math. 88 (1979), 239—247. 
[92] B. McMillan: The basic theorems of information theory. Ann. Math. Statist. 24 (1953), 

196-219. 
[93] L. D. Meshalkin: One particular case of isomorphism of Bernoulli schemes (in Russian). 

Doklady AN SSR 141 (1959), 41-44. 
[94] M. Morse: Symbolic Dynamics (lecture notes). Institute for Advanced Study, Princeton 

1966. 
[95] D. L. Neuhoff, R. M. Gray.and L. D. Davisson: Fixed-rate universal block source coding 

with a fidelity criterion. IEEE Trans. Inform. Theory IT-22 (1975), 524—532. 
[96] D. L. Neuhoff and P. C. Shields: Fixed-rate universal codes for Markov sources. IEEE 

Trans. Inform. Theory IT-24 (1978), 360-367. 



[97] D. L. Neuhoff and P. C. Shields: Channels with almost finite memory. IEEE Trans. Inform. 
Theory 1T-25 (1979), 440-447. 

[98] D. L. Neuhoff and P. C. Shields: Indecomposable finite state channels and primitive 
approximation. IEEE Trans. Inform. Theory IT-28 (1982), 11—18. 

[99] D. S. Ornstein: Bernoulli shifts with the same entropy are isomorphic. Adv. in Math. 

4 (1970), 338-352. 
[100] D. S. Ornstein: Factors of Bernoulli shifts are Bernoulli. Adv. in Math. 5 (1970), 349—364. 
[101] D. S. Ornstein: Imbedding BernouШ shifts in flows. Contributions to Ergodic Theory 

and Probability. (Lecture Notes in Mathematics 160.) Springer-Verlag, Berlin—Heidelberg 
- N e w York 1970, 178-218. 

[102] D. S. Ornstein: An application of ergodic theory to probability theory. Ann. Probab. / 
(1973), 4 3 - 6 5 . 

[103] D. S. Ornstein: Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, 

New Haven—London 1974. 

[104] D. S. Ornstein and B. Weiss: Ergodic theory of amenable group actions. I: The Rohlin 

lemma. Bull. (New Series) Amer. Math. Soc. 2 (1980), 161-164. 
[105] J. C. Oxtoby: Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116-136. 
[106] W. Parry: Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 55 — 66. 
[107] W. Parry: Entropy and Generators in Ergodic Theory. W. A. Benjamin, New York— 

Amsterdam 1969. 
[108] W. Parry: A finitary classification of topological Markov chains and sofic systems. Bull. 

London Math. Soc. 9 (1977), 86-92. 
[109] W. Parry: Endomorphisms of a Lebesgue space III. Israel J. Math. 21 (1975), 167-172. 
[110] W. Parry: The information cocycle and 6-bounded codes. Israel J. Math. 29 (1978), 205 

to 230. 
[111] W. Parry: An information obstruction to finite expected coding length. Ergodic Theory. 

Proceedings, Oberwolfach. (Lecture Notes in Mathematics 729.) Springer-Verlag, Berlin— 
Heidelberg-New York 1979, 163-168. 

[112] W. Parry: Finitary isomorphisms with finite expected code-length. Bull. London Math. 

Soc. 11 (1979), 170— 176. 

[113] W. Parry: Topics in Ergodic Theory. (Cambridge Tracts in Mathematics 75.) Cambridge 
Univ. Press, Cambridge 1981. 

[114] W. Parry and K. Schmidt: A note on cocycles of unitary representations. Proc. Amer. 
Math. Soc. 55 (1976), 185-190. 

[115] W. Parry and S. Tuncel: On the classification of Markov chains by finite equivalence. 
Preprint. Warwick Univ., Math. Institute, March 1981. 

[116] K. R. Parthasarathy: Probability Measures on Metric Spaces. Academic Press, New York 

1967. 

[117] M. B. Pursley and L. D. Davisson: Variable-rate coding for nonergodic sources and 
classes of sources subject to a fìdelity constraint. IEEE Trans. Inform. Theory IT-22 
(1976), 324-337. 

[118] M. B. Pursley and K. M. Mackenthun: Variable-rate coding for classes of sources with 
generalized alphabets. IEEE Trans. Inform. Theory IT-23 (1977), 592—597. 

[119] V. A. Rohlin: On basic concepts of measure theory (in Russian). Mat. Sbornik 67 (1949), 
107-150. 

[12.0] V.A. Roћlm: Selected problems of the metric theory of dynamical systems (in Russian). 
Uspehi Mat. Nauk 30 (1949), 57-128. 

[121] V. A. Rohlin: On the decomposition of a dynamical system into transitive components 
(in Russian). Mat. Sbornik 67 (1949), 235-249. 



[122] V. A. Rohlin and Ya. G. Sinai: Construction and properties of invariant measurable 
partitions (in Russian). Doklady AN SSSR 141 (1961), 1038 — 1041. 

[123] D. J. Rudolph: A characterization of those processes finitarily isomorphic to a Bernoulli 
shift. Ergodic Theory and Dynamical Systems I. Progress in Mathematics, Vol. 10. Birk-
häuser, Boston, Mass. 1981, 1 — 64. 

[124] D. J. Sakrison: The rate distortion function of a class of sources. Inform. and Control 15 
(1969), 165-195. 

[125] C. E. Shannon: A mathematical theory of communication. Bell. System Techn. J. 27 
(1948), 379-432, 623-656. 

[126] C. E. Shannon: Coding theorems for discrete source with a fidelity criterion. IRE Nat. 
Conv. Rec , part 4 (1959), 142-163. 

[127] C. E. Shannon: The zero-error capacity of a noisy channel. IRE Trans. 3 (1056), 8 — 32. 
[128] P. C. Shields: The Theory of Bernoulli Shifts. Univ. of Chicago Press, Chicago 1973. 
[129] P. C. Shields: Stationary coding of processes. IEEE Trans. Inform. Theory IT-25 (1979), 

283-291 . 
[130] P. C. Shields: Almost Ыock independence. Z. Wahrsch. verw. Gebiete 49 (1979), 119—123. 
[131] P. C. Shields and D. L. Neuhoff: Block and sliding-block source coding. IEEE Trans. 

Inform. Theory 1T-23 (1977), 211-215. 
[132] K. Sigmund: On the prevalence of zero entropy. Israel J. Math. 10 (1971), 281-288. 
[133] Ya. G. Sinai: On the notion of entropy of a dynamical system (in Russian). Doklady 

AN SSSR 124 (1959), 768-771. 
[134] Ya. G. Sinai: On weak isomorphism of transformations with an invariant measure (in 

Russian). Mat. Sbornik 63 (1964), 23-42 . 
[135] S. Smale: Diíïerentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747—817. 
[136] M. Smorodinsky: Ergodic Theory, Entropy. (Lecture Notes in Mathematics 214.) Springer-

Verlag, Berlin— Heidelberg— New York 1971. 
[137] M. Smorodinsky: A partition on a Bernoulli shift which is not weak BernouШ. Math. 

Systems Theory 5 (1971), 201-203. 
[138] Š. Šujan: Generators of an abelian group of invertible measure-preserving transformations. 

Monatsh. Math. 90 (1980), 6 8 - 7 9 . 
[139] Š. Šujan: Epsilon-rates, epsilon-quantiles, and group coding theorems for firiitely additîve 

infcrmation sources. Kybernetika 16 (1980), 105—119. 
[140] Š. Šujan: Existence of asymptotic rate for asymptotically mean stationary sources with 

countable alphabets. Trans. Зrd Czechosl.-Soviet-Hung. Seminar on Information Theory. 
ÚTIAČSAV, Prague 1980, 201-207. 

[141] Š. Šujan: Channels with additive asymptotically mean stationary noise. Kybernetika 17 
(1981), 1-15. 

[142] Š. Šujan: On the capacity of asymptotically mean stationary channels. Kybernetika 17 
(1981), 122-233. 

[143] Š. Šujan: Continuity and quantization of channels with infinite alphabets. Kybernetika 
17 (1981), 465-478. 

[144] Š. Šujan: Block transmissibility and quantization. Probability and Statistical Inference 
(W. Grossmann et al., eds.), D. Reidel, Dordrecht—Boston—London 1982, 361 — 371. 

[145] Š. Šujan: A local structure of stationary perfectly noiseless codes between stationary 
nonergodic sources. I: General considerations. Kybernetika 18 (1982), 361—.376. 

[146] Š. Šujan: A local structure . . . II: Applications. Kybernetika 18 (1982), 465—484. 
[147] Š. Šujan: Codes in ergodic theory and information: Some examples. Proc. Conf. Ergodic 

Theory and Related Topics, Akademie-Verlag, Berlin 1982 (to appear). 
[148] Š. Šujan: Finite generators for amenable group actions (submitted). 
[149] J, - P. Thouvenot: Quelques proprietes des systémes dynamiques qui se decomposent 



en un produit de deux systemes dont Tun est un schema de Bernoulli. Israel J. Math. 21 
(1975), 178-207. 

[150] S. Tuncel: Conditional pressure and coding. Israel J. Math. 39 (1981), 101 — 112. 
[151] P. Walters: Ergodic Theory. Introductory Lectures. (Lectures Notes in Mathematics 458.) 

Springer-Verlag, Berlin —Heidelberg—New York 1975. 
[152] B. Weiss: The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. 78 (1972), 

668-684. 
[153] K. Winkelbauer: On discrete information sources. Trans. 3rd Prague Conf. Inform. 

Theory etc., NCSAV, Prague 1964, 765-830. 
[154] K. Winkelbauer: On the asymptotic rate of nonergodic information sources. Kybernetika 6 

(1970), 128-148. 
[155] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving 

transformations. Comment. Math. Univ. Carolinae 18 (1977), 789 — 812. 
[156] J. Wolfowitz: Coding Theorems of Information Theory. 2nd ed. Springer-Verlag, New 

York 1964. 
[157] G. M. Zaslavskij: On the isomorphism problem for stationary processes (in Russian). 

Teoria veroyatnostej i primen. 9 (1964), 241 — 298. 
[158] J. Ziv: Coding of sources with unknown statistics. Part I: Probability of encoding error; 

Part II: Distortion relative to a fidelity criterion. IEEE Trans. Inform. Theory IT-18 
(1972), 384-394. 

[159] J. Ziv: Coding theorems for individual sequences. IEEE Trans. Inform. Theory IT-24 
(1978), 405-413. 

[160] J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. 
IEEE Trans. Inform. Theory IT-24 (1978), 530-536. 



INTRODUCTION 

The aim of this paper is to give a survey on developments in entropy methods 
of ergodic theory of measure theoretic dynamical systems during the period 1970 to 
1980. The reason is that, unlike classical notions and results of ergodic theory (ergo-
dicity, mixing properties, ergodic theorems, etc.), recent ideas and constructions 
in ergodic theory do not constitute a standard part of an information theorist's 
background. On the other hand, these ideas have been very fruitfully employed 
in information theory and, based on up-to-date state, one can expect further progress 
as to the interplay between ergodic and information theories. 

A main problem connected with applications of ergodic theory to information 
theory consists of different languagues employed and different aims followed by the 
two theories. Our intention thus will be (a) to point out that the aims are not so 
different as generally judged, and (b) to explain relevant results of ergodic theory 
in a language appropriate for an information theorist. 

Of course, as any survey also the present one is influenced by author's taste and 
scientific interests, however, it is hoped that the choice of contributions will be suffi
ciently representative. Also, readers should not expect investigations on technical 
details and should refer to original papers which are thoroughly indicated. On the 
other hand, we attempted to explain the essence of most important ideas. 

PART I: PRELIMINARIES 

1. Some Historical Remarks 

Until Kolmogorov [80] and Sinai [133] introduced the concept of entropy into 
ergodic theory, the problems of ergodic theory were formulated and solved mainly 
within the spectral theory of induced unitary operators on II spaces (see [151] for 
a survey). In particular, spectral invariants were not sharp enough to distinguish 
between such simple dynamical systems as Bernoulli schemes. Kolmogorov and Sinai 
showed that entropy is an isomorphism invariant, and in case of Bernoulli schemes 
even an easily computable one. Thus, two Bernoulli schemes with different entro
pies cannot be isomorphic. 

Of course, that did not solve the more interesting part of the problem whether 
entropy is a complete invariant for Bernoulli schemes; that is, whether two Bernoulli 
schemes of the same entropy are isomorphic or not. The problem turned out to be 
of extreme complexity, nevertheless, considerable progress had been achieved in 
entropy theory per se. Usually, the obtained results were not coding results (an out
standing result of this type is the characterization of X-automorphisms by the pro
perty of having completely positive entropy; see [122]), but coding results appeared 
very early. E. g., Meshalkin [93] constructed invertible stationary codes between 
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some particular Bernoulli schemes (see also [16]) and Sinai [134] obtained the so-
called weak isomorphism theorem, according to which two Bernoulli schemes 
of the same entropy are stationary codings of each other. 

Real beginnings of systematic investigations on stationary codes are due to Orn-
stein who successfully solved the isomorphism problem for Bernoulli schemes 
[99]. At nearly the same time Krieger solved another longstanding problem of ergodic 
theory, the solution of which is now known as Krieger's finite generator theorem 
[85]. Smorodinsky [136] observed that Krieger's theorem also can be obtained 
with the aid of Ornstein's coding technique. Subsequently, both Ornstein's and 
Krieger's results have been improved on in many respects. 

Importance of Ornstein's technique was not immediately recognized by specialists 
in information theory, mainly because of a very different language. Although applica
tions of Ornstein's result to information theory were foreseen (indeed, in a hypo
thetical form; see [11]), it turned out that it is not the result itself but rather three 
main ideas of Ornstein's construction which bear relevance to coding problems 
of information theory: 

(a) the idea of construction of a good stationary code from a good block code, 
(b) the idea of getting a converging sequence of ever better stationary codes (this 

amounts to a method of making slight change in the structure of a good statio
nary code in order to get a much better one, and has no counterpart within the 
traditional block coding approach), and 

(c) a new type of approximation arguments based en a new type of distance func
tion, 3-distance, between stationary and ergodic processes. 

Ornstein's theory is one of the major achievements of entropy methods in ergodic 
theory since the end of sixties. That is why we shall devote a good deal of our survey 
to problems connected with it. But first let us collect some basic concepts. 

2. Basic Concepts 

Let us briefly comment on abstract setting of measure theoretic dynamical systems-
By definition, this is a quadruple (Q, 8F, ^, T), where (Q, 3~, \i) is a probability space 
and T: Q -> Q is a measurable (i.e. T~^3F c 3F) and measure-preserving (i.e., 
\iT~x = /() map. We shall assume that T is invertible (sometimes it is calbd an 
automorphism); that is, T"1 is defined, measurable, and measure-preserving, too. 
Two dynamical systems (Q, J*, ^, T) and (Q', 3~', /<', T') are said to be (mod 0) 
isomorphic if there exist sets £ e f , £ ' e S~', and a map q> : E -» E' such that 
(i) fi(E) = n'(E') = 1 and <p is bijective, 

(h) r- 1E <= E, (ry XE' <=. E' , 
(iii) if E <= E, then F e J * if and only if q.F E3F'\ in this case fx(F) = /.i'(cpF), 

and 
(iv) <p(Taj) = T'(q UJ) for all o) e E. 
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There appear two natural problems related to the notion of isomorphism. There are 
classification problems dealing with the question whether two dynamical systems are 
isomorphic or not. Then there are representation problems which deal with the 
question when a dynamical system can be (isomorphically) represented by another 
one (which is supposed either to possess a simpler structure or to possess some addi
tional properties). 

Of course, one cannot expect significant results without imposing some additional 
structure on (Q, $F, fi, T). A first natural restriction is to consider only "sufficiently 
nice" underlying probability spaces. Usually, it is entirely sufficient, from the point 
of view of potential fields of applications, to consider (Q, ^, fi) as a standard Borel 
space, that is, to assume that Q is a Borel subset of a complete sepaiable metric 
space, and \x is defined on the er-field J^ of all Borel subsets of Q; cf. [116]. In ergodic 
theory it is commonly accepted to work with slightly less general Lebesgue spaces 
[119]. These are spaces isomorphic with the probability space (/, .Sf', X) of the unit 
interval / equipped with the tr-field of all Lebesgue measurable sets and the usual 
Lebesgue measure (the non-atomic or, continuous case) or, with a part of unit 
interval with Lebesgue measure plus an at most countable set of isolated points each 
carrying a positive mass. We do not dwell on details, for we shall deal mainly with 
spaces having a more specific structure. 

To this end let us introduce the notion of a generator. Let (Q, 2F, ji, T) be an 
invertible dynamical system. We call T aperiodic if for any N 2s 1, 

n{co e Q : TNm = w) = 0 

(this makes sense in "nice" spaces as above, for in such spaces all singletons are 
measurable; in general, the concept of aperiodicity must be defined in a different way 
[83]). A countable partition £ = (Ct, C2,...) of Q into measurable sets is said 
to be a generator (relative to (T /<)) if 

<j( U Tl a(0) = JF mod 0 , 
ieZ 

where Z = {..., —1,0, 1, . . . } . Here a(S) stands for the er-field generated by £, 
and two er-fields are considered as mod 0 identical if they give rise (under /x) to al
gebraically isomorphic measure algebras (see [54]). The proof of the following 
assertion can be found, e.g., in [16]: 

Proposition 1. Let T be an invertible aperiodic transformation of a Lebesgue 
probability space (Q, $F, /.i). Then there exists a generator relative to (T, /j). 

Let C be a generator from Proposition 1. Define a map TC : Q -» £z by the properties 
that T?CO = (x;; i e Z), where xt = C 6 £ if and only if Pea e C. Let T{ : £

z -» £z 

denote the shift, i.e., (Tcx); = xi+l, and let <€z denote the usual product cr-field 
on Cz induced by the tr-field <€ = [D : D c £}. One can easily check that 

(i) -j is measurable, 
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(ii) T? is almost everywhere injective (in fact, it can be non-injective only on periodic 
points of T which have probability zero), and 

(iii) TC o T = Tc o TC almost everywhere. 

Moreover, using standard arguments based on Baire category theorem (see, e.g., 
Appendix A of [103]) one can deduce from the fact that ( is a generator that TC is 
isomorphism between (Q, 2F, p., T) and (£z, (6Z, /IT,*-1, Tc). 

Proposition 1 suggests that it is possible to work with structures induced by 
measurable partitions for very general measure theoretic dynamical systems without 
any essential loss of information about theii statistical properties. 

3. Shift Spaces 

Throughout the rest of the paper A will denote, unless otherwise stated, a count
able discrete space so that its Borel subsets are stf = {E : E <= A). We let (Az, s4z) 
denote the measurable space of all doubly infinite sequences x = (x(; ieZ) with 
X; G A. As well-known and easy to check, Az is a complete separable metric space 
(compact if ||A|| < co; ||A|| = card (A)), and stfz coincides with the cr-field of all 
Borel subsets of Az. We let TA : Az -> Azdenote the shift-transformation (see Section 
2) and X = [Xt; i e Z) will stand for the sequence of one-dimensional projections: 
Xt(x) = x ; for x e Az, i e Z. If fi is a ^-invariant probability measure on (Az, stfz) 
(in symbols, fx e Jt(Aj) then the whole structure will be abbreviated as [A, fi] or 
[A, fi, X] and called a stationary source. The set A is called its alphabet. Sometimes 
we shall indicate that X corresponds to fi by writting that dist (X) = fi. A stationary 
source [A, fi] is said to be ergodic if fi is Tj-ergodic (i.e., if TA is an ergodic trans
formation of (Az, s4z, n)), that is, if n(E) e (0,1} for any event E e J (A) ={Fes4z : 
TAF = F}. Let i(A) c Ji(A) denote the set of all T^-ergodic measures in M(A). 
A stationary source [A, /z] is said to be aperiodic if the shift TA is aperiodic (see the 
preceding section). Observe that [A, fi] is aperiodic if and only if fi is non-atomic; 
that is, if fi{x) = 0 for all x e Az. 

4. Coding Structures 

Let A be another countable discrete space and s4 = {E : E <= A}- Any measurable 
map 4> : Az -* Az is said to be a code. The code $ is called 

— a fo/oc/c code if there is N e N = (1, 2, ...} (called the order of $) and a map 
$ : A* -* AN such that 

(&)?-*(x?), * . 7 * - T j [ . . * 
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(here xM = (xM, ...,xN\iM,NeZ,M^N. In what follows we shall use also the 
notation xN = xN~'; it is often more convenient to stait at time zero.); 
— a sliding-block code if there is an N e N (called the order of <P) and a map <P : 

:A2N+1 -* A such that 

($x)0 = $(x%) , $oTA=TA°$; 

— an infinite code if there is a measurable map <P : Az -* A such that 

($x){ = (P(T'Ax), x E Az , ieZ. 

Readers acquainted with coding techniques of information theory observed that 
our definition of a block code differs from the usual one. The main difference is that 
A is allowed to be infinite. As we shall see later, however, in relevant coding problems 
in information theory either A will be finite or at least ^ ( A ^ ) ! < oo. In both cases 
it is easy to see that the present definition is equivalent to the usual one in terms 
of code books. We shall return to this point later. 

By definition, sliding-block codes as well as infinite codes are stationary in the sense 
that $X is a stationary process if X was (in other words, we have fi$~x e J4(A) 
whenever \i e Ji(A)), whereas a block code of order N is only ^-stationary. Conversely, 
any stationary code 4> : Az -* Az is determined by a measurable map <P : Az -* A 
as above. 

If $ is a stationary code then 

U = {<P~-{a} :ae A} 

is a countable measurable partition of Az. Conversely, if C is a countable measurable 
partition of Az then the formula 

($<x)i = C iff TAxeC, C e £ 

defines a stationary code <P^ : Az -* Az (A = () such that Ct>4 — £• Observe that if <P 
is a sliding-block code then (0 partitions Az into cylinders of some fixed length. 

Thus, we can speak either about partitions or about stationary codes. Next we 
use this fact to define several ergodic theoretic concepts for sources. Suppose [A, jx, X]] 
is a stationary source. A stationary source [A, v, X] is said to be a factor of [A, /., X] 
if there exists a stationary code $ : Az -» Az such that X = <PX, i.e. v = fi$~l. 
Call [A, ji, X~\ independent and identically distributed (IID) if [i is a product measure. 
Thus, an IID source is the same as a stationary memoryless source. Any factor 
of an IID source is said to be a Bernoulli source. It is clear that a Bernoulli source 
can have memory (in fact, the memory is inserted by the code). We shall see that, 
in general Bernoulli sources can be characterized by a sufficiently fast decrease of 
memory effects. 

In what follows we shall use the clauses like factor, IID, Bernoulli also 
for the processes which correspond to sources. Thus, e.g., X is said to be Bernoulli if 
dist (X) = fi and [A, /t] is a Bernoulli source. 
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Let X be a stationary process with dist (X) = p. A stationary coding X = $(x) 
of X is called invertible if <Pis /t — a.e. injective. It follows (see, e.g., [103], Appendix 
A or [128]) that there is a measurable map W : Az -> A such that 

Prob„ [X0 * (P($*)) 0 ] = 0 . 

This means there is a stationary code !P : Az -> Az by means of which we can recover 
X from $X without any error so that we shall call an invertible code also a perfectly 
noiseless code. It is clear that it is entirely sufficient that $ be defined and stationary 
only /i-a.e. Hence, a perfectly noiseless code $ is but an isomorphism between 
the sources [A, p., X] and [A, p$~', <PX~\. 

Proposition 2. Let [A, p., X] be a stationary source. Then 

(a) if $ : Az -> Az is a stationary code such that either |[A| < oo or ||<£(Az)[j < oo, 
then for any s > 0 there is a sliding-block code ¥ : Az -> Az of order depending 
on e such that 

Prob„ [(<PX)0 4= (P*) 0 ] g e ; 

(b) if [A, ju, Z ] is ergodic then so is [A, ^<P-1, <MsT] for any stationary code $ : Az -> 
-> Az; and 

(c) a stationary code # : Az -> Az is perfectly noiseless if and only iff* is a generator 
(relative to (TA, p)). 

Part (a) is Theorem 3A of [43] and follows from a simple approximation argument 
to the effect that any measure on (Az, srfz) can be approximated by values it takes 
on cylinder sets [54]. Part (b) is simple for sliding-block codes; for infinite codes 
combine the latter result with part (a). Pait (c) is again the result of a standard 
application of the Baire category argument. 

Part (c) implies that sliding-block codes cannot be invertible in general (for this 
will entail that .$2Z coincides mod 0 with the er-field of all events which depend only 
on a fixed finite number of coordinates). On the other hand, there is a notion of code 
in certain sense lying inbetween sliding-block and infinite codes. 

Let [A, p, X] be a stationary source. A stationary code <P : Az -> Az is said to be 
finitary if for ^-a.a. x e Az there exist integers q = q(x) and r = r(x) with q ^ r 
satisfying the following condition: if x' e Az, $x' is defined, and xt = x\ for q ^ i :g r 
then ('Px)0 = (<Px')0. If $ is invertible and <P~' is also finitary, we call $ a. finitary 
isomorphism (or, a finitary perfectly noiseless code). It follows from the definition 
of the product topology in Az that a stationary code $ is finitary if and only if 0 
is a.e. continuous. That is why finitary isomorphisms were called almost topological 
by Keane [59] and Denker [29]. Since 

($x). = <P(TAx) ; xeAz, ieZ 
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we can imagine a stationary code $ as a sequential coding. In order to determine 
x = &x we have to look at the coordinates %_#, ..., xN, N = 0, 1, 2, ..., until we 
find a sequence such that 

{ * ' e Az : x'i = x ; , |/| < At} c f _ 1 { x G Az : x 0 = a} 

for some a 6 A. If <P is a.e. continuous then this will happen at some finite N 
(depending on x) for a.a. x. We then put (<Px)0 = a and determine ($x)t for i 4= 0 
by shifting the procedure. In other words, a finitary code is a sequential coding 
procedure whose stopping time is finite with probability one [31]. 

Put, more symmetrically, 

L($, M; x) = inf {N _? 0 : (V e Az) & (x% = x'?N) imply ($x)M
M = 

= (^TM) • 

The problem of finding (<Px)0 e A foi x e Az satisfying L($, 0; x) < oo can be visuali
zed by an infinite tree [74]. The tree consists of a zeroth order node, at least one 
node of order i (i ^ 1) and at most one branch connecting each node of order i 
and each node of order i 4- 1 (i _: 0). If there is no branch from a given node to any 
node of the next order, we label that by a letter from A. Given x e Az, one looks 
at (x_! ,x 0 , x.) and this determines a branch to certain first order node. If there 
is no branch to second order nodes, then L($, 0; x) = 1, and (<t>x)0 is the label 
of that node. Otherwise, one passes to (x_2, ••-, x2) and repeats the procedure. 

Suppose it takes one time unit to pass over any branch. Then L(<P, 0; x) is the time 
required to code x into (<Px)0. The time required to obtain the symbols (<Px)0, ..., 
..., (<Px)N_, is thus 

N£L($, 0; T{x). 
J = 0 

If [A , n, X] is ergodic and Ê  L($, 0; X) < co then 

N-l 

\imN-1 £ L($, 0; TJ
Ax) = E„ L($, 0; X) 

N^oo j = 0 

for /i-a.a. x e Az. Thus, a code <P with finite expectation E,, L(<P, 0; X) is practical 
in the sense that the time required to get At successive reproduction symbols appro
aches infinity no faster than linearly in At. Keane and Smorodinsky [60] (see also [ l ]) 
developed a construction of such practical finitary codes between IITJ sources. 
Later, they extended their construction (see [61, 62]) in order to get invertible codes. 
However, the practical aspect is lost in the sense that the constructed finitary iso
morphism $ is such that either $ itself or $~x have infinite expected code length. 
Unfortunately, this is not a consequence of their coding technique but rather a typical 
occurrence as clarified by Parry [110 — 112]. We shall turn to that problem later, 
and now we give definitions of various types of codes according to the behaviour 
of the length function L($, M; •). 
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So, let [A, fi, X] and [A, v, X] be two stationary sources and $ : Az -» Az a finitary 
isomorphism between them. <£ is said to have finite expected code length, if, for any 
M ^ 0, we have that 

E„ L($, M; X) < oo , EvL(0~l,M;X) < oo . 

In light of the above remark we have to find some weaker but still desirable property 
of finitary isomorphisms. Bowen [19] introduced a weaker notion. A finitary code 
$ : Az -» Az is said to be s-bounded if there is a K = K(s) such that for any M ^ 0, 
L(#, M;X) ^ M + K everywhere except a set of measure less than s. A code <P 
is said to be bounded if it is a-bounded for all e > 0. Bounded and 8-bounded iso
morphisms are defined in a straightforward manner, del Junco and Rahe [27] showed 
that bounded isomorphism is a weaker concept than an isomorphism with finite 
expected code length. 

Surprisingly, Parry's arguments apply equally well to bounded isomorphisms and 
even to e-bounded ones. Thus, typically these kinds of isomorphisms are excluded, 
too. On the other hand, there is a prominent example of a bounded isomorphism 
namely, the code designed by Adler and Weiss [5] in order to classify toral auto-, 
morphisms. Thus, it is equally important to know which propeities are responsible 
for the absence of bounded isomorphisms. 

Nevertheless, (non-invertible) codes with finite expected code length are also of 
inteiest for their existence implies many interesting and desirable properties of the 
encoded process (like central limit theorems, invariance principles, laws of the iterat
ed logarithm, etc., see [31, 32]). We shall report on these lesults later. 

PART II: ROHLIN'S LEMMA AND ORNSTEIN'S CODING 
TECHNIQUE 

5. Classical Formulations of Rohlin's Lemma 

A key to many constructions in ergodic theory is the fundamental Rohlin's lemma 
[120] which gives a simple geometric picture of actions of measure-preserving 
transformations (the geometiic aspects aie explained in [128]). The proof of Rohlin's 
lemma can be found, e.g., in [55]. 

Theorem 3. (Rohlin's lemma). Let T be an invertible aperiodic transformation 
of a Lebesgue space (Q, 2F, \i). Foi any s > 0 and any N e N theie exists a set E e 3F 
such that the sets E, TE, ..., T^" 1E are pairwise disjoint and 

li ( U T'E) >. 1 - e . 
j = o 
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If T is non-ergodic we can decompose it into ergodic components (Tm; co e Q*), 
where Q* a Q is an invariant event such that (i(Q*) = 1 for any T-invariant pro
bability measure /.. The transformations Tm can be defined as restrictions of T to 
supports of distinct ergodic components / jm of \i (cf. [105, 153, 42]). It is an easy 
consequence of the theory of regular conditional probabilities that 

Li{o) E Q* : pi01 = n(- \ST){a>)} = 1 

for any invariant probability measure ix on (Q, &•), where \i(- | fT) stands for the 
conditional probability conditioned on the <r-field / r = { £ e J F : 7 £ = E} (see 
[116] or [42]). 

For sake of brevity a set E e !F having the properties listed in Theorem 3 is called 
a (T,N,s)-Rohiin set. In general, a (T N, e)-Rohlin set E may posses different 
/^-measures. If this is not the case, i.e., if 

H{cj : nc{E) = /,(£)} = 1 , 

then E is called a uniform (T N, s)- Rohlin set [30]. That is, a uniform (T,N,E)-
Rohlin set is a (T, N, e)-Rohlin set which is independent of the c-field JT. 

Theorem 4. (Uniform Rohlin's lemma [30]). Let T be an invertible aperiodic 

transformation of a Lebesgue space (Q, 3F, fi). 

(a) For each N e N and each e > 0 there is a uniform (T N, a)-Rohlin set. 

(b) If Q e §* satisfies /i{co e Q : fim(Q) > 1 — 5} = 1 then for each N e N and each 
s > 0 there exists a uniform (T N, e + <5)-Rohlin set E a Q. 

Part (b) was used in [30] in order to extend Krieger's finite generator theorem 
to aperiodic non-ergodic transformations, and was the main tool to overcome pro
blems connected with non-uniformity of convergence in Shannon-Mcmillan's 
theorem and the ergodic theorem. We omit details for we shall approach the extension 
problem in a different way. 

The next version of Rohlin's lemma will be formulated for shift spaces and the 
natural zero-time partitions, although it is possible to prove it for arbitrary count
able measurable partitions of a Lebesgue space. So suppose [A, /i, X~] is a stationary 
source over the alphabet A = {«„, ax,...}. Let yA = (C(a1)), C(a2), •••), where 

C(af) = {x e Az : x0 = a,} . 

J V - l 

Then the partition V TA
JyA partitions Az according to the outputs at times zero 

3=o 
through N — 1, i.e., its atoms are all cylinders of the form 

C(a\...,aN)= {xeAz:x0 = a\...,xN^ = aN} 

for (a1,..., aN)eAN. The distribution rf(V TA
JyA) is the vector of lexicographically 

j = o 
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, V - 1 

ordered measures of its atoms n T^J C(at), (i0, ..., iN_ ,) e NN. If E e 3F, we lei 
J = 0 

N- \ 
V TA

J y | E denote the induced partition of E. If /((E) > 0, we can define the condi-
j = o 

N-\ 

tional distribution d( V TA
J yA I E) as the lexicographically ordered vector of condi-

;=o 
tional probabilities 

n (n E;' c(flf.) | E) = K£)- > ,x(E n n T ; ; c(a,,)). 
j=o /=o 

Theorem 5. (Strong Rohlin's lemma [128]). Let [A, fi, X~\ be an aperiodic 
stationary source over a countable alphabet A. Given e > 0 and N e N there exists a 
(T4, JV, e)-Rohlin set E such that 

j = 0 j = 0 

In [128] the proof is sketched for finite partitions. An extension to countable parti
tions (i.e., to a countable alphabet A in our formulation) is possible as discussed 
in [131]. Theorem 5 says that we can choose the Rohlin set E in such a way that the 
statistical properties of source iV-tuples over E are the same as over the entire space. 
In Section 7 we shall deal with a more "information-theoretic" approach to Theorem 
5. 

6. Making Block Codes Stationary 

We pause here to explain the "stationarization" method for block codes mentioned 
in Section 1. Note that Ornstein himself did not mention block codes at all but 
considered good maps from A'-tuples to TV-tuples obtained by a combination of 
Shannon-McMillan's theorem and a marriage lemma (see [103] and Chapter 9 
of [128]). An application of Ornstein's idea to actual stationarization of block 
codes was carried over by Gray and Ornstein [49] who used this technique to prove 
a sliding-block joint source/channel coding theorem. Later, Gray, Ornstein, and 
Dobrushin [51] applied that technique in their investigation of zero-error stationary 
codes for a class of noisy channels. Our next assertion is quoted from that paper. 

The quadruple (TA, N, E, yA) with properties listed in Theorem 5 is called an 
e-gadget. The set E is called its base and the set 

J V - L 

Az\ IJ TJ
AE 

1 = 0 

its garbage. Suppose A is a finite set and $ : Az ~* Az a block code of order N. 
We define a map ¥ : Az -* Az with the aid of the measurable map \p : Az ~* A 
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determined by the properties that 

^ = f„ if x 6 T„(E n C(x")) and (_{*")). = a ; 

(a* if x belongs to the garbage , 

where a* is a fixed reference letter in A and C(xiV) stands for the cylinder set as defined 
in Section 5. The action of the stationary code ¥ can be described as follows. If 
xe C(a0,..., fljv-i) n E c_ C(a0 , . . . , aN-i), then xw = (a 0 , . . . , aN-t), i.e., given 
x e C(a0, ..., aw_ t) n E the next TV source outputs (starting from time zero) will be 
a0, ..-, aN-V In other words, we "relabel" the sets T^(E n C(a0 ..., a^-i)), 0 _ i _ 
__ JV — 1, by the symbols a;. The map W simply substitutes <P(a0,..., aN_l) for 
(a0, . . . ,„*_!) . 

As well-known, the rate of a block code of order N is the number R($) = N'1 . 
. log Ij^A^)!. If ^ is a stationary code it is natural to define its rate as the entropy 
rate h($X) of the encoded process (see [ l l ] for definitions and basic facts concerning 
entropy). 

Proposition 6. Let ¥ : Az -> Az be a stationary code constructed as above with 
the aid of a block code $ of order N and of an 8-gadget (TA, N, E, yA). Then 

h^iV-1) •£ R($) + H(N^1), 

where H(a) = —a log a — (l — a) log (l — a). 
Thus, the rate of the code remains almost unchanged. Put Xt(x) = T(T'Ax), i.e., 

X = ¥X. The proof of Proposition 6 is based on the estimate 

h^'1) _; h(x\Z) + h(Z), 

where Z,(x) = l_(T^,x) (lE is the indicator function of E) and E is the gadget's base. 
If Z ; = 1 then Z ; + 1 = . . . = ZI + JV_, = 0 so that, if JV is large, the entropy rate 
h(Z) must be small. Indeed, it is easy to check that h(Z) _? H(fi(E)) £ ^(JV"1) for 
we must have /.(E) S. JV-1. The rest of the proof (not interesting for our purpose) 
is a combinatorial argument giving that h(X | Z) ^ R(@). 

An important conclusion can be drawn from the proof to the effect that instead 
of working with a gadget we can work with an auxiliary binary stationary coding 
X -> Z. By reformulation of the stationarization method we see that the process Z 
can be used to indicate when to use the block code. In the next section we make that 
idea precise. 

7. Strong Rohlin's Lemma 

For simplicity suppose that A and A are finite alphabets. Let ¥ : Az -*• {0,1}Z be 
a binary sliding-block code, say of order m. Let X = ¥X. A block X0 = (0, 1, 1, ... 
..., 1, 0) of length JV + 1 is called an N-cell. 
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Theorem 7. (Strong Rohlin's lemma [13J]). Let [A, p., X~\ be a stationary and 
ergodic source. Given 5 > 0 and N e N there is an m e N and a binary sliding-block 
code ¥ : Az -> {0, \}z of order m such that for the encoded process X = 5*X the 
following holds true: 

(a) JV"1
 = Prob [X0 = 0] = 2JV"1 , 

(b) Prob [ J £ is an JV-cell \X0 = 0] = 1 - d, and 

(c) X | P r ° b [*o is an JV-cell | XN = a] - Prob [XN = o ] | < 5. 

Assertion (b) says that the waiting time between two consecutive zeroes in the X 
process is, with high probability, equal exactly to JV. Assertion (c) says that the distri
bution of source JV-tupIes is almost independent of the JV-cells in its binary encoding 
X. 

This suggests connections between Theorems 3 and 7. Indeed, put E = [xeAz : 
: x0 is an JV-cell}. Then Eestfz. Suppose xeEnTAE. Since the map x H* X is 
a stationary coding, we have that 

TJc = TBx , B= {0, 1} . 

Consequently, x0 = (0, 1, ..., 1, 0) and xN+1 = (0, 1, ..., 1, 0). But this is impossible 
so that E n TAE = 0. The same argument applies to the sets TAE, TAE unless \i— j \ = 
= JV. Using (a) and (b) of Theorem 7 it is easy to derive that ix(E u TAE u ... 
... u TN~ 1£) ;> 1 - <5, hence, E is a (T^, JV, <5)-Rohlin set. Consequently, Theorem 7 
implies Rohlin's lemma. Furthermore, assertion (c) entails 

X |Prob [XN = o] - Prob [XN = a | E]| < 5 (*) 

This is slightly weaker than the condition of exact independence in Theorem 5. 
On the other hand, as the binary coding ¥ in Theorem 7 is a sliding-block coding, 
the set E can be chosen to depend on only a finite number of coordinates. Thus, 
we get a particular case of Dunham's strong version of Rohlin's lemma [33]. The fact 
E depends on a finite number of coordinates is crucial to Dunham's proof of an 
abstract alphabet sliding-block entropy compression coding theorem, for it allows 
to control the distortion of the encoded process. 

Finally, note that Theorem 7 is valid also for a countable alphabet and for aperiodic 
stationary and non-ergodic sources, however, the technical details are much more 
involved. 

8. Bernoulli Processes 

In Section 4 we introduced the concept of a Bernoulli source. Of course, it is 
desirable to have manageable criteria for deciding whether a given source is (iso
morphic to) a Bernoulli source or not. It is easy to prove a general criterion which 
is, however, not a very practical one. 
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The shift-transformation T on {1,2,. . . , K}z is said to be a Bernoulli shift if there 
exists a probability vector (pt,..., pK) such that the process X is an IID process 
such that 

Prob [X0 = k]= Pk, H H K . 

In this case we denote T as T(pt,..., pK). In what follows we shall say that two 
transformations T and T are isomorphic if the corresponding dynamical systems 
are (and this will be used only if the underlying probability spaces will be clear 
from the context). Shields [128, Theorem 2.1] obtained the following result: 

Theorem 8. Let T be an invertible measure-preserving transformation of a Lebesgue 
space (Q, 2F, /»)..Then Tis isomorphic to a Bernoulli shift T(pi, ..-, pK) if and only 
if there exists a measurable partition £ = {C1( ..., CK) of Q such that 

(a) d{0 = (Pl,...,pK), 

(b) £ is a generator (relative to (T /<)), and 
(c) the sequence (T"C; n e N) is independent. 

In particular, a stationary source [A, \i, X~\ is Bernoulli if there is an IID source 
[A, v, X\ and a perfectly noiseless code $ : Az ->• Az such that X = $X, This is 
different from, but equivalent to, the definition given in Section 4. The equivalence 
follows from the fact that any factor of a Bernoulli shift is a Bernoulli process [100]. 

Moreover, we can dispense with finite partitions or finite alphabets. This can be 
made either using finite approximations to countable partitions based on Theorem 
9.5 of [103] (which says that if Thas finite entropy and is a union of an increasing 
sequence of Bernoulli transformations then T itself is Bernoulli) or by developing 
Ornstein's theory directly in terms of countable partitions as done by Smorodinsky 
[136]. 

On the other hand, the criterion from Theorem 8 amounts to construction of an 
independent generator which is an extremely difficult task even for simple sources 
like mixing Markov ones. Hence, other criteria for Bernoullicity are desirable. In 
what follows, we describe them in terms of codes. 

Let [A, /<, X~\ and [A, p!, X'J be two stationary sources over the same finite 
alphabet A. Let 

dN(xN,x'N) = N-^^^'i) 
> = o 

denote the iVth order average H a m m i n g distance. F o r any N e N let /<N v p'N 

denote the set of all jo in t probabi l i ty vectors on AN x AN yielding [/~ and p'N as 

marginals . The n u m b e r 

inf LN(xN, x'N) dX(xN, x'N) = dN(X, X') 
uNvß,N J 

is said to be the Nth order 3-distance between the two sources. The 3-distance 
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between X and X' (or, between p and p!) is the limit 

d(X, X') = lim sup dN(X, X') 
N-x 

(see [103] or [102]; in the latter paper you can find a detailed discussion on-"-distance 
as well as equivalent definitions). All characteristic properties of Bernoulli processes 
reflect, in some approximative manner, independence properties of 1ID processes. 

If X is IID then X, is independent of its "past" Xt_,, Xt_2,... for all ;' e Z. If, 
Y = (Y; i e Z) is a sliding-block coding of X of some finite order m then, for each i, 
the random variables Yt do not depend on past coordinates at least 2m apart, i.e. 
on Y,_2m, Yi_2m_l, .... If $ : Az -> Az is an infinite code then, by Proposition 
2(a), we can find a sliding-block approximation Y to Y = <PX such that Prob [F0 4= 
4= Y0] < £. Thus, one expects Y to satisfy some approximate version of the inde
pendence property enjoyed by Y. Call a stationary process Z = (Z;; i e Z) an inde
pendent iV-blocking of Yif, for each integer k, 

(o dist(z^:r) = dist(c.:r)and 
(ii) the vector ZJJJ+i is independent of Z, for i __ Nk. 

A stationary process Y is said to be almost block independent (ABI) if for any 
£ > 0 there exists an N0 e N such that for any N _t N0 we can find an independent 
JV-blocking Z of Y so that 3(Y, Z) < e (see [129, 130]). 

IfX is IID then for each NeN the vectorXf does not depend on the past(X ;; i__\0). 
A stationary process Y is said to be very weak Bernoulli (VWB) if for any £ > 0 
there is an N such that for each m e N, d(Y, Y| Y_m) < £ for a collection of pasts 
y_„, of total probability at least 1 - £ [101]. 

A weak Bernoulli property (stronger than VWB) was introduced by Friedman 
and Ornstein [38] for the purpose of showing that mixing Markov processes are 
Bernoulli. Indeed, as mentioned above, to find an independent generating partition 
is extremely difficult but, for mixing Markov chains, the natural zero-time partition 
is weak Bernoulli (see [128] for a detailed investigation). Furthermore, weak Bernoulli 
is in fact a mixing condition so that usually it is quite easy to verify (see, e.g., [19]). 
On the other hand, weak Bernoulli is too strong to be a characteristic property 
of Bernoulli processes for there is a Bernoulli source which has a factor that is not 
weak Bernoulli ([137], see also [22]). 

The third property involves also approximation in entropy. It follows easily from 
the definition of 3-distance that closeness in d implies closeness in finite dimensional 
distributions and closeness in entropy (that is, entropy is 3-continuous [102]). 
If the converse is true, we say the process is finitely determined (FD). Thus, a station
ary process Y is FD if, given £ > 0 we find S > 0 and NeN such that for every 
ergodic process Y the conditions that 

£ |Prob [Y? = o] - Prob [7? =- o ] | < 6 
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and 
|h(Y) - h(Y)\ < 6 

imply that d(Y, Y) < e. Originally all these properties were formulated in terms 
of partitions. Our formulation follows [129] (see also [76]). Now we can formulate 
a characterization theorem for Bernoulli sources: 

Theorem 9. Let [A, /<, X] be a stationary source over a finite discrete alphabet A. 
Then the following assertions are equivalent: (a) X is a Bernoulli process, (b) X is 
ABI, (c) X is FD, and (d) X is VWB. 

The proof of this theorem summarizes the basic achievements of Ornstein's 
theory. In the next section we shall sketch the proof of one pait which makes more 
transparent the' fundamental features of Ornstein's coding technique. 

9. Ornstein's Coding Technique 

We shall sketch the proof that any ABI process is Bernoulli. One possible way is 
to show how to encode a given ABI process in a stationary manner from a suitable 
I1D process. 

Let Y be an ABI process over a finite or countable alphabet. Let U be an 1ID 
process over the alphabet [0, 1] such that l/0 is uniformly distributed. Let Vbe an I1D 
process over a discrete alphabet A such that U and Fare independent. 

First we construct an initial coding. We claim that for any e > 0 there exists 
a measurable map ¥ : [0, l ] z x Az -» A such that d(Y, Y) < s, where we have put 
Y = ¥(U, V) (and ¥ is the stationary code induced by i/>). The idea is similar to that 
used in Section 6. We use a binary encoding of Vto indicate when to block code U 
using an appropriate block coding function <PN : [0, l ] * -» AN. Let JV be large and 
S small. Let kN denote the Lebesgue measure on [0, 1]^. Since U0 is uniformly distri
buted and U is IID we can find <~-h such that 

)N[0N » ] = Prob [YN = a] , a e AN . 

As in the proof of Rohlin's lemma in [131] we can show that given an ergodic source 
X over the alphabet A,NeN, and 8 > 0 there is a measurable map /i : Az -> {0, 1} 
which gives rise to a stationary code fi such that the encoded process R = fix satisfies 

Prob [R0 is in an JV-cell] > 1 - 8 . 

We call R an (JV, <5)-process. Let R = [W be the (JV, <5)-process of V, where JV and 
5 are as above. Next we want to block code U by means of <PN. Let X = (U, V). 
For a given x, we first code to obtain fix. Whenever (fix)t is a start of an JV-cell, we 
apply <PN to code x\+N~l onto <Ps(x\+N~l). If ($x)i does not lie in an JV-cell, we 
assign to X; a distinguished letter. This defines a code 

§ = 3 v « : [0, l ] z x Az-+Az. 
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L; t 

Y=4W,R(U,V). 

Since U and Vwere independent, U and R are also independent. If 6 is sufficiently 
small, it follows that Yand F conditioned on R-typical sequences are d-close (for 
details see [131] and [129]). From the way how R has been constructed we conclude 
that even Yand Ythemselves are d-close and this gives us the desired initial coding. 

Having a good (s-close) initial coding, the main point of Ornstein's technique is 
an idea of how to make a much better coding in exchange to only a small change in 
the structure of the code. 

Assume Fis a sliding-block coding of X = (U, V). Then there exists a k e N and 
a map / : [0, l ] 2 t + 1 x A2k+l -* A such that Y = f(U, V). If M > 2/c + I, then / 
induces a map 

fM : [0, 1]M x AM -> AM~2k 

according to the formula 

(fM(uM, vM)\ = f(ui+k
k, v\±l), k+l<i<M-k. 

We can and do assume that Vis an aperiodic process. Since U and Vare independent 
aperiodic processes, they are also jointly aperiodic. Hence, if 1M is the measure on 
[0, 1]M x AM induced by (U, V), then we can find a map 

V'M : [0 , \]M x AM->AM 

such that 

1 T I V ( ° ) ] = Prob [Yf = a], aeAM . 

Recall that by our construction F satisfies d(Y, 7) < c. Consequently, if M is large 
enough, then we will have also dM(Y, Y) < E. Moreover, this inequality shows that 
the distributions of YM and FM are close, for VM partitions [0, 1]M x AM according 
to the distribution of YM. It follows there is a map 

TM : [0, 1]M x AM ^ AM 

such that 

7Mi<¥M\a)] = Prob[YM = a], a e AM , 

EXM[dM(WM(UM, VM), TM(UM, VM))] < e . 

On the other hand, the partition induced by ^ refines that one induced by "/yM. 
Consequently, if M is much larger than 2k + 1, we can get 

ZlM{dM(VM(UM, VM),fM(UM, VM))] < 2£ . 

In other words, we used the coding of (U, V) onto Yto induce a distribution of Y 
on M-tuples, i.e., on [0, l ] M x AM. The J-fit of Yand Fallows to induce a distribu
tion of Yon the same space in such a way that Yt = Y with high probability. 

Now we choose a new IID process FFover the alphabet A so that JYis independent 
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of each U and V. Let R denote the associated (M, <5j)-process of W, and 

Y = $VM.R(V, V W). 

Given e > 0 we can assume M so large and 81 so small that 5(Y, Y) < e. We can 
choose e so small and M so large that Prob [Y =|= Y/J < 3e. 

Thus, by change of no more than 3s in our coding we can get from an e-close 
coding a coding which is as close to Yin d sense as we please. This is the idea of con
struction of a converging sequence of codes. Pick mutually independent IID processes 
U, V(1), V(2),... such that U0 is uniformly distributed over [0, 1], and V(1), V(2), ... 
are each over the same alphabet A. We apply the above technique first to (U, V(1)), 
then to (U, V(1), V(2)), etc. This defines a sequence (Y(n); n e N) of codings of U = 
= (U, V(1), V(2), ...) such that, as n -> oo, we have 

3(Y, Y(n)) -» 0 , Prob [Y 4= T/'0] -> 0 . 

Consequently, there exists a stationary coding Yof Usuch that d(Y, Y) = 0. A suit
able quantization allows to express any IID source over the alphabet [0, l ] in the 
form V = (U, V(1), V(2\ ...). 

Furthermore, it is clear that the same construction can be carried over provided 
one starts with only approximate versions of (*). Thus, we really need only that 
h(U) > h(Y), e.g., U can be any IID process over a countable alphabet with enough 
entropy [129]. 

PART III: FINITARY CODES 

10. The Finitary Isomorphism Theorem 

It is clear that the limiting coding U -» Y obtained via the construction sketched 
in the preceding section cannot be finitary. Indeed, we make a good code better 
in exchange to increase in length M of the block coding function. If we stopped 
at some fixed length M then we could not get invertible codes. Thus, one has to 
develop a different construction for the proof of the next assertion: 

Theorem 10 [61]. Let T(p0,...., p„,.-i) and T(q0, ..., qm,..i) be two Bernoulli 
shifts with the same entropy, and let X and Ydenote the corresponding IID pro
cesses. Then there exists a finitary isomorphism 5> such that Y = <PX. 

As the construction is quite involved and, moreover, explained in detail elsewhere 
(see [82]), we shall give only a brief outline and devote more place to other results 
related to finitary coding. 

Let A = {0, 1, . . . , raj - 1} and B = {0, 1, ..., m2 — 1}- Using continuity of the 
entropy function on finite probability vectors we can assume that at least one letter 
of A and B has the same probability. This will be used to construct a time invariant 
indication of when to code. So suppose that p0 = q0. For each x e Az let Nx = 
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= {n eZ : x„ = 0}; similarly for y e Bz. Put 

M(() = {x' eAz:Nx = NX,} ; M(2) = {y' e Bz : Ny = Nr} . 

The code we intend to construct will be defined on a subset M, c Az of full measure. 
M, will consist of entire sets of type M(

x
), and its performance will be time-invariant, 

i.e., N9x = Nx and $(Mx
n) = M ^ . 

On the first step one constructs (based on the assumption that p0 = q0) a time-
invariant indication of when to code. To this end let JV, < N2 < ... be a sequence 
of positive integers (to be chosen in an appropriate way). Let us consider a con
figuration 

0"°— 0"' — ... — 0"k( = Z) 
h h h 

which consists of n0 zeroes followed by It blank spaces followed by nx zeroes followed 
by I2 blank spaces, etc. I is called a skeleton of order r if lt >j 1 (1 ^ t g k), n, 2j 1 
(0 ^ r ^ fe), and n, < N, < min {H0, n t} (1 ^ r g fc - 1). The length of I is 
defined to be the total number of blank spaces, lx + l2 + ... + lk. This choice 
makes it possible to define in a consistent way a sequence of skeletons of increasing 
orders and lengths. In particular, there exists a canonical, so-called order decomposi
tion of each skeleton of order r into subskeletons of order r — 1. 

On the second step one constructs the actual code as a method of filling in the 
blank spaces. The idea is similar to Ornstein's construction of coding functions 
between A'-tuples. One uses the Shannon-McMillan's theorem in order to get estimates 
for the number and the total probability of good filler blocks (i.e., blocks which 
may fill in the blank spaces). Based on these estimates one can use a marriage lemma 
(proved in [60]) to define, by induction on order of skeletons, so called partial 
assignments which assign to each block filling in the blank spaces in one configuration 
a set of blocks which can fill in the blank spaces in the corresponding configuration 
for the second process. The important fact which follows from the marriage lemma 
is that these assignments at boundedJy finite-to-one maps and one can show that, 
with probability one, they are even one-to-one. Using an appropriate choice of 
taking products of partial assignments one can join them into global assignments 
in a consistent way. This ensures that if a blank space was filled in on the rth step 
then, on the next steps, the letter filling in that blank space remains unaffected. 
In this way, a stationary coding is defined for almost every sequence x e Az and, 
furthermore, the coding procedure stops at some finite order r = r(x) with prob
ability one. 

It is natural to expect that an analogue of Theorem 10 should hold for irreducible 
multistep Markov sources, for any such source is a sliding-block coding of an IID 
source. A proof of this more genera] result which makes use of a reduction to the 
IID case is announced in [62]. For infinite codings of IID sources, i.e., for Bernoulli 
sources of non-Markov type, one cannot expect for a finitary isomorphism (see [151]). 
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11. Finitary Codes With Finite Expected Code Length 

In this section we investigate finitary codes with finite expected code length (not 
invertible ones!). Following [31] let us introduce the concept of a shift dynamical 
system. Let A denote either a finite set, say {1, 2 , . . . , K] or, the one-point compatifica-
tion {1, 2, ..., co} of N. A shift dynamical system is the quadruple (Y &(Y), \i, TA), 
where Fis a closed T,-invariant set, 3S(Y) is the Borel subsets of Yand TA is the shift 
transformation on Az. We assume that p is a T^-invariant probability measure on Y 
or, if A is infinite, a measure such that /i(Yn (N \ |oo})z) = 1. L e t / be a bounded 
measurable function on Y We denote by 3ft\k the c-field a(Xt; \i\ = k). Following 
[31], j is said to be sequential (in symbols, j 6 S(F)) if there exists a sequence (fk; 
k e N) of bounded functions such that 

(i) fk is ^L^-measurable, k = 0; 
k s 

(ii) l i m / | / - j / . | d / i = 0 ; and 
A-^oo n = 0 

(iii) Z/cJ|j^|d/' < °°-
A = 0 

I f je S(Y), put a(f) to be the infimum of the sums in (iii) over all possible sequences 
(fk; k e N). In particular, if U is an open subset of Y then lv is sequential if and only if 

V - U Ck, Cke ®k_k, and £ k fi(Ck) < oo . 
A = 0 A = 0 

The sets Ck can be chosen so that 

a(V) = a(lu) = Zkfi(Ck). 
k = 0 

Let $ be a finitary code from (Y 3S(Y), \i, TA) to another shift dynamical system 
(Y, 3$(Y'), v, TB). If a is a bounded measurable function onY, then $ is said to code g 
sequentially if g o$eS(Y). The code <P is said to have finite expectation if there is 
a constant K such that for any set C e (@)')k-k, r codes l c sequentially, and 

<r(lc o<P)^Kk v(C). 

Theorem 11 [31]. $(S(Y')) c S(Y) for any code with finite expectation (here, 
4>(S(Y')) stands for the set of all compositions g 0 $, g e S(Y')). 

One can prove that if (Y 3S(Y), \i, TA) is strongly mixing with the mixing coeffi
cients a(fc) satisfying 

£ a(k) < co 
A = l 

then for any g e S(Y') a central limit theorem is valid in the sense that properly 
normalized partial sums of shifts g converge in distribution to the normal law, 
provided the code $ : Y-* Y has finite expectation (see Theorem 24 of [31]). In 
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a subsequent paper [32] Denker and Keane proved also the law of the iterated 
logarithm and an invariance principle. These results show that finitary codes with 
finite expectation are very desirable from the point of view of physical applications 
(see pp. 158 — 159 of [31]). Indeed, many classical dynamical systems have been 
shown to be continuous factors of symbolic systems which are Bernoulli processes 
or Bernoulli flows (see [20, 21]). It is easy to show that continuous factor maps are 
isomorphisms when the systems are equipped with natural invariant probability 
measures — the equilibrium states. 

12. Finitary Isomorphisms With Finite Expected Code Length 

Let [A, fi, Z ] and [B, v, Y] be two stationary sources over countable discrete 
alphabets. Let yA and yB denote the natural zero-time partitions of Az and Bz, 
respectively. Suppose <P : Az —> Bz is an invertible (stationary) code with v = fi$~l. 
An A-cylinder is any set of the form 

П TГ'C(fl,), n | 0 , m = 0 

(see Section 5 for the symbol C(a)); similarly, we define 5-cylinders. As already 
mentioned, $ is a finitary code if and only if the set $"1 C(b) is mod 0 a countable 
union of A-cylinders for each b e B, and 0 C(a) is mod 0 a countable union of 
S-cylinders for any a e A. The length of an A-cylinder as above is n + m, and the 
future length is defined to be m. This allows us to define the length functions for the 
code <P itself. To this end, pick a b e B and express the set <P~l C(b) as a countable 
union of A-cylinders C with minimal length. If x e C, then L(<P, x) (and L+($, x)) 
are defined as the length (and the future length) of C. A finitary isomorphism 4> 
is said to have finite expected code length (future code length) if 

EilL($,X)< o o ( E „ L + ( £ , # ) < oo). 

The inverse lengths of <P are the lengths of <P~l. Observe that 

EtiL($,X)^EllL
+($,X) = f A„, 

n = i 

where 
A„ = n{x e Az : L+($, x) ^ n) . 

Parry investigated the consequences of existence of a finitary isomorphism <P such 
that both $ and $~l have finite expected code length. His idea was to derive from 
that assumption a cocycle-coboundary equation for the conditional information 
functions of the two isomorphic sources. This equation admits, in general, a richer 
family of invaraints (see [34, 109, 110, 19, 114]) which can be used to find examples 
of IID and Markov sources for which no such "practical" perfectly noiseless codes 
can exist (see Section 4). 
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Let yA denote the "past" of the partition yA, i.e. 

7 A =VT2iyA, 
i = 0 

where, as usually, the symbol on the right-hand side is interpreted as a cr-field [107], 
viz. 

VTA-iyA = o(\JTA-io(yA)). 
; = o ; = o 

The information cocycle for a stationary source [A, jtt] is defined as 

1(1 A I TA YA) = - £ ic logMc I T;1^-). 
CeyA 

A real-valued function of the form jo TA — f is called a coboundary (with respect 
to TA). Two functions which differ by a coboundary are said to be cohomologous. 
The main result of [111, 112] is the following assertion: 

Theorem 12. Let [A, /<] and [B, v] be two stationary and ergodic sources over 
countable discrete alphabets A and B such that H(yA) and H(yB) are finite. Let <2> 
from Az to Bz be a finitary isomorphism such that <P and <P~l each have finite ex
pected code length. Then the information cocycles 

K7A\T2ly-A) and l(yB \ TB
lyB) „ <? 

are cohomologous. 

For the sake of brevity, let us denote by IA and IB the information cocycles of [A, jf\ 
and [-B, v], respectively. By Theorem 12 we have the following cocycle-coboundary 
equation: 

IA = 1B o $ + g o TA - g . 

Our problem is how to exploit this equation. Bowen [19] proposed (in the context 
of bounded codes; see Section 4) a method based on the central limit theorem. He 
showed that the limiting distribution of the sequence 

Fn(0 = n-ll2[ZU0»TA-nh„(TA,C)] 
;=o 

is independent of all measurable partitions ( which boundedly code each other (here 
h„(TA, C) stands for the entropy of the shift TA relative to the partition C;*ee [11] or 
[107]). By the central limit theorem, the limiting distribution is gaussian and hence 
determined by its mean (which is but the entropy hJ(TA, £)) and variance. The variance 
is a new invariant which can be used to prove that certain Bernoulli shifts with the 
same entropy are not isomorphic via a finitary code with finite expected code length 
and inverse code length. 

More precisely, the new invariant is the number (called information variance 
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in [34]) 

a\TA, C) = lim n" 1 f [ £ /T„(C) = Tj - n «„(T<, C)]2 d/i . 
J < = ° 

Parry and Schmidt [l 14] have shown how to compute this invariant in some simple 
cases. In particular, it follows that Bernoulli shifts T(l/4, 1/4, 1/4, 1/4) and T(l/2, 1/8, 
1/8, 1/8, 1/8) (which are isomorphic by [99] and even finitarily isomorphic by [93]) 
cannot be finitarily isomorphic via a code $ such that @ and <P~l each have finite 
expected code length. The fact that Meshalkin's code has infinite expected code 
length was observed by Gray [41] using a random walk representation of the en
coding rules from [93]. 

In [l 10] it is shown that the weaker assumption to the effect that <J is only a bounded 
(or, merely an e-bounded) isomorphism gives rise to the same cocycle-coboundary 
equation. This surprising result shows that we cannot be too optimistic as far as 
concerns "practical" perfectly noiseless codes. 

On the other hand, the information variance is not sharp enough to distinguish 
between Markov sources, say, those determined by matrices 

p a \ frq\ fap\ P + q = l . 
p qj \q pj \p q) 

Any two of them are finitarily isomorphic by the Keane-Smorodinsky result [62]. 
Parry [109] introduced another invariant of the cocycle-coboundary equation, 
namely the group 

A(TA, C) = {(a, b) e R x R : (F 0 TA)\F = exp {2ni(a + b T,(C))} , 

F:Az^{zeC:\z\ = 1}}. 

As pointed out in [114], it is easy to compute the group A(TA, C) in case when ( = yA 

and the sources are of Markov type. In particular, no two of the above three Markov 
sources are isomorphic via a "practical" code. 

On the other hand, there exist several positive results on existence of "practical" 
perfectly noiseless codes (recall the bounded isomorphisms of Adler and Weiss [5] 
and a recent result by Adler and Marcus [4]). Hence, it is of interest to have some 
general conditions explaining such positive results. Here is one of them (consult [30] 
or Sections 17 and 18 below for definitions): 

Proposition 13. Let Tj and T2 be two topological Markov chains over finite alpha
bet A and B. Suppose T and T2 are topologically mixing and 

VpCr,) = htop(T2), 

where htop stands for the topological entropy. If Ti and T2 are equipped with (unique) 
measures of maximal entropy /.] and \i2 (i.e., h(ji,) = /7lop(T), i = 1, 2) then there 
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exists a finitary isomorphism <P from Az to Bz such that fi2 = fxy<P ' and <P and 4> l 

each have finite expected code length. 

The proof is based on the fact that the measures /., and JX2 are uniformly mixing 
with exponential rate [106] so that ii\L($, X) — n\ -+ 0 exponentially fast as 
n -» oo, ( = 1,2, Hence 

E„, L($, X) = £ n^,[L(f, Z ) = n] < oo , ( = 1 , 2 
n = 1 

(here, <? stands either for $ (i = l) or for <P~'(i = 2)). In light of negative results 
presented above a deeper insight into reasons responsible for this exceptionally 
good behaviour is desirable. A partial result is given in Theorem 2 of [110]: 

Theorem 14. Let Tx and T2 be two Markov chains determined by finite stochastic 
irreducible matrices. Let T2 be of maximal type (i.e., the matrix gives rise to the 
measure of maximal entropy). If Ti and T2 are e-bounded isomorphic (0 < e < | ) 
then Tj must be of maximal type, too. 

The reader should consult [91] or [150] for related results (we shall commet on them 
a little bit later). 

PART IV: REPRESENTATION PROBLEMS 

13. Krieger's Theorem 

Representation problems seem to be the most attractive from the point of view 
of information theory. In fact, they result in perfectly noiseless codes of quite general 
processes onto processes which have certain, in advance given, properties (Section 
22 will be devoted to an "information theoretic" discussion of this point). 

Let us describe the first result of this type due to Krieger [85]. In light of Proposi
tion 1 we shall consider only stationary sources over countable discrete alphabets. 
Let INT(t.) denote the integer part of a real u = 0. 

Theorem 15 (Krieger's theorem). Let [A, \i, X~\ be an aperiodic, stationary and 
ergodic source over a countable discrete alphabet A such that h(X) is finite. Then 
there exists a finite alphabet B with at most INT (exp h(X)} + 1 letters, a source 
\B, v, Y] over the alphabet B, and a perfectly noiseless code $ : Az -+ Bz such that 
Y = $X. . 

In other words, we can find a source [B, v, Y] over a finite alphabet B which has 
the same statistical properties as [A, ft, X~\. It is clear that the problem is very close 
to that of noiseless source coding (nevertheless, a proper explanation of the connec
tions requires some efforts; see Section 22). 

Krieger proved Theorem 15 in two steps. On the first step, he shows only existence 
of some finite alphabet B and of a code $. However, his method yields highly over-
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redundant codes so that the asserted bound is not obtained. On the second step he 
uses an approximation technique for approximation of ergodic sources by periodic 
ones (see [157]) in order to get the desired bound for |J5||. 

Smorodinsky [136] showed how to get Theorem 15 using Ornstein's coding 
technique. One uses Sinai's theorem to construct an initial coding. Then a small 
perturbation of the initial process is performed in order one has an ergodic process 
with enough entropy (for reasons explained in Section 9). The rest of the construction 
follows the idea of getting a converging sequence of ever better codes as described 
in Section 9. 

14. Related Representation Problems 

A large part of contemporary ergodic theory deals with smooth dynamical systems. 
Although this part of ergodic theory stands outside of our main interest, the methods 
of symbolic dynamics (which traces back to Hadamard; good surveys are [6] and 
[94]) may also be considered as representation techniques (see [17,21,7, 23]). 

The main idea is as follows. Given a smooth dynamical system one can find (under 
some conditions concerning the local stability properties of orbits) a finite family 
of sets which behaves, from the point of view of dynamics, as states of a Markov 
chain. Usually, some transitions are forbidden so that one gets a transition matrix 
with some entries possibly zero. Any such matrix induces a closed invariant subset 
of the shift space over the alphabet consisting of the states. In this way one obtains 
a topological Markov chain (see Section 17). The ergodic theory of the latter (prob
lems like existence of invariant measures, their uniqueness, ergodic properties, etc.) 
is well developed so that one can easily get the corresponding conclusions for the 
original smooth system. Of course, the construction of the above mentioned family 
(usually called a Markov partition) may be a difficult task. 

15. Improvements on Krieger's Theorem 

In this section we give several improvements of Krieger's theorem to the effect 
that the encoded process has some prescribed properties. 

Theorem 16. Let [A, ft, X] be an aperiodic, stationary and ergodic source over 
a countable discrete alphabet A. If h(X) < co and K = INT {exp h(X)} + 1, and 
if P - {pt> •••> PK) i s a probability vector with H(p) > h(X) then for any e > 0 we 
can find a source [B, v, Y] over an alphabet B with at most K letters such that 

|Prob [Y0 = k] - pk\ < E , 1 g k < K 

and a perfectly noiseless code $ : Az -> Bz such that Y = $X. 

This result was obtained by Denker [28]. An important contribution of Denker 
is that he completely clarified which tools are needed to prove a generator theorem. 
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Indeed, his proof depends only on Shannon-McMillan's theorem and Rohlin's 
lemma. When compared with the original Krieger's proof, Denker does not make 
essential use of the linear ordering of "one-dimensional time" (a point on which 
Krieger's proof fails when more dimensional situations are considered). Thus, 
Theorem 15 can be extended to all dynamical systems for which one can prove the 
Shannon-McMillan's theorem and the Rohlin's lemma. At present, the most general 
result available is for free actions of countable amenable groups of invertible trans
formations of a non-atomic Lebesgue space [148]. The Shannon-McMillan's theorem 
was proved, even for more general dynamical systems, in [65] and Rohlin's lemma 
in [104]. 

It is easy to modify Dsnker's proof so as to get approximations in spirit of Theorem 
16 to any prescribed rc-dimensional distribution (n eN) with enough entropy. Next 
consider approximation in entropy. This problem is motivated by the following 
consideration (see also Section 22 below). If yis an IID process then 

H(Yo) = - I Prob [y0 = a] log Prob [Y0 = a] 
aeA 

equals the entropy rate h(Y) (cf., e.g., [l l])- Conversely, if yis an ergodic process 
such that the difference \h(Y) - H(Y0)\ is small then, using the method described 
in [128], pp. 52 -53 (see also Lemma 4.1 in [103]) one can conclude that yis nearly 
independent (i.e., g-independent, in Ornstein's language, for some small e > 0). 
Thus, from the point of view of redundancy removal it is desirable to have the 
following result: 

Theorem 17. Given e > 0 and B with \\B\\ g INT.jexp h(X)} + 1. Then there 
is a source [6, v, Y] such that \h(Y) - H(Y0)\ < g and a perfectly noiseless code 
0 : Az -+ Bz such that Y = $X. 

Theorem 17 is a slight generalization of the usual formulation of entropy approxim
ation property which says that for any probability vector p with H(p) > h(X) we 
find a process Y isomorphic to X such that |ff(y0) — H(p)\ < s. Both assertions 
can be obtained using the method of proof employed in [136]. 

It is of interest to have a theorem involving directly closeness to a prescribed IID 
process. A natural tool for measuring closeness is the weak topology on the space 
i(B). Let x, I e S(B). Put 

dw(x,l) = i 2~"E|«"(b)-A"(b)|. 
n = 1 btsB" 

The metric dw is compatible with the weak topology on S(B) (see [116] or [12] for 
details on weak topology). 

Theorem 18. Given e > 0 and ||fl|| g INT (exp h(X)} + 1 there exists a perfectly 
noiseless code $ : Az -• Bz such that dw(p<P~l, dist (F)) < e, where Y is the IID 
equiprobable process over alphabet B. More generally, if Y is any ergodic process 
over a finite alphabet such that h(Y) > h(X), then the above conclusion is true. 

34 



Theorem 18 is implicitly contained already in Krieger's original paper. It can be 
shown, however, that it is a particular case (apart from some technical details) of 
a zero-error transmission theorem of Kieffer [72] (the idea of the proof is sketched 
in [146]). 

A principal novelty of Kieffer's proof (which also follows the lines of Ornstein's 
technique) is that Kieffer develops converging sequences of both encoders and 
decoders so that, in the limit, the decoder becomes the inverse of the encoder. Thus, 
there is no need for a Baire category argument in order to prove invertibility of the 
limiting code. 

As pointed out in [146] we cannot replace closeness in dw by closeness in d. The 
reason is that the first part of Theorem 18 would then force X to be an FD process, 
i.e., a Bernoulli process (see Theorem 9). 

Other types of approximations involve the property that the encoded process 
$X be a factor of some reasonable type of process, e.g., a factor of a mixing Markov 
chain (see [86] and [30]) or a factor of a strictly ergodic process (the surprising 
result that this is always possible to find such a coding is known as strictly ergodic 
embedding; see [30, 86, 58, 56]). 

However, all these results are approximations. A natural question arises whether 
it is possible to prove exact results. We devote the next section to that problem. 

16. Kieffer's Isomorphism Theorem 

Grillenberger and Krengel [52] proved a theorem on stationary coding of processes 
in order to achieve a given marginal distribution. Recently, Kieffer [77] obtained 
a theorem which unifies the Grillenberger-Krengel theorem and his previous zero-
error transmission theorem [72]. 

Let Ji(B) denote the set of all TB-invariant probability measures on Bz, \B\ < GO. 
In this section only, S(B) will mean the set of all aperiodic, stationary and ergodic 
measures on Bz. We say that a set Jt c S(B) obeys condition (A) if the conditions 
that (^„; n ^ l) c S(B) and djjx„, Jt) -» 0 imply that d(j.in, Jt) -» 0 as n -> oo. 
In other words, if fi e Jt then for any e > 0 we can find a 5 > 0 such that if v e S(B) 
and dw([i, v,) < 8 then there exists a v' e Jt with d(v, v') < e. Let 

= sup {h(fi) : n E .ytt] . 

Theorem 19 (Kieffer's isomorphism theorem). Let X be a stationary ergodic 
aperiodic process with a finite state space and let Jt c S(B) be a weak Gd subset 
of S(B) obeying the condition (A). If h(X) < h(Ji), then X is isomorphic with 
a process Y with dist (Y) e Jt. 

The proof follows in main lines Ornstein's technique as modified for channel 
coding purpose [49, 51]. First of all, one proves a synchronization lemma which 
ensures the existence of synchronization words. These words cannot be mistaken 
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for cyclic shifts of themselves and thus will be able to play the role of the auxiliary 
binary codding employed in Section 9, namely, to indicate when to block code. 

On the second step, one determines, using a marriage lemma, a good block coding 
function which is then used to produce an initial stationary coding. Then one shows 
how to get a very good code from a good one and repeated use of this assertion 
yields a converging sequence of ever better codes so that, in the limit, we get the 
conclusion of Theorem 19. 

However, the technical details differ considerably from those sketched in Section 9 
and a proper understanding of the proof requires a reader familiar with some techni
ques of channel coding (see [72] and [75]). 

The rest of this section will be devoted to Grillenberger-Krengel theorem. Let B 
be a finite set, m 2: 2, and n : Bm -» [0, l ] a given probability vector. Let X = 
= (_jj i e Z) be the sequence of coordinate maps Bz -> B. The vector n is said 
to be invariant if 

dist-pCT"1) = dist. (Xf) . 

If b = (b1,...,bm)eBm, let n(bm \ bu ..., _m_,) - i t ^ i i , , . ^ < V i ) 'f the 
denominator is positive, and 0 otherwise, where „„._-, = dist. (Xm~l). For n > m, 
let n„ be the probability vector on B" defined by 

_„(_•.,..., b„) = nm^(b„..., _•__,) n(bm \ bt,..., _ .__ , ) . . . 

...;r(_J _•-__,.,..., . - . J . 

These relations determine a consistent family of finite-dimensional distributions 
nn, n = 1, 2, ..., and we let n denote the unique ^-invariant probability measure 
on Bz for which _{„ e Bz : xn

0~' = b} = _„(_•), b e B", JI e N. This # is an (m - 1)-
step Markov measure called the Markov extension of n (such extensions have been 
previously considered in [52, 85, 64]). 

Lemma 20 [70]. The shift TB is ergodic (mixing) with respect to j . if and only 
if there exists an ergodic (mixing) stationary source [£, n, X~\ such that dist,, (Xi,. . 
...,Xm) = it. 

Accordingly, n itself is called ergodic or mixing. It is easy to see that if n is a mi
xing probability vector then there exists a unique measure l * e i / = [le S(B) : 
: distA (Xm) = 7i} maximizing entropy, i.e. h(X*) = sup {h(X) : I e Ji}. This mea
sure is (m - l)-step Markov so that 

_W)-J_(„)-tf(*m_.) 

(see e.g. [11] or [52]). This will be our h. 

Lemma 21. If n is a mixing invariant probability vector on Bm then the set Ji = 
= {/ E S(B): distA (Xm) = JT} obeys the condition (A). 

It should be noted that Lemma 21 is very non-trivial (cf. Theorem 2 of [70]). 
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At present, there are no simple methods for a direct verification of condition (A), 
and thus one is forced to use rather tricky coding techniques for this purpose. As 
a corollary to Lemma 21 one obtains: 

Theorem 22 (Grillenberger-Krengel theorem). Let X be an aperiodic, stationary 
and ergodic process such that h(X) < H(n) - H^,,,^^), where % is a mixing in
variant probability vector on Bm. Let A denote the alphabet of X. Then there exists 
an invertible stationary code $ : Az -> Bz such that dist (($X)m) = n. 

The original proof of Theorem 22 in [52] as well as its simplification in [70] were 
based on Denker's proof of Theorem 16. Grillenberger and Krengel observed that 
having an e-approximation to n it is possible to redistribute the probabilities in the 
encoded process in such a way that we get exact coincidence of distributions. 

On the other hand, Kieffer's approach via Theorem 19 is based on Ornstein's 
coding technique so that we have a unique method for solving a large class of classi
fication and representation problems. 

PART V: CLASSIFICATION PROBLEMS FOR MARKOV CHAINS 

17. Topological Markov Chains 

Topological Markov chains naturally appear as symbolic representations of smooth 
dynamical systems (see Section 14). The classification problems for topological 
Markov chains however lead to results which are very stimulating also from the 
point of view of coding problems. 

Let A be a finite set and a an | |A | x | |A | irreducible 0—1 matrix. Let A(a) = 
= [xeAz : a(xh xi+1) = 1 for all ieZ}. Then A(a) is a closed Tt-invariant set. 
The restriction Ta of TA to A(a) is a homeomorphism of a compact metric space, i.e., 
a topological system [30] known under several names: intrinsic Markov chain 
[106], subshift of finite type [135] or, a topological Markov chain [2]. 

If P is a stochastic matrix such that P(i,j) = 0 if and only if a(i,j) = 0, then the 
T,-invariant Markov probability measure nP determined by P is supported by A(a). 
In what follows we shall consider only Markov probability measures supported 
by sets A(<x) for irreducible 0 — 1 matrices a. In general, an irreducible topological 
Markov chain (i.e., one constructed from an irreducible matrix a) can have many 
invariant measures. However, there is one which deserves particular attention. Let 

Xa = sup [X : av 2: Xv, v = (yx, ..., v^A^), v-, > 0, "£,vi = 1} • 

Xa is called the Perron value of a; it is the largest eigenvalue in the sense that Xa < \X\ 
for all other eigenvalues and Xa has multiplicity one [40]. Let v > 0 be a column 
vector and u > 0 a row vector associated with Xa. Let P = (p(i,j)), where 

p(i,j) = a(i,j)vJjviXa, 
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andp = (Jpi,...,pM|l), where 

Pi = UfiiUjtfii • 

Then pP = p so that the pair (p, P) induces an invariant Markov probability measure 
on A(a) called the Parry measure after Parry [106] who proved its uniqueness in the 
following sense: 

Proposition 23. If \ia is the Parry measure then h(\ia) = log Xa. Conversely, if n 
is a Tff-invariant probability measure on (A(a), A(a) n siz) such that h(fi) — log Xa 

then ft = / v 

A topological Markov chain (A(c), Ta) is said to be a finite extension of a topologic
al Markov chain (B(z), Tt) (and (B(T), T) a finite factor of (A(o-), Tff)) if there exists 
a stationary code $ : A(a) -> B(T) which is (i) boundedly finite-to-one, (ii) continuous, 
and (iii) surjective. Two topological Markov chains are called finitely equivalent 
if there exists a topological Markov chain which is a common finite extension of both. 

Since A(a) a Az, B(t) c: Bz, a finite factor map $ : A(a) -> B(r), being continuous, 
admits a similar description as a finitary code. We can find integers 0 g I < k 
and a map 4> : Ak -* B such that for each /' e Z, ($x)i + , = <P(x\+k~1). Such a code 
is called a fc-block map. 

Classification problems for topological Markov chains are related with the topo
logical entropy ([3], an alternate definition imitating the definition of Hausdorff 
dimension was introduced by Bowen [18]). Let Tbe a homeomorphism of a compact 
metric space Y Let % = (Uu ..., Um) be an open cover of Y Put 

* N = {tfJL...-. - U<o " T-lUh n ... n r " + ' [ / i N M } . 

Let k{fllN) denote the minimal cardinality of a subcover of <UN. Then the topological 
entropy of the dynamical system (Y T) is defined by 

/ilop(T) = s u P H ( T | ^ ) 

where 
H(T\ <*) = inf N'1 log k(%N) . 

JVgl 

If (Y T) = (A(c), T,), where a is an irreducible 0—1 matrix, then the relation 

htop(Ta) = log Xa 

is a theorem due to Parry [106]. The next theorem says that finite equivalence is the 
right notion of "similarity" for topological Markov chains (the natural concept 
of topological conjugacy is too strong; see examples in [4]). 

Theorem 24. [108]. Two topological Markov chains (A(<r), Ta) and (B(x), TT) are 
finitely equivalent if and only if they have the same topological entropy; that is, 
if and only if Xa = XT. 
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The proof of Theorem 24 is based on an interesting lemma due to Furstenberg 
(various proofs of Furstenberg lemma are given in [4, 108, 115]). 

Lemma 25. (Furstenberg). Let o and z be irreducible nonnegative matrices with 
integral entries. Then Xa = Xz if and only if there exists a strictly positive integral 
matrix U with Uo = TU. 

Let us recall several related results. The first one is due to Coven and Paul [24]. 

Proposition 26. Let (A(ff), Ta) and (B(z), Tz) be two irreducible topological Markov 
chains with Xa = Xz. Let $ : A(o) -» B(r) be stationary and continuous. Then the 
following are equivalent: (a) $ is surjective, (b) $ is boundedly finite-to one, and 
(c) $ is measure-preserving relative to the Parry measures. 

Proposition 26 was applied in [91] to study the particular case when Xa is a positive 
integer so that (A(c), Ta) is related to the full shift over some finite alphabet. The 
following is a simple consequence of Proposition 26: 

Corollary 27. Let (A(o), Ta) and (B(z), Tt) be two irreducible topological Markov 
chains, and let <P : A(<r) -» B(z) be a stationary and continuous surjection. Then <t> 
is boundedly finite-to-one if and only if Xa = Xt. 

18. Stochastic Markov Chains 

Recall that we always assume that the stochastic Markov chains are supported 
by topological Markov chains in the sense described in Section 17. So, let (Az, stfz, 
H, TA) and (Bz, 38z, v, TB) be two such (stationary) Markov chains. Then (Az,stfz, 
H, TA) is said to be a. finite extension of(Bz, 3SZ, v, TB) (and the second one a finite 
factor of the former one) if there exists a boundedly finite-to-one continuous measure-
preserving surjection $ : Az -* JSZ with $ ° TA = TB° $ a.e. The two Markov 
chains are said to be finitely equivalent if they have a common Markov finite exten
sion. A seemingly weaker notion of equivalence would be the result of dropping out 
the Markov property of the common extension. However, the following result is true: 

Proposition 28. [150]. Let (A(c), Ta) be a topological Markov chain, and let 
(Bz, 0&z, v, TB) be a stochastic Markov chain. Let $ : A(o) -» Bz be a boundedly 
finite-to-one continuous surjection (onto the support of the measure v which is 
supposed to be B(r) for some z) such that $ ° Ta = TB° $. Then there exists a unique 
TCT-invariant probability measure which makes <P measure-preserving. If $ is a /c-block 
map then this measure is fc'-step Markov for some k' ^ k. 

A surprising result is that even finite factor maps induce the same cocycle-co-
boundary equation as isomorphisms with finite expected code length and inverse 
code length: 
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Theorem 29. [113]. Let (Bz, Wz, v, TB) be a finite factor of (Az, sdz, ft, TA) where 
the two dynamical systems are stochastic Markov chains supported by the topological 
ones. Let $ denote the corresponding code. Then there exists a continuous function 
g on Az such that 

IA=IBo$ + goTA~g. 

If $ is a fc-block map then g(x) = g(xk), i.e., g depends on at most k coordinates. 

It should be noted that Theorem 29 is valid only for Markov chains as indicated. 
In general, a finite factor map of arbitrary measure theoretic dynamical systems 
need not give rise to the cocycle-coboundary equation. 

Tuncel [150] introduced a new invariant of the cocycle-coboundary equation. 
To this end, let P = (P(i,j)) be an irreducible stochastic matrix. For each t e R let 
P'(i,j) = P(i,j)' when P(i,j) > 0, and P'(i,j) = 0 otherwise. Let 

/MO = V . 
where Xpt is the Perron value of P'. This defines a function fjp : R -* R + . If (Az, s4z, 
Pp* Ti) is t n e Markov chain determined by P, we call /?p the fi-function of nP. An 
explicit form of this function was obtained in [150, 115]: 

Lemma 30. Let P be an irreducible stochastic ||A|| x | |A | matrix, and let j.ip 

denote the Markov measure on (Az, sdz) determined by P. Let t e R. Then 

log pp(l - t) = lim n - 1 log fexp (tj]IA o TA) d^P . 

J i = 0 

Furthermore, /?p is an analytic function, /?P(l) = -> 

/?,(!) = -h(nP) , and # (1 ) = a\TA, yA) + h(fip)
2 . 

Thus, the known invariants, the entropy and the information variance, can be 
derived from the ^-function. A combination of Lemma 30 with Theorem 29 gives 
the next result: 

Theorem 31. If a Markov chain (£?z, Mz, fj.Q, TB) is a finite factor of a Markov 
chain (Az, sdz, \ip, TA) then fiP = /?Q. In particular, the /^-function is invariant 
under finite equivalence within the class of all stochastic Markov chains supported 
by topological Markov chains. Furthermore, both entropy and information variance 
are invariant under finite equivalence within the indicated class. 

It is conjectured that the /^-function is even a complete invariant (some evidence 
in favour of this conjecture is gathered in [115]). 

Adler and Marcus [4] employed a more restrictive notion of factors and equi
valence in the sense that they required the factor maps to be not only finite-to-one 
but also one-to-one almost everywhere (with respect to any invariant probability 
measure which is ergodic and positive on all open sets; a topological formulation 



of almost everywhere valied assertions is possible, see the concluding section of [4]). 
It is easy to show that the /?-function is not complete with respect to this stronger 
concept of equivalence. For example, the Markov chains determined by matrices 

(^H^)-»<><*• >+«-< 
are both aperiodic and have identical /^-functions, fi(t) = p' + q*. However, the 
group invariant introduced in Section 12 distinguishes them. 

Next fix a probability vector p = (p(l), ...,p(n)) and consider all irreducible 
matrices M which have exactly n non-zero entries in each row, and these entries 
form a permutation of the vector p. Markov chains determined by matrices M and 
their inverses are called Bernoulli-type shifts. Using Lemma 30, it is easy to calculate 
the /^-function, which is the same for all such shifts based on the same vector p: 

P(t) = p(iy + ... + p(n)'. 

Proposition 32. [115]. All Bernoulli-type shifts based on the same probability 
vector are finitely equivalent. 

In particular, if T(p) and T(q) are Bernoulli shifts over the same alphabet such that 
p is merely a permutation of q, then they are finitely equivalent. The converse is 
a conjecture. A slightly weaker result is available supporting that conjecture. It was 
proved in [150] using a variational principle for the /?-function. Let $ : Az -* Bz 

be an isomorphism between two stationary sources [A, /*] and \B, v]. We call <P 
regular if there is an integer k ^ 0 such that (<&x)0 is determined by knowing 
(x/, j g k), and the same is true for $ - 1 . 

Proposition 33. Two Bernoulli shifts are regularly isomorphic if and only if there 
exists an enumeration of one alphabet giving identical one-dimensional distribu
tions. 

PART VI: UNIVERSAL CODES IN ERGODIC THEORY 

19. Interpretations of the Ergodic Decomposition 

Let us return to a classical result of ergodic theory which traces back to Krylov 
and Bogolyubov ([87], see also [121, 105, 154]). Let [A, /*] be a stationary source 
over a countable discrete alphabet A. A sequence x e Az is said to be regular, in 
symbols x e RA, if there exists a measure fix e S(A) such that for any cylinder E 
(i.e., for any E of the form {x e Az : x* = at, ...,xi+n^1 = a„], ieZ, n ^ 1, 
aj, ..., a„e A) we have 

/ U E ^ l i m n - ^ U T i x ) . 
n-oo j = 0 
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Theorem 34. (Ergodic decomposition theorem). The set RA is invariant, measurable, 
and fi(RA) = 1 for any fi e Jt(A). A measure fi e Ji(A) is ergodic if and only if it 
satisfies n{x 6 RA : fix = /z} = 1. Given n E Ji(A), the function x !-• fix(E) : RA -> 
-> [0,1] is /i-integrable for each E e siz, and 

m = f 
Jя 

More generally, ifjis //-integrable, then the function x H> E^(j) is also integrable, and 

hiih-H-
There are two different interpretations of this result. The first one is due to Gray 

and Davisson [42,43]. Accordingly, having some n e Jt(A) means the " t rue" 
source statistics is described by one of its ergodic subsources fix, x e RA. The measure 
H itself is considered merely as a weighting prior that expresses our degree of evidence 
in favour of the unknown " t rue" source. 

Or, we can simply suppose that p. itself is the " t rue" statistics, i.e., we say that the 
true source is stationary but non-ergodic [154]. 

Davisson [25] pointed out that this is not merely a play of words and that different 
interpretations suggest various formulations of the basic aims of universal source 
coding. Within the former interpretation, one seeks for codes which perform optimally 
for each member of the class of available ergodic subsources. In this way we can get 
the best result possible each time when a particular ergodic subsource turns out 
to be the " t rue" one. Within the second interpretation, one usually seeks for codes 
which perform optimally for even the "worst" component. 

A related third approach deals with universal coding for classes of sources without 
assuming some prior measure. This part will be devoted to an explanation of these 
approaches within coding problems of ergodic theory. 

20. Universal Codes for Classes of Sources 

Let (Q, J 7 ) be a standard Borel space (in applications, we shall usually work with 
a shift space). Let T: £2 -> £2 be an automorphism of (Q, J*) and let, .#(T)(and 
S(T)) denote the set of all T-invariant (and ergodic) probability measures on (Q, !F). 
Fix a finite set B. Let & denote the set of all finite partitions £ of Q into sets from 3F 
indexed by B. Since (Q, J*) is standard, each £ e 5<> induces a measurable map <PC : Q -* 
-* Bz (see Section 2) which is stationary: <P? 0 T = TB 0 <f>;. Since the Baire category 
argument works equally well in standard Borel spaces, we can extend Proposition 2 (c). 
Let fi e Ji(T). Then £ e & is a generator (relative to (T, p)) if and only if 4>c is an 
isomorphism between (Q, J5', p, T) and (Bz, 3@z, n^1, TB) (if (Q, &, \i) is a Lebesgue 
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space then it should be more appropriate to work with a completion of the c-field 3&z; 
however, the mod 0 properties of an isomorphism eliminate the differences between 
ff-fields and their completions). 

Let S c S(T). For each /. e S, let a subclass 9^ c 0 be specified. A partition f 
is said to be universal, if £ 6 n { ^ : fieS}. E.g., for each pieS, 9^ may be chosen 
so that for each f e ^ „ , the encoded process (using the coding <P;) has some prescribed 
property. Then a universal partition gives rise to a code such that the encoded pro
cesses each have the specified properties, for all p e S. 

Kieffer and Rahe [79] found various sufficient conditions for the existence of 
universal partitions. Let us introduce several notations. If £ <% e 0 and pL e M(T) 
then the partition distance is defined to be the number 

| c - 4 = iL>(c6AD'), 
beB 

where £ = (Cb; b e B) and £, = (Db; b e B). We assume some fixed ordering on B 
so that the elements of 0 can be considered as ordered partitions, too. For each /i, 
let 

Q&,{) = |C - 4 ; C,te0. 

On S(T) we define the least u-field such that for each E e 9, the map /x H-> H(E) : 
: S(f) -* [0, 1] is measurable. From now on we assume that S, 3) denote measurable 
subsets of S(T) and we let 9(S), 9(2>) denote the induced tr-fields. 

Theorem 35. Let S a S(T) and let 9 c 9 be countable. Let {9^ : \i e S} be such 
that (a) for any £ e 0, {fi e S : £ e 0,,} e 9(g), (b) for any p e S, £ e 0^, and £ e 0, 
the condition that |( - 4 = ° entails £ e 0^, and (c) for any n e S, 9 n 9^ + 0. 
Then n { ^ : / i e « ? ) 4= 0-

If ^ is e„-dense in 0 for each \ieS, Theorem 35 gives rise to a different sufficient 
condition: 

(a) for each p e S, 0^ is a non-empty g^-open set, 
(b) fdr each £ e ^ , {/. e <? : C e *?„} e .*"(<?). 

Now let S c <f(T). A function $ : <? x ^ -> [0, oo] is called admissible if for 
each C e 0, <P(', £) is measurable and for each /. e S, <P(n, •) is ^-continuous. Further, 
if jg c 0 and /t e„# (T), put 

e/t(CJ^) = i n f { | C - 4 : ^ 6 ^ } , Ce^-

The idea of admissible function is that, given fi, the zeroes of <P(fi, •) give desired 
partitions provided <P is chosen in an appropriate way (this idea appears also in 
[76] and [78]). 

Theorem 36. Let S e S(T), and let {9^ :/ieS} be a family of non-empty sets 
0^ c 0. Suppose that (a) for each £ e 0, the map ft H* Q„(£, 9^ is measurable and 
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(b) there exists a sequence ($„; n > l) of admissible functions <P„ : S x 0> -> [0, oo) 
such that Ce&>„ if and only if inf {4>„(n, C) • n = 1} = 0 for each /ieS and £ e ^>. 
Then n {^„ : f. e <f} * 0. 

Condition (a) of Theorem 36 is satisfied, if, for example, the conditions (a) and (b) 
formulated after Theorem 35 are valid. This, combined with Theorem 36 gives suffi
cient conditions in the sense that <P(/J,, £) = 0 for all ft e S. 

Theorem 37. Let S c S(T) and 4> : S x 0> -» [0, oo) be given. Suppose that (a) 
there exist admissible functions (<2>„; n = l) such that <P = inf <P„, (b) given fie S 
and e > 0 there is a <5 > 0 such that the conditions £ e 0> and <P([i, £) < <5 imply 
there is a £ for which |£ - <£|„ < e and <P(/i, £) = 0, and (c) for each ju e <? there 
exists ie&> with <*>(/<, £) = 0. Then there exists £ £ 0s such that $(/., £) = 0 for any 
H e S. 

The approximation property (b) is crucial here. It was used recently by Kieffer 
[78] in order to extend Grillenberger-Krengel theorem (see Theorem 22) to aperiodic 
non-ergodic sources. Actually, Kieffer constructed a function <P : 0> -> [0, oo), 
continuous with respect to the partition metric, whose zeroes are the generators 
for (TA, dist (X)) and which has an approximation property analogous to condition 
(b) of Theorem 37. By conclusion of that theorem, we find a generator relative to all 
ergodic sources simultaneously. 

Finally, we have the following criterion: 

Theorem 38. Let S c S(T) and let 0>M, fieS be nonempty subsets of 0> such that 
(a) each 0^ is g^-closed and (b) for any £ e 0>, the map fi (-> g;,(£, 0>^) is measurable. 
Then n {&, : H e S) #= 0. 

Let .^"(B) and <f"(B) denote the sets of all aperiodic elements of Jl[B) and S(B), 
respectively. The notations Ji"(T) and S"(T) have the same meaning. 

Let 0^ = {£:dw(n&!T
1, v j < e}, where v„ £ .# (£) . If n e S"(T), a coding $ 

such that the latter inequality is valid is possible by Lemma 5, p. 22 of [103]. Using 
the conditions (a) and (b) formulated after Theorem 35 we get our first universal 
coding result: 

Theorem 39. Let S c S"(T) and let {vM : n e S} c Ji(B) be such that for each 
E e 0SZ, the map /j, H-> v,,(E) from S to [0, 1] is measurable. For any e > 0 we can 
find a partition £ e0> such that dw(ix<l>^1, v;/) < a, fie S. 

A simple consequence is a universal version of Rohlin's lemma: 

Corollary 40. Let S = J/"(T), N = 1, and e > 0 be given. Then there exists 
a partition £ e 0> such that, for any [i e S, dw(fi$^i,v) < s, where v e Ji(B) is an 
arbitrary fixed measure. In particular, there exists a (T, N, e)-Rohlin set E, the same 
for all \i e S. 



Put <P(n, C) = d(fi<Pl-
 i,vli), where pie8 cz 8a(T) and v,, corresponds to /.i as in 

Theorem 39. An application of Theorem 37 gives the next result. 

Theorem 41. Let 8 cz 8a(T). Let {v„ : /t e 8} c 8"(B) be Bernoulli measures 
such that the map \i H* v„(E) is measurable for each E e !MZ. Let h(y^ z% hJ^T), 
lie 8. Then there is a £ e 0" such that /*<?"' = vM for all /* e 8. 

The assumption (a) of Theorem 37 is clearly satisfied. Assumption (c) reads as follows: 
for each \ie8 there exists a partition £ e ^ such that d(n$^x, vM) = 0. But this 
follows from Sinai's theorem (see [134] or [136]). The approximation property (b) 
follows, on account of our assumptions, from Proposition 8, p. 26 of [103]. Theorem 
41 prepares the way to a universal form of Sinai's theorem: 

Theorem 42. Let v e 8"(B) be a Bernoulli measure and let fi e Jfa(T) be given. 
Suppose there exists a probability space (A, :Sf, X) and a family of measures {/i0 : 0 e 
e i j c 8(T) such that (a) the map 61-» fie(E) is measurable for each Ee J~ and (b) 
H(E) = J>e(E) /l(d0). Suppose that 

A{0eA : fe„ e(T)£h(v)} = 1. 

Then there exists ( 6 ^ such that //<P~! = v. 

In other words, if [E, v] is a Bernoulli source and fi e Jia(T) is such that all of its 
ergodic components have enough entropy then we can encode the system (Q, J~, 
H, T) onto (Ez, ^ z , v, TB). The last two assertions concern a similar extension of 
Ornstein's isomorphism theorem. 

Theorem 43. Let 8 c 8"(T) be a set of Bernoulli measures. Suppose for each 
E e @)z, the map /. i-* v„(J5) : 8 -* [0, l ] is measurable, where v„ is a Bernoulli 
measure for each \ie8. Let h„(T) = h(v„), /i e <f. Then there exists a partition 
£ e ^ such that, for any fie 8, (a) /i<£~x = v„ and (b) f is a generator (relative to 
(T.M». 

In other words, there exists a universal perfectly noiseless code $? : £2 -> Ez; that is, 
cPc is an isomorphism between (Q, J~, /z, T) and (Ez, 3fiz, v„, TB) for all fie8 simul
taneously. The proof proceeds using again Theorem 37 for a conveniently chosen 
admissible function. An immediate corollary is a universal version of Ornstein's 
theorem: 

Theorem 44. Let fit e Ji(T) and /i2 e Ji{TB) be given. Suppose there exist pro
bability spaces (Ah 2?u X,), i = 1, 2, where (A;, ^?;) are standard Borel spaces. Let 
8i = {nl

e : 6 6 A;} be families of Bernoulli measures, 6\ c <fa(T), <f2 c 8"(B). 
Let the map (9i-» \i\ be a measurable injection and let /.,-(£) = J/4(E) ^,(d0). Suppose 
there is an injective measurable map cp from A. onto A2 such that A2 = A ^ " 1 and 

K^(T) = h(nlm) ; 9e A,. 
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Then there exists a r e 0> such that nt $;/ 1 = fi2 and the code $ ? is perfectly noiseless. 

21. Universal Isomorphism Theorems 

An advantage of Kieffer-Rahe approach is, beside its generality, that it applies 
also to stationary non-invertible codes. On the other hand, it has also some draw
backs. First of all, being based on Ornstein's approximation techniques, it does not 
seem capable of extensions to finitary codes. Also, once having a result like Theorem 
44, a natural question arises whether one can find a complete invariant for isomor
phisms of mixtures of Bernoulli sources. Also here the approach described in Section 
20 does not seem to give any suggestions. 

In [145] we developed a completely different approach to extensions of iso
morphism theorems from ergodic to the aperiodic non-ergodic case. Since the 
general theory, according to which a stationary code $ : Az -> Bz is an isomorphism 
between two stationary aperiodic sources [A, [i\ and [B, V] if and only if it is com
posed of "local" isomorphisms between corresponding ergodic components, has 
been published recently in this journal, we omit the general theory and merely give 
a brief account of its applications. 

Let [A, n, X~\ be an aperiodic stationary source over a countable discrete alphabet 
A such that 

H*(\i) = ess.sup [h(fix) : x e RA[ji]} 

is finite. Note that H*(n) is the asymptotic rate defined first by Winkelbauer [153, 
154] as 

H*(n) = sup lim sup n~l log L„(e, / / ) , 
0 < £ < 1 n-»oo 

where 

L„(e, n) = min {||E|| : E a. A", n"(E) > 1 - e} , 0 < e < 1 . 

It was generalized in the spirit of Kolmogorov-Sinai invariant to transformations 
of abstract probability spaces [155], to free actions of the group Zd [138], and to 
actions of countable amenable groups [148] as a new invariant. Let 

K = INT {exp H*(n)} + 1 . 

Theorem 45. [155]. Let [A, \i, X] and K be as above. Then there exists a finite al
phabet B with at most K letters and a source [B, v, Y] such that we can find an iso
morphism $ : Cz -> Bz with Y = $X. 

There is an asymmetry related to "local" and "global" codes. We explain it on the 
theorem. As pointed out in Section 4, Theorem 45 says, equivalenfly, that there 
exists a finite generator (relative to (TA, fi)) with | £ | :g K. As shown in [155] we then 



have 

fi{x eRA:C is a generator relative to (T4, fix)} = 1 . 

Clearly £ is not the best we may wish. For example, if X e RA is such that h(/xx) <̂  
<̂  H*(/x) then, by Krieger's theorem, there exists a generator £.. "relative to (TA, nx) 
with at most INT {exp h(fix)} + 1 < K elements. However, the result is natural 
for if we take a partition £ with |C| ^ K then we can find, with positive probability, 
an ergodic component fix with h(fix)>log |f|. Consequently, such a partition cannot 
be a generator "universally", i.e., for /^-almost all ergodic components of [A, / . ] . 
Furthermore, as shown in [148], one has to take the optimum generators for ergodic 
components in order to obtain the best bound K for the mixture. 

Of course, this asymmetry does not appear in the general theory [145], where no 
additional restrictions are imposed upon the local and global isomorphisms. 

Next, let us prepare the notations for an alternate formulation of the universal 
Ornstein's isomorphism theorem. Let [A, f.i, X] be stationary. For each e e (0, 1) 
define 

He(n) = l imn" 1 log L„(e, p) 

so that 
H*(n) = lim HE(fi) 

(see [153, 154]). Let 

dA(t) = ti{x e RA : h(/ix) <. t] , t Z 0 ; 

cA(5) m inf {/ : dA(t) ^ 3} , 0 < 5 < 1 . 

As proved in [139] the limit defining Hj^i) exists if and only, if 1 - s is a continuity 
point of cA('), and in this case we have that H£(n) = cA(l — ^). If \B, v, Y] is another 
stationary source, we let dB and cB denote analogous quantities. 

Theorem 46. Let [A, /x] and [B, v] be two stationary aperiodic sources over 
countable discrete alphabets. If they are isomorphic then dA(t) = dB(t), t ^ 0. 
Conversely, if dA(t) = dB(t) for all r ^ 0 and the sources each have the property 
that almost all ergodic components are Bernoulli sources (possibly with infinite 
entropies in which case it is assumed that the infinite entropy components have the 
same total weights) then the sources [A, n~] and \B, v] are isomorphic. 

Thus, the distribution function of entropy is a complete invariant for the class of all 
sources whose components are Bernoulli. Extensions to finitary codes are also given 
in [145, 146]. Another application is an extension of Theorem 18 to the aperiodic 
non-ergodic case. 

Theorem 47. Let [A, fi, X~] be a stationary aperiodic source over a countable 
discrete alphabet A such H*(/t) is finite. Let [B, v, Y] be an ergodic process over 
a finite alphabet B such that h(v) > H*(/t). Then there exists an invertible stationary 

47 



code $ : Az ->• Bz such that djji$£1, v) < e. In particular, if K = INT {exp 
H* (/j)} + 1 and Y is the equiprobable I1D process over the alphabet B then the 
above conclusion is valid. 

PART VII: CODING PROBLEMS OF INFORMATION THEORY 

22. Basic Coding Problems 

In this section we discuss the basic coding problems of information theory and 
motivate the choice of problems to be dealt with in subsequent sections. Also, we 
attempt to illustrate how ergodic theory can make precise intuitive but necessary 
vague formulations of several information theoretic problems. In his pioneering 
paper [125] Shannon formulated the basic types of coding problems in information 
theory: 

(a) noiseless source coding, 
(b) coding for sources with a fidelity criterion, 
(c) channel coding, and 
(d) joint source/channel coding, 

and formulated fundamental (although often only heuristic) ideas as to their proofs 
(for problems (a), (c), and (d); as far as concerns (b) see [126]). 

We start with so-called overall source coding operation which involves (a) and (b). 
The task of the overall source coding operation is to transmit information produced 
by a stationary source X across a noiseless channel with finite capacity C in such 
a way that the resulting reconstruction of X at the receiver approximates X as well 
as possible. When h(X) > C, a perfect transmission is excluded, and consequently 
the overall source coding operation splits into two distinct steps [14]. On the first 
step, we must carry over the process of entropy reduction. Its goal is to transform 
the given process X into its approximation X satisfying h(X) ^ C. This necessarily 
inserts some distortion in the reproduction process X so that the coding X -> X 
cannot be invertible. In order we can evaluate the distortion, we seek lor a functional 
relationship between the entropy of X and the minimum attainable average distortion 
— the distortion-rate function (for historical reasons, however, the dual approach, 
i.e. the rate-distortion theory was prefered; see [9]). 

The first part of overall source coding operation still fails to fulfil the goal of actual 
data compression, i.e., the goal of sending less source characters over the channel. 
This is the objective of the second step called noiseless source coding operation. 
Its goal is to map the process X obtained on the first step into an appropriate input 
process Y = (Y; i e Z) of the given noiseless channel. A noiseless channel does not 
produce additional errors as to the identity of X. Hence, it is required that the coding 
X -> Y be nearly invertible. Moreover, a natural requirement is that the overall 



source coding operation be efficient in the sense that the channel be used ar rates 
near its capacity. Formally, this means that h(Y) « C = log \\B\\, where B is the 
channel alphabet. As /i(Y) ^ log ||B|| for any process Y over the alphabet B, the 
requirement that h(Y) & log ||J5|| forces Y to be nearly independent and use each 
of ||B|| letters almost equiprobably. For these reasons the second step is often called 
the operation of redundancy removal [41]. 

In order to keep clear why, and how, ergodic theory comes in, let us sketch the 
approach to redundancy removal within the frame of traditional block coding 
technique (see [125, 126]). A block code of order At (see Section 4) partitions source 
sequences x = (x,; i e Z) into consecutive non-overlapping blocks of length At, 
and codes them individually. The individual coding function either maps At-tuples 
of source letters into At-tuples of reproduction letters (a fixed-rate code) or, maps 
the source At-tuples into variable length non-overlapping blocks of reproduction 
letters (a variable-rate code). Although we implicitly assumed in the above considera
tions that X is again a stationary process, the overall source coding operation can be 
described also without that restriction [41, 9, 39]. But for reason to be clear below 
let us consider the operation of redundancy removal separately and suppose X 
is a stationary process such that h(X) g C = log ||B||. 

It is intuitively clear that a method aiming to produce redundancy removal has to 
take into account the probabilities (frequencies) of source A'-tuples so that a fixed-
rate code is not appropriate. Thus, consider a variable-rate code of order N which 
assigns to each Atrtuple xN = (x0, ..., %s-i) SL word composed of letters from B 
having the length l(xN). The average length is 

l(N, - £ ) - • £ l(xN) Prob [XN = xN] . 

A classical variable-length source coding theorem (see p. 785 of [25] or [39, 8]) 
implies that 1(N, X) ^ H(XN). The Nth order redundancy is defined to be the 
quantify 

rN(X) = N~i[l(N,X)-H(XN)]^0. 

Now, the best result we can expect is the existence of a sequence of block codes 
of orders Ar = 1,2,.. . such that 

lim rN(X) = 0 . 
H-»aa 

However, for block codes we cannot speak about a limiting coding X -* Y which 
performs a complete reduction of redundancy. Thus, we have no process Yas in the 
above informal discussion of the overall source coding operation. Does this mean 
that it has been merely an aesthetic but necessarily vague description of noiseless 
source coding? In particular, what should the clauses "almost equiprobable" and 
"nearly independent" mean? 

Suppose for a moment there exists a stationary coding X -> Yso that Yis again 



a stationary process. We can say that Yis almost equiprobable if, for some small 
e > 0, we have that 

(*) |Prob[Y0 = b] - | | 5 | | _ 1 | <e, beB. 

We define Y to be nearly independent if, for any n >. 1, the random variable Y„ 
is nearly independent of the vector (Y0,..., Yn-i) = Y", i.e., for some small e > 0, 

(**) £ |Prob [Y„ = b, Y" = b] - Prob [Y„ = b~] Prob [Y" = b] | < e . 
fceB.befl" 

Now we can make the intuitive description of noiseless source coding a rigorous 
fact: 

Proposition 48. For every s > 0 there is a 6 > 0 such that the assumption that 

| f t ( Y ) - l o g | 5 | | | < <5 

implies Ysatisfies (*) and (**) above (i.e., Yis s-equiprobable and e-independent). 

Thus, for stationary processes, the requirement that h(Y) « C = log ||B|| forces Y 
to be almost equiprobable and nearly independent. The proof of Proposition 48 
can be found in [103, 128], and the proposition itself serves as a starting point to 
approximation arguments used in the proof of Ornstein's isomorphism theorem. 
Moreover, we can prove even a little bit more: 

Proposition 49. For every e > 0 there exists a d > 0 such that the inequality 

|h(Y) — log ||B||| < 5 implies the existence of a stationary coding Y-* .J" such that 

Prob [X0 * Xo] < e . 

But this can be accepted as a reasonable formulation of the vague clause that the 
coding X -* Yis "nearly invertible". Since we have been completely free as to the 
choice of £ in the latter two assertions, a seemingly plausible hypothesis is that, 
using some appropriate limiting operation, it might be possible to find stationary 
codings X -* Yand Y-* X such that 

(a) Yis exactly independent and equiprobable, and 
(b) Prob [X0 4= Z 0 ] = 0, i.e., the coding X -* Yis invertible. 

However, ergodic theory shows us that the hypothesis is overoptimistic. Indeed, 
(a) forces h(Y) = log ||B||whence (b) entails h(X) = log | B | (for entropy is an iso
morphism invariant [ l l ] ) . Hence, in general we can expect only results weaker than 
(a) and (b). 

First let us argue that (a) is excluded. Actually, suppose (a) is valid and h(X) 4= 
4= h(Y) = log | | 5 | . Then we must have h(X) < h(Y) for h(X) < C and C = h(Y), 
On the other hand, X -* Yis a stationary coding so that h(Y) < h(X), a contradic
tion. 
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Consequently, the only type of assertions that remain at our disposal is as follows. 
There exist stationary codings X -» Y, Y-+ X such that (b) is valid and Yis close 
to Y from (a). But these assertions (depending on which criterion of closeness has 
been chosen) are just improvements on Krieger's finite generator theorem (see Section 
15). Thus, Krieger's theorem and its improvements represent solutions to the problem 
of noiseless source coding within the frame of stationary codes. 

By these considerations we are tempted-to infer that it is only the entropy mismatch 
h(X) < h(Y) which is responsible for violation of (a) and (b) above. Again, ergodic 
theory helps to clarify the situation. Indeed, suppose that h(X) = h(Y) -= log ||J5|| 
so that Yis as in (a). Of course, this does not force X to be also independent and 
equiprobable for the alphabet of X can be much larger than B. However, Ornstein's 
isomorphism theorem tells us that there exists an invertible stationary coding X -» Y 
if and only if X is a Bernoulli source. This is a measure theoretic counterpart of 
a result by Marcus [91] who investigated connections of topological Markov chains 
with entropies log n,neN, with full shifts over n symbols. Indeed, h(Y) = log ||B|| = 
= Kop(TB). 

To summarize, we have seen the close connections between generators problems 
and noiseless source coding. Furthermore, it became clear that it would be desirable 
to develop the theory of entropy reducing coding for stationary codes. 

Finally, let us deal with channel coding problems. In our review only noiseless 
channels were investigated. The loss is not as discouraging as it might appear at 
glance [51]. The point is that noisy channels possess families of input sources which 
can be transmitted over the channel directly without first encoding them, and then 
exactly decoded from the channel output using a stationary code. Such sources have 
been called invulnerable in [51]. The concept of invulnerability is closely related 
to that of zero-error transmission over noisy channels". Thus, the problems of noiseless 
source coding and noiseless transmission over noisy channels exhibit not only an 
external similarity but, as we have already mentioned, there exists a unique method 
for proving both kinds of coding theorems. 

23. Entropy Reducing Coding 

Since the theory of source coding for sources with a fidelity criterion evolved 
primarily within the block coding approach [9] it is reasonable to start with a result 
of Kieffer [71] who showed that it is not necessary to give separate proofs to block 
and sliding-block versions of source coding theorems. 

Let (A, stf) and (A, s£) be measurable spaces and Q : A x A -* [0, oc) a jointly 
measurable function. For each n e N let 

n - l 
Q„(X", y") = n ~ J X Q(X(, yt) ; xn e A", y" e A". 
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The family (Q„; n > l) is called a single-letter fidelity criterion and Q itself a distor
tion measure. Other kirids of fidelity criteria also can be of interest, e.g., the 0—1 
ones (see [66]; a 0 - 1 fidelity criterion can be used to unify the tasks of noiseless 
coding and of entropy reducing coding, respectively). A map <P : Az -> Az is said to 
be a block code if there exists an N e N, a finite set B <=. AN, and a measurable map 
<P : AN -> B such that 

( f c ) ^ * - 1 - * ^ * - 1 ) ; x*Az, ieZ 

(this definition slightly differs from that one adopted in Section 4, the difference 

being a consequence of more general alphabets involved). The rate of the foregoing 

code is the number 
R($)=N'1\og\\0(AN)\\. 

If $ is used to code LI e J/(A), the resulting average distortion is, by definition, 

Q(Ф,џ)=[QN(x\(Фx)N)џ(àx )• 

Similarly, a map ¥ : Az -> Az is called a sliding-block code if there is an N e N, 
a finite set B c A, and a measurable map ¥ : A2N+1 -» B such that 

(¥x)t = ¥(x\+_N); xeAz, ieZ. 

Put Mn(¥) = \\{(¥x)'[ : x e Az] \\, n = 1, 2 , . . . . The rate of ¥ is defined as the limit 

r(¥) = \imn-
1\ogMn(¥) 

and the average distortion when ¥ is used to code LI e Ji(A) is 

Q(¥,H)= [Q(x0,(¥x)6)n(dx). 

Theorem 50. [71]. Let A, A, and Q be given as above. Let [A, /J] be a stationary 
source. Then 
(a) given a block code cP and an 8 > 0, there is a sliding-block code ¥ such that 

r(¥) = R($) + e , Q(¥, fx) = Q($, LI) ; 

(b) given a sliding-block code ¥ and an s > 0, there is a block code $ such that 

R($) = r(¥) + e , Q($, H) = Q(¥, LI) . 

An analogue of Theorem 50 can be obtained also for variable-rate block and sliding-
block codes (see [71], Theorem 2). Theorem 50 allows to extend and unify many 
previous results. We quote several of them which bear connections to recent ideas 
of ergodic theory. 

Let R > 0. Then the optimum performance theoretically attainable (OPTA) 
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using block codes is defined by 

<56(R, fi) = inf {Q($, .U) : $ block code, R($) ^ R} . 

Similarly, one defined the OPTA <5S(R, n) using sliding-block codes. 

Corollary 51. Let [A, ji\ be a stationary source. For each R > 0 we have 
«5,(R, fi) = ,5S(R, n). 

This result has been known previously only in certain special cases [47, 131, 26]. 
Shields and Neuhoff [131] considered the case when A = A is a finite alphabet. 
The idea of their proof is as follows. Suppose that ¥ is a sliding-block code of order 
m. Take N > 2m + 1. Use ¥ to code typical source iV-blocks into N — 2m blocks, 
and then fill in the remaining 2m places arbitrarily. If N is large then the number 
of typical iV-blocks is near exp {Nh}, where h is the entropy of the encoded process. 
This gives the bound R(<I>) g r(¥) + E. If N is enough larger than m, then the addi
tional distortion from filling in the 2m places arbitrarily will be small (in fact, if X 
is an ergodic source and X = ¥X, where ¥ is a sliding-block code, then (X, X) 
is jointly ergodic so that the empirical distortions converge with probability one to 
Q($, fl)). 

The converse is more involved. On the first step one uses Theorem 7 to construct 
an auxiliary binary sliding-block coding, and this is then used to indicate when to 
use the block code. Then one proceeds similarly to Section 6 (this gives the desired 
bound to rate). Using the independence property from Theorem 7 one can control 
also the average distortion of the resulting sliding-block code (to this end recall that 
Theorem 7 entails the existence of a strong Rohlin set depending on only a finite 
number of coordinates (see Section 7) so that we really obtain a sliding-block code 
of some finite order). 

Other applications of Theorem 50 will be discussed later in connection with 
universal source coding problems. 

24. Sliding-Block Source Coding and ^-Distance 

A main task of source coding theorems is to relate the OPTA to an information 
theoretic optimum — the distortion-rate function (DRF). This gives an operational 
meaning to the DRF and, at the same time, allows to calculate, at least for some 
classes of sources, the OPTA (as to that consult [13]). However, the proof of coding 
theorems even for ergodic sources is a non-trivial task, the difficulties coming 
from the requirement that a property like ergodicity of the partitioned process 
should hold (this is necessary in order one can employ a Shannon-style random 
coding argument to a process obtained by a block code of some finite order; see 
[9, 43, 48]), As discussed in detail by Gray, Neuhoff, and Omura [46], the problems 
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are caused mainly by a somewhat artificial mutual information constraint involved 
in the definition of the DRF. They developed process definitions of OPTA's and 
DRF's in which the mutual information rate constraint is replaced by the con
straint concerning the entropy of the reproduction. 

The results to be presented below are also in the spirit of [46] and follow [47]. 
We assume that Q is a non-negative distortion measure on (A u A) x (A u A). 
If A is finite, Q may be any finite-valued function, if A is a metric space, we take Q 
to be the metric and assume that A u A is a complete separable metric space under g. 
If [A, fi, X] is ergodic and X -> X is a sliding-block coding then the pair process 
(X, X) is again ergodic so that 

lim n-11 Q(Xh tt) = E„ Q(X0, &(X»N)) = Q($, H) 
n-*x i = l 

for any sliding-block code $ of order N. We indicate its order by a superscript, viz. 
$ = ¥N\ Let 

Then 
<5(R, N) = inf {ě( í>w, fi) : h($mx) ^ R] 

M8(R,N) = 5s(R,fi), R>0 
JVžl 

(cf. Section 23 for the definition of the sliding-block OPTA). Our results will relate 
the OPTA to the process g-distance between source and constrained entropy repro
duction processes. This and equivalent definitions of e-distance are given in [48]: 
if [A, fi] and [A, v] are two stationary processes then we define 

Q([A, H], [A, v]) = inf Ep Q(X0, X0), 
pe/ivv 

where JX v v denotes the set of all distributions of stationary pair processes (X, X) 
such that dist (X) = fi and dist (X) = v. Recall from [48] that if Q is a metric then 
so is Q. 

Theorem 52. Suppose A and A are finite and g is an arbitrary finite-valued distortion 
measure. Let [A, p] be a stationary and aperiodic source. Then 

<5S(R, fi) = inf Q([A, fi], [A, v]). 
U,vW(v)|K 

The proof of Theorem 52 does not involve any random coding argument and is 
based on Rohlin's lemma. For later reference we point out the following result which 
can be obtained as a byproduct: 

5S(R, fi) = l im <5(R, JV) = ^ * ( R , fi), 
JV-oo 

where (5*(R, fi) is the OPTA using infinite codes: 

(5*(R, fi) = inf {Q($(CO), fi) : h($ix)X) ^ R} . 
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This means that sliding-block codes of finite orders perform, in the limit of orders, 
as a code which has at its disposal the entire source sequence. Such codes were 
foreseen by Krengel [84]. 

The proof of Theorem 52 follows easily from the following assertion. 

Proposition 53. Given two finite alphabet stationary aperiodic sources [A, fi], 
[A, v], a finite-valued distortion measure Q, and a 5 > 0. There exists an !V(<5) such 
that for any N ^ N(8) we can find a sliding-block code ¥N) for [A, /x] such that 

Q(¥N), H) g Q([A, pi], [A, v~) + 5, 

h(¥N)X) S h(v) + § . 

Recall from Section 6 that a quadruple (T N, E, C), where E is a strong (T, JV, s)-
Rohlin set and £ is a finite measurable partition, is sais to be an e-gadget. Two e-
gadgets (T N, E, £) and (U, Ar, E, £) are said to be isomorphic (denoted by " ~ " ) if 

N-l JV-t 

d( V T~% | E) = d( V U~'<M F) (cf. Section 5) 
i = 0 i = 0 

Let yA, yA denote the natural zero-time partitions of Az and Az, respectively. Let 
~0 and | 0 denote the first and the second coordinate zero-time partitions of Az x Az. 
Since [A x A, /j. x v] is jointly aperiodic, we can construct by Theorem 5 a good 
joint gadget (TAxA,N,F, ~0 v | 0 ) . Also, we can construct a good source gadget 
(TA, N, F, yA). Then the projection of the joint gadget on the first coordinate is iso
morphic to the source gadget, i.e. 

d( V r ; ' ^ | F) = d(vTAiA~01F). 
i=0 i = 0 

As in [128] we can find a partition r\ such that the isomorphism is extended to 

(TA, N, F, yAvr,)~ (TAxA, N, F, l0 v ~0). 

The new gadget thus obtained is isomorphic to the second coordinate projection 
(U, N, F, I) of the joint gadget: 

d(VTA
in\F) = d(VT2lAlo\F). 

i = o i = o 

This implies closeness of probabilities assigned to atoms as well as closeness in entro
py. This can be used to bound the distortion and the entropy of the reproduction 
process which is obtained as a stationary coding determined by (an extension of) r\. 
An application of the standard approximation argument allows to find a sliding-
block coding with nearly the same distortion and entropy. 

Having a finite alphabet coding theorem one usually employs a quantization 
argument in order to extend it to more general alphabets (see, e.g., [124] and a de-
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tailed explanation in [43]). We omit these results and refer an interested reader 
to [44] and the references therein. 

We close this section by a mismatch theorem which evaluates the loss in the code's 
performance when the code was designed for some source [A, v] but the true source 
is [A, n]. 

Proposition 54. [48]. Let [A, fi] and [A, v] be two stationary sources over a se
parable metric alphabet A. Then 

\Sb(R, (i) - Sb(R, v)| <£ Q([A, H], [A, V]) , 

\ds(R, n) - S,(R, v)| = Q([A, ix], [A, v]) . 

This result is very close to universal source coding theorems and we shall comment 
on it in the next section. 

25. Universal Source Coding 

The idea of universal source coding traces back to Fitingoff [35, 36] but its modern 
origins were founded by Davisson [25] (for noiseless source coding) and by Gray 
and Davisson [43] (for source ceding with a fidelity criterion). Davisson classified 
the notions of universality similarly to the classification of statistical decision rules, 
and a similar classification within source coding with a fidelity criterion was given 
in [95]. In this section we shall deal with two types of universal coding called weak 
and strong universal coding. 

Let (A, sd) be an arbitrary measurable space, A a set, and Q : A x A —> [0, oo) 
such that Q(., y) : A -> [0, oo) is measurable for each y e A. We assume that (Q„; 
n = 1) is a single-letter fidelity criterion determined by Q (see Section 23). In what 
follows it is more convenient to work with code books rather than with block codes. 
As already pointed out, a code book B c AN gives rise to a block coding function 
<P : AN -> B by the rule that <P(xN) = xN e B, where 

QN(XN, xN) = QN(XN | B) = min QN(XN, yN) . 
y"eB 

We put R(B) = N~1 log | | j j | and Q(B, p) = E,, QN(XN \ B). Let £ c= £(A). We suppose 
there is a common reference letter y* e A such that for any ixeS,^^ Q(X0, y*) < oo. 

A sequence (BN; N ^ 1) is said to be universal weakly minimax sequence of codes 
for S at the rate R (or, simply, weak universal) if 

(i) BN is a finite subset of A* N = 1, 2 , . . . , 
(ii) R(BN) < R,N = 1,2,..., and 

(iii) lim Q(BN, p) = D(R, /Z) for each \i e S, 
JV-»co 

where R ~> D(R, /.) is the DRF of the source fi; see [9] or [43]. This type of coding 
is also called universal fixed-rate coding [95] and it was investigated by many authors 
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(e.g., see [158, 67, 25, 95]). In particular, various types of conditions were derived 

under which weak universal coding is possible. A common feature of these conditions 

is a separability property singled out as a necessary and sufficient condition by Kieffer 

[67]. Let us first formulate the necessary condition: 

Proposition 55. A necessary condition for the existence of a universal weakly mini-

max sequence (BN; N 2: l) for S at every rate R > 0 is the following: 

there exists a countable class 3d of block code books such that for any f.ie S and 

any e > 0, for each block code book B there is a B ' e J such that R(B') < R(B) + e 

and Q(B', /J) < Q(B, /I) + e. 

The condition is satisfied, for example, in the following cases: 

(a) A, A, or S are countable, 

(b) A1 is a separable metric space, Q is bounded and such that Q(O, .) is continuous 

on A for each a e A, 

(c) Q(X, y) = f\d(x, y)~\, where d is a metric on A u A, A or A are separable under d, 

and j : [0, co) -» [0, oo) is a non-decreasing function such that for each a > 0, 

\imf(x + a)jf(x) = \. 

All weak universal coding results of [95] are special cases of the following general 

result of KiefTej: 

Theorem 56. Suppose S is separable in the sense of the condition formulated 

in Proposition 55. Then for any rate R > 0 these exists a universal weakly minimax 

sequence of codes (BN; N S; l) for S at the rate R. Moreover, that sequence can be 

chosen so that, for any [i e S, 

]\m\EllQN(XN\BN)-D(R,^)\ = 0 

As said at the beginning of this section, a main task of source coding is to relate the 

OPTA and the DRF, i.e., to prove the following relation: 

<5„(R, n) = D(R, ft), fie, 

II n e Ji(A) \ S(A) then Ziv [158] observed and Gray and Davisson [43] studied 

in detail the surprising fact that the OPTA for a mixture of ergodic subsources is 

not given by the DRF calculated for that mixture, but rather by the weighted average 

of the DRF's of the subsources. The most general result is the following corollary 

to Theorem 56: 

Theorem 57. Let S <= S(A) be separable. Let (Q, !F, X) be a probability space 

a n d {fim : co e Q} <= S a measurab le family. Let ji = jfim l(dco) satisfy E;J Q(X0, y*) < 

< oo for some reference letter y* e A. Then 

<5fc(R, џ) = Г D(R, џы) Å(dco) , R > 0 . 
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As in the ergodic case 8b(R, fi) = D(R, JX), we can deduce from the convergence 
assertion in Theorem 56 also 

(*) lira Q(BN, it) = 8b(R, n), neS. 
iY->oo 

Observe that a combination of Theorems 56 and 50 shows that weak universal 
(fixed-rate) block coding for S is possible if and only if weak universal (fixed-rate) 
sliding-block coding is possible. All results of Sections 23 — 25 are valid also for variable-
rate codes [71]. An interested reader should start reading [71] and [67]; the methods 
used there unify the methods developed in a series of previous papers (see [158, 117, 
118,90, 89]). 

As shown by (*), weak universal coding corresponds to pointwise convergence 
of average distortions Q(BN, H) to the OPTA 8b(R, p.). If the convergence is uniform 
in n e S, we speak about strong universal coding (see [95, 43]). In light of Proposi
tion 54, if S can be covered by a finite set of c-balls (in the process g-distance) for 
each e > 0, we get strong universal coding for S. Thus, if Q is a metric distortion 
measure, a sufficient condition for the existence of strong universal coding of S 
at any rate R > 0 is that S be g-totally bounded (this is Corollary 2 of [48]; see also 
[95]). Before formulating general assertions about strong universal codding, two 
remarks are worth make. 

If R(BN) -» R and if the convergence Q(BN, p) -» 5b(R, fi) is uniform in fie S, 
then for any E > 0 and for N large enough we find a single code book BN such that 

\R(BN) - R| ^ 8 , . 

\Q(BN, fi) - 8b(R, n)\ ^ e•., iieS. 

This is the main advantage of strong universal coding, for in the weak case we only 
could assert existence of a sequence of code books which was good for all sources 
just asymptotically in the limit of increasing block length. 

On the other hand, the condition of j?-total boundedness of S is much more re
strictive than the separability condition. This puts the following problem. If the 
alphabets are finite and Q is a finite valued metric distortion measure, then a set S 
is ^-totally bounded if it is 3-totally bounded [95]. However, even classes such small 
as the class of all first-order binary Markov sources are not 3-totally bounded. 
Neuhoff and Shields [96] investigated the question whether strong universal coding 
is possible at least at sufficiently large rates. They obtained the following result: 

Theorem 58. (a) Let S be the class of all first-order Markov sources over an alpha
bet with K letters. If R > log (K — l) then strong universal coding of S at the rate R 
is possible. If K > 2 and 0 < R < log (K — 1), then strong universal coding of S 
at the rate R is impossible. 

(b) For any K and n there exists a number R*(K, n) such that strong universal 
coding of S at the rate R is possible ;f and only if R > R*(K, n) for the class S 
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of all n-step Markov sources over an alphabet with K letters that are either non-ergo-

dic or have transient states. 

Part (b) puts strong limitations to classes S. Indeed, only rates 0 < R < log ||A|| 

are of interest. But as shown in [96], p. 365, lim R*(K, n) = log K. 

Kieffer [68] developed general criteria for strong universal source coding which 

include Theorem 58 and other known results as special cases. Let A be a finite alphabet. 

Then the weak closure S of any set S c J/(A) is weakly compact (as Ji(A) itself 

is weakly compact [116]). For each Borel set S c: J/(A), let 3$(g) denote the c-field 

of all Borel subsets of S. Given fi e J/(A) there exists a probability measure /. on 

(4A), @(S(A))) such that 

џ = Г vџ(dv) 
J<?U) 

(this is a different but equivalent formulation of the ergodic decomposition theorem 

(see Theorem 34 above); cf. [42, 43,15]). If S e @(S(A)), let S = {p.e Jt(A) : p.(S) = 

= 1}, i.e., S consists of all those measures in Ji(A) which have their ergodic compo

nents in S. Let A be a finite set and Q : A x A -> [0, GO) an arbitrary function. 

Let (Q„; n 3; 1) denote the corresponding single-letter fidelity criterion. Put 

a(!t) = E^[ m i n e(xo, «)] » J" e Ji{A) > 

i.e., a(//) is the minimum possible distortion when coding the source [A, /.] . Let 

P(li) denote the corresponding rate, viz. 

P(H) = R(a(4 /i) 

(R(., ft) is the usual RDF [9]). If S 6 3S(S(A)), put 

R*(S) = l° i f <f = <?; 

V ; [ sup ess.sup f$(v) if S 4= 3. 
^s\s ™e(A)in 

If A = A and Q is the Hamming distance then a = 0, fl(fi) = h(ji), and thus the latter 

essential supremum is the asymptotic rate H*(fi) (see Section 21). In this case 

[0 if S = S ;, 

[sup {H*(n) :fieS\S} if S * S 

and R*(S) = R*(X, n) if cf is as in Theorem 58(b). Kieffer [68] obtained the follow

ing general result: 

Theorem 59. Let S e 3S(S(A)) be such that (a) the restriction of the entropy func

tional h to 3 is rfw-continuous and (b) S cz S. Then strong universal (fixed-rate) 

coding of S can be done at rates above R*(S), that is, for any R ^ R*(S) and for 

any e > 0, there exists a fixed-rate block code book B with R(B) < R and Q(B, fi) ^ 

g D(R, ft) + e for all fieS. 
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Note that in light of previous results it is possible to prove Theorem 59 also for 
variable-rate block codes as well as for fixed- and variable-rate sliding-block codes. 

The rest of this section is devoted to results which help to understand the meaning 
of conditions formulated in Theorem 59. First of all, there is a "converse" to Theorem 
59 which says that the bound R > R*(£) is the best one we can get. To this end, 
let £ c £(A). A function R : £ -> [0, oo) is said to be an admissible rate function if 
for any e > 0 there exists a variable-rate code <€ such that Q(^, fi) S D(R(n), [i) + e 
and r(<$, n) ^ R(n) + e for all y, e S (see [71] and [68] for definitions). 

Theorem 60. Suppose S has the properties listed in Theorem 59. Let R* > 0 be 
such that every uniformly dw-continuous function R : S -* [R*, oo) is an admissible 
rate function. Then R* > R*(S). 

Next, let us clarify the role of the continuity condition (a) in Theorem 59. A noise
less code can be defined as a pair (a, n), where n >. 1 and a : A" ~* N is a length 
function, i.e., 

X 2- f f W S 1 
xeA" 

(see [71]). We say that strong universal noiseless coding of a set £ c S(A) is 
possible if for any e > 0 there exists a code (a, n) such that for every fie S, 
r((a, n), fi) ^ h(n) + s. 

Proposition 61. Let S c Ji(A). Then strong universal noiseless coding of S is 
possible if and only if h j 3 is dw-continuous. 

There are only several results known concerning examples of 3-totally bounded 
classes of sources [95, 68, 47] but no general criteria are available. Kieffer [76] 
obtained a characterization of d-total boundedness for classes of Bernoulli sources. 
It turns out that this amounts to a uniform version of the characterization theorem 
for Bernoulli sources (see Theorem 9). It should be clear what should mean conditions 
like VWB, FD, etc., uniformly for a class of sources. Let 3)(A) denote the class 
of all IID sources over the alphabet A. We say that S is a continuous stationary 
coding of @>(A) if there exists a stationary code $ : Az -> Az such that 
(i) the map fi H-> fiQ'1 from £^(A) to the class of all Bernoulli sources is 3-conti-

nuous, and 
(ii) {juf-1 : fie 2(A)] 3 S. 

Theorem 62. Let S be a set of Bernoulli sources over a fixed finite alphabet A. 
Then the following are equivalent: (a) S is uniformly VWB, (b) S is uniformly FD, 
(c) £ is uniformly ABI, (d) £ is a continuous stationary coding of ^(A), (e) there 
exists a weakly closed set £' <= J4(A) such that S <= S' and S' consists of Bernoulli 
sources and h is dw-continuous on S', and (f) S is 3-totally bounded. 

Finally, let us make the following remark. Since there are only a few 5-totally 
bounded classes known, it is reasonable to ask whether some weaker distance func-
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tion is still compatible with strong universal coding (for a weaker metric admits 
for a larger class of totally bounded sets). Kieffer [68] observed that the entropy 
metric 

de(fi, v) = dw(n, v) + \h(fi) - h(v)\ 

is compatible with strong universal coding. He proved that it is weaker than <? 
by constructing an example of an de compact set which is not d compact (note that 
de and 3 are the same for Bernoulli sources by Theorem 9 and the definition of FD). 

26. Perfect Transmission Over Noisy Channels 

Let B and C be two finite sets. By definition, a channel [B, v, C] is a family v = 
= (v„; u e Bz) of probability measures v„ on (Cz, _*) such that for each E e <^z 

the map u -> v„(E) : Bz -> [0,1] is measurable. A channel [B, v, C] is called station
ary if 

VTBU(TCF) = v„(E) ; u e Bz, F e ^ . 

If A is a probability measure on (Bz, d$z), we let Av denote the joint input/output 
distribution of the channel [B, v, C]; Xv is uniquely determined on 3&z x <^z by the 
properties that ; 

Xv(E x E) = f v„(E) A(dw); £ e J z , F e f z . 

Observe that if [B, v, C] is stationary then Xv e Jl(B x C) whenever X e J/(B). 
If X e S(B) entails Xv e S(B x C), the stationary channel [_, v, C] is called ergodic. 

Before entering the problem of zero-error transmission let us make several remarks 
concerning the usual block coding approach to channel coding. For details, refer to 
[8] and [156]. Following Wolfowitz an (M, n, s) channel code is a collection <& = 
= {(y;, G;) : 1 ^ i S M} of M distinct code words y ; e B" and M mutually disjoint 
decoding sets G; — C such that 

(*) max sup v„[C(C" \ G;)] g « , 
lgi§M UEC(YI) 

where C(E) = {x : x" e E} for a set of n-tuples E. Let C0(v) denote the supremum 
of permissible rates (the rate of the foregoing code is R(<W) = n~' log M) i.e., C0(v) 
is the largest possible rate for which coding is possible which gives the error pro
bability (*) as close to zero as we please provided only the block length n is large 
enough [50]. 

The channel coding theorems serve the purpose of establishing that a particular 
number C0 is the capacity of a given channel. To this end one proves the positive 
coding theorem (that is, for each R < C0, there exists (INT {exp (NR)}, n, £„) 
channel codes with e„ -> 0 as n -> oo, and hence C0 sS C0(v)) and a weak converse 
(i.e., given any sequence of (INT {exp (ArR)}, n, e„) channel codes, R > C0 there 
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exists an e0 > 0 such that e„ > e0 for all n large enough, and hence C0 > Co(v))-
The source of difficulties is the positive part while the weak converse can usually 

be proved for arbitrary stationary channels (this depends, of course, on the adopted 
concept of channel capacity, see [50]). The positive part is usually proved using 
a random coding argument based on Feinstein's lemma [63]. The problem with 
Feinstein's lemma is that it gives "good" error probability not with respect to the 
actual channel probabilities as required by (*), but with respect to the channel output 
probability induced from the artificial "capacity yielding" source. McMillan [92] 
was the first to recognize a kind of continuity property as responsible for the possi
bility to derive (*) from a similar relation for the artificial probabilities over channel 
output n-tuples. However, he was not able to single out the type of continuity needed 
for Femstein-like arguments. Consequently, the idea of continuity was quite for
gotten although implicitly used by many authors who attempted to find ever less 
restrictive constraints as to the channel input memory and anticipation. Gray and 
Ornstein [50] introduced 3-continuous channels and showed that all existing con
straints actually imply continuity properties at least as strong as ^-continuity. Thus, 
d-continuous channels are the most general ones for which a Feinstein-type approach 
works. 

On the other hand, the question of most interest is to prove joint source/channel 
coding theorems, i.e., coding theorems for transmission of sources across noisy 
channels. For this one usually combines a channel coding theorem giving good 
channel codes (as in (*)) and a source coding theorem (using the code word set of 
a good channel code as a code book for the source). A typical result of this type is 
as follows: 

Theorem 63. Let [A, JX,X\ be an ergodic source and [B, v, C\ an ergodic 3-conti-
nuous channel. Let h(X) < C(v), where C(v) is the Shannon capacity, i.e., C(v) 
is the supremum of information rates l(Xv) over all X e S(B). For any s > 0 and for 
n large enough there exist block codes / : Az —> Bz and g : Cz —> Az of order n 
such that 
(**) Prob[X" 4= (gY)n\ S e, 

where Yis the channel output process corresponding to the input process JX. 

Kieffer in a series of papers [69, 73, 75] observed that in order to get (**) it is not 
necessary to have (*). Indeed, the probabilities in (**) are determined from knowing 
merely the joint input/output distributions so that, by paraphrasing Feinstein's 
approach, the continuity of the actual channel probabilities ui-»v„(.) might be 
replaced by continuous dependence of Xv on the input distribution X. Following 
Kieffer, a stationary channel [B, v, C\ is said to be weakly continuous if the assump
tions that X„ e S(B), X e S(B), and dw(X„, X) -> 0 imply that dw(Xry, Xv) -* 0 as n -> oo. 
Any d-continuous stationary channel is weakly continuous [69]. Moreover, weakly 
continuous channels are the most general for which we can reasonably ask for a cod-
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ing theorem (see [73, 75]). We refer the reader to the latter two references for block 
and sliding-block channel coding theorems and devote the rest to stationary coding. 

The problem of zero-error transmission using block codes was formulated already 
by Shannon [127] who observed that for certain channels one actually can obtain 
block codes (of sufficiently large rates) which result in zero error probability. On the 
other hand, the problem in general turned out to be very difficult and the correspond
ing zero-error (block coding) capacity has been calculated only in a few special 
cases. 

However, if one no longer insists on block codes, powerful results are obtainable 
using Ornstein's coding technique as first observed in [51] and then, in great generality 
in [72]. 

A stationary source [A, //] is said to be zero-error transmissible over a stationary 
channel \B, v, C] if there exist processes X, U, Vover alphabets A, B, C, and station
ary codes / : Az -> Bz, g : Cz -* Az such that dist (X) = p, U = fX, dist (V| U) = v, 
and X = gV a.e. The formula dist(V | U) = v means that dist(V | U = u) = v„ 
for almost all u e Bz. 

A stationary source \B, X] is called v-invulnerable if there exist processes U, V, 
and a stationary code h : C z -> Bz such that dist (U) = ji, dist(V | U) = v, and 
U = hV a.e. 

Lemma 64. A stationary source [A, p] is zero-error transmissible over a stationary 
channel \B, v, C] if and only if it is isomorphic to a v-invulnerable source. 

As already mentioned, the zero-error transmission theorem is a particular case 
of Kieffer's isomorphism theorem (see Theorem 19). However, the proof of this 
fact is quite involved for there do not exist simple method of verification of the 
condition (A) formulated in Section 16. 

Theorem 65. Let \B, v, C] be an ergcdic and weakly continuous channel with 
Shannon capacity C(v). Let [A, /*] be an ergodic aperiodic source over a finite 
alphabet A. If h(fi) < C(v) then [A, n] is zero-error transmissible over \B, v, C]. 
Conversely, if [A, /x] is zero-error transmissible then h(n) = C(v). 

In [72] the theorem is obtained as a consequence of a more general result which 
shows that the conclusion of zero-error transmissibility is valid if, roughly speaking, 
the conditions of ergodicity and weak continuity are satisfied only locally (in the same 
spirit are the block and sliding-block transmission results in [73] and [75]). 

Theorems 65 gives a new interpretation to the Shannon capacity and, furthermore, 
the usual e-formulations of transmission theorems using codes of finite orders can 
be obtained as approximations to infinite zero-error codes. Unfortunately, this way 
of proving block and sliding-block transmission theorems is not yet possible, for 
the proofs of Theorem 65 in [72] and [83] presuppose knowledge of these results. 
Hence, it is very desirable to have a simple or, at least, a direct proof. 

A natural further step is to study the structure of codes j and g. For example, is 
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it possible to choose them as finitary codes? Unfortunately, one can expect answers 
rather in negative (see [74]). On the other hand, it is quite easy to extend Theorem 65 
to transmission of aperiodic non-ergodic sources as done in [146]. 

Finally, note that Kieffer's approach to channel coding problems makes it possible 
to overcome the difficulty that the structure obtained by quantizations of the channel 
alphabets is not a channel. As a consequence, one can extend block transmission 
theorems to channels with alphabets which are standard Borel spaces [143, 144]. 

PART VIII : CONCLUSIONS 

27. Open Problems and Perspectives 

In the last decade it was possible to recognize a strong trend towards both-sided 
exchange of ideas between ergodic theory and information. In this section I tried 
to collect some ideas and suggestions of which seems to me of importance for the 
future interplay between the two topics. The formulations are sometimes vague and 
also express my own interests. In any case, I hope they will at least stimulate interest 
in this challenging part of contemporary mathematics. 

1. Algorithmic methods. In applications of information theory we meet again 
and again the problems of testing statistical models. Though we often have some 
evidence in favour of properties like ergodicity and stationarity, it is extremely 
difficult to test them in a rigorous manner. Also, a dynamical system may undergo 
uncontrolled changes in time so that we cannot be sure that a physical observable 
is measured along a single typical orbit. Thus, the only information at our disposal 
is frequently just the individual sequence of observed outcomes. 

There is already some progress in coding problems related to individual sequences 
instead of assuming some prior probabilistic model. The coding algorithms are then 
based on various complexity measures [159,160]. Of course, the choice of complexity 
measure depends on which type of coding device is at our disposal. For example, 
there exist binary seqeunces for which the finite-state-complexity is one (i.e., the largest 
possible) while the normalized Kolmogorov-Solomonoff-Chaitin complexity [23] 
is zero (see [159]). On the other hand, this is not so serious from the point of view 
of data compression, for we usually are given the type of coding devices in advance. 

Heim [57] formulated parts of information theory in terms of complexity measures 
and computable probabilities. An interesting problem is to check whether it is pos
sible to develop an algorithmic counterpart of, say, the Ornstein's theory. Any result 
of this type would give an universal code for all Bernoulli sources of the same entropy. 
In light of presented universal results (cf. Theorems 44 and 46) this does not seem 
so strange. 

2. Stationary entropy compression coding. There exist several problems connected 
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with that area. Dunham [33] has shown how to stationarize a block code so that both 
the rate and the average distortion remain almost unaffected. Is it possible to obtain 
also a counterpart of Ornstein's technique of making good codes much better in case 
when goodness is measured in terms of average distortion? 

Another open problem is to relate isomorphism of sources with their behaviour 
from the point of view of distortion-rate theory. Because of the "averaging effect" 
in computations of average distortion it does not seem likely, that identical DRF's 
relative to one fixed distortion measure could give some results. However, what 
about the case when we have a "sufficiently rich" class of distortion measures (by 
sufficiently rich I mean a class such that any dissimilarity is recognized by at least 
one distortion measure while the other ones can average it out). 

3. Codes with prescribed properties. One usually has some desirable class of sour
ces (for example, IID ones in redundancy removal problems) and some family of 
codes connected with each particular coding problem. Characterization theorems 
are of interest. By this I mean (hopefully simple) characterization of all those sources 
which can be coded using a code from the given family so as to get a source belonging 
to the given class. One problem of this type has been recently investigated by Rudolph 
[123]. He introduced the concept of a "finitarily Bernoulli" process and proved 
that entropy is a complete finitary isomorphism invariant for that class. This gives 
a characterization of all those processes finitarily isomorphic to a Bernoulli shift. 

A problem going in the opposite direction is to find information theoretic inter
pretations (similarly as was done for Ornstein's technique) to other technique which 
produced important results in ergodic theory (e.g., to coding techniques used to derive 
relative isomorphism theorems, see [150]). 

A shghtly more technically formulated problem: let [A, p., X~] be an IID source 
and let 8(R, p) be the OPTA using stationary codes. Thus, we get performance as 
close to d(R, p) as we please using Bernoulli encoded processes (for any stationary 
coding of an IID process is Bernoulli). Is it possible to get the same conclusion using 
only stationary codes $ such that <PX is again IID? Note that codes having this 
property exist by [60]. The problem is how to control the average distortion. At 
present, only a weaker is known [147]. 

4. Ergodic theory for channels. It would be very desirable to have a classification 
of channels according to their transmissibility properties. At present, some results are 
available which throw light upon the structure of channels. Neuhoff and Shields [97] 
introduced the concept of channel rf-distance and obtained interesting results like 
characterizations of all channels which can be obtained as 3-limits of sequences 
of channels with very simple properties (like primitive or finite-state channels; see also 
[158]). 

5. Zero-entropy and related processes. As shown by Sigmund [132] zero-entropy 
processes prevail in the sense that they form a topologically large set. However, there 
are also other, more realistic, reasons for investigations on zero-entropy processes. 
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In fact, a manual for measuring some physical quantity may produce very complex 
finite strings of outcomes, however, it is felt that in the limit of ever longer strings, 
the complexity will remain bounded due to unchanging prescription of how to get 
an outcome. In light of connections between entropy and complexity [23] one can 
expect that observations correspond to zero-entropy processes much more frequently 
than usually judged. In any case, as already mentioned, the methods based on com
plexity measures have the advantage of working universally, i.e., without the require
ment of a prior statistical model and even without any assumptions concerning 
stationarity at all. 

A well-known result is that zero entropy processes can be distinguished by the 
sequence entropy [88]. A complete classification is still absent, however. Also, is 
the sequence entropy the best we can do, or do there exist more natural invariants? 

Information-theoretical considerations enable us to define processes which, being 
in fact random, behave from the point of view of both rate and distortion as deter
ministic provided the observation time is large enough - so called information 
singular processes introduced by Berger [10] and studied recently in [53]. Such pro
cesses might become interesting also from the physical point of view. Intuitively, 
they seem to describe, in information theoretic terms, motions which look like 
random for a long period of time but sooner or later they finally move into a steady 
state. 

6. AMS theory. Processes obtained as fixed- or variable-rate block codings of 
stationary processes have a weaker stationarity property called asymptotically mean 
stationarity (AMS; see [45]). The basic concepts of AMS theory for channels have 
been introduced in [37] and several coding theorems have been obtained both for 
AMS sources and AMS channels [141, 142, 140]. On the other hand, all these results 
can serve just as preliminaries to a complete theory of AMS processes. 

Of course, this is only a very small sample of problems which I judge as important 
and interesting. I attempted to present only such problems which seem to be extremely 
difficult or which at least seem to require development of new ideas and concepts. 
I think it is more stimulating to give such an account than to present a plenty of 
highly technical questions. 

28. Acknowledgment 

First of all, I should like to express my sincere thanks to the editors of the journal "Kyberneti-
ka" for their kind suggestion and encouragement to prepare a survey paper. 

I profited much from a substantial help of many collegues (too many to be all mentioned here) 
who kept me informed about their results by sending me their new papers, often prior to publica
tion. Especially, my thanks are due to Manfred Denker, Robert M. Gray, Michael Keane, and 
William Parry. Special thanks are due to John Kieffer for many stimulating discussions on rela
tions between ergodic and information theories. On the other hand, I am fully responsible for 
conclusions and judgments made throughout the paper. 

66 


