The present paper, closely connected with [2], investigates the possibility of expressing P. Martin-Löf's complexity theory of strings in terms of Kolmogorov's complexity of strings which uses algorithms φ. We find for every recursive P. Martin-Löf test V an algorithm φ which in turn gives a P. Martin-Löf test $V(\varphi)$ such that $V \subseteq V(\varphi)$. The equality $V = V(\varphi)$ holds for some particular P. Martin-Löf tests called representable.

In this paper we continue our efforts to approach Kolmogorov's complexity theory of strings which uses algorithms φ (see [3]) and P. Martin-Löf's complexity theory of strings which uses M—L tests V (see [5]). A very good up-to-date survey paper is [7]. The present authors have already done some attempts in this direction in [2]. We work within the general framework of a not necessarily binary alphabet (see [1]).

It has already been noticed that these theories are not equivalent (see [2]).

In this paper we find for every recursive M—L test V an algorithm φ which in turn gives a M—L test $V(\varphi)$ such that $V \subseteq V(\varphi)$ (see Theorem 2). The equality $V = V(\varphi)$ holds for some particular M—L tests V which we call representable (see Theorem 3). Such an equality $V = V(\varphi)$ would be a good interpretation of the somewhat unprecise term "equivalence" between Kolmogorov's and P. Martin-Löf's theories. In this respect see also Theorem 4.

The last section of our paper contains remarks and open problems.

1. BASIC NOTIONS

Throughout the paper N will be the set of all natural numbers, i.e. $N = \{0, 1, 2, \ldots\}$. If A is a finite set, $\text{card } A$ will be the number of elements in A.

For every non-empty sets A and B and for every function $f : A' \rightarrow B$ (where $A' \subset A$) we shall write $f : A \rightarrow B$. We shall say that f is a partial function from A to B. We consider that $f(x) = \infty$ in case f is not defined in the point x.

526
If \(f : A \to B \) is a partial function, then the domain of \(f \) is the set \(\text{dom}(f) = \{ x \in A \mid f(x) \neq \infty \} \); range \(f \) is \(\{ f(x) \mid x \in \text{dom}(f) \} \); graph \(f \) is \(\{ (x, f(x)) : x \in \text{dom}(f) \} \).

Let \(X = \{ a_1, a_2, \ldots, a_p \} \), \(p \geq 2 \) be a finite alphabet. Denote by \(X^* \) the free monoid generated by \(X \) under concatenation, i.e. \(X^* \) consists of all strings \(x = x_1x_2\ldots x_n \), where the \(x_i \) belong to \(X \); also the null string \(\lambda \) belongs to \(X^* \). For every \(a \) in \(X \) and every natural \(n > 0 \), \(a^n = aa \ldots a \) (\(n \) copies of \(a \)). We shall consider that \(a^0 = \lambda \).

For every \(x \) in \(X^* \), \(l(x) \) is the length of \(x \), i.e. \(l(x) = m \) in case \(x = x_1x_2\ldots x_m \) and \(l(\lambda) = 0 \). For Recursive Function Theory see [4] and [6]. We shall consider partial recursive functions (p.r. functions in the sequel) \(\varphi : X^* \times N \to X^* \) or \(g : N \to \{ 0 \} \cup X^* \times N \).

For every p.r. function \(\varphi : X^* \times N \to X^* \), the Kolmogorov complexity induced by \(\varphi \) is a function \(K_\varphi : X^* \times N \cup \{ \infty \} \to \mathbb{N} \), defined by \(K_\varphi(x \mid m) = \min \{ l(y) \mid y \in X^*, \varphi(y, m) = x \} \) in case such \(m \) exists, and \(K_\varphi(x \mid m) = \infty \), otherwise.

For every \(W \subseteq X^* \times (N \cup \{ 0 \}) \) and for every natural \(m \geq 1 \) we shall write \(W_m = \{ x \in X^* \mid (x, m) \in W \} \). We define the critical level induced by \(W \) to be the function \(m_W : X^* \to N \cup \{ \infty \} \) given by \(m_W(x) = \sup \{ m \in N \mid m \geq 1, \ x \in W_m \} \) in case such \(m \) exists, and \(m_W(x) = 0 \), in the opposite case.

A non-empty recursively enumerable set \(V \subseteq X^* \times (N \cup \{ 0 \}) \) will be called Martin-Löf test (M-L test) if it possesses the following two properties:

1) For every natural \(m \geq 1 \), \(V_{m+1} \subseteq V_m \).

2) For every natural numbers \(m, n, m \geq 1 \),

\[
\text{card} \{ x \in X^* \mid l(x) = n, x \in V_m \} < p^{n-m}(p - 1).
\]

We agree upon the fact that the empty set is a \(M-L \) test.

The second condition enables us to say that \(m_W \) takes only finite values for every \(M-L \) test \(V \), because in case \((x, m) \in V \), then \(m \leq l(x) - 1 \) (directly from the definition).

For every p.r. function \(\varphi : X^* \times N \to X^* \) we can obtain the particular \(M-L \) test \(V(\varphi) = \{ (x, m) \in X^* \times (N \cup \{ 0 \}) \mid K_\varphi(x \mid l(x)) < l(x) - m \} \), see [1]. We shall call a \(M-L \) test \(V \) representable in case there exists a p.r. function \(\varphi : X^* \times N \to X^* \) such that \(V = V(\varphi) \), see [2].

The lexicographical order on \(X^* \) induced by \(a_1 < a_2 < \ldots < a_p \) is given by \(\lambda < a_1 < a_2 < \ldots < a_p < a_1a_2 < \ldots < a_1a_2a_3 < \ldots \). The enumeration of \(X^* \) in this order will be \(y(1) = \lambda, y(2) = a_1, y(3) = a_2, \ldots, y(p + 1) = a_p, y(p + 2) = a_1a_2, \ldots \). It follows that \(a_p^p = \lambda(s(m)), \) where \(s(m) = 1 + p + p^2 + \ldots + p^n = (p^{n+1} - 1)/(p - 1) \). This enumeration of \(X^* \) is recursive.

In the sequel, the lexicographical order will mean this lexicographical order on \(X^* \).
2. RESULTS

It is easily seen that there exist \(M - L \) tests which are not recursive. For instance, take \(A \subseteq \{a_1, a_2, a_3, \ldots \} \) which is recursively enumerable and not recursive. Then \(V = (A - \{a_1\}) \times \{1\} \) is a non-recursive \(M - L \) test.

The following theorem gives necessary and sufficient conditions under which a \(M - L \) test is recursive.

Theorem 1. A \(M - L \) test \(V \) is recursive iff the function \(m_V \) is recursive.

Proof. If \(m_V \) is recursive we can compute \(m_V(x) \) for every \(x \in X^* \). Let \((x, m) \in X^* \times (N - \{0\}) \). If \(m_V(x) \geq m \), then \((x, m) \in V \); if \(m_V(x) < m \), then \((x, m) \notin V \).

Thus \(V \) is recursive.

Now suppose \(V \) is recursive which means that \(\chi_V \) is a recursive function (\(\chi_V \) is the characteristic function of \(V \)). It is easy to see that for every \(x \in X^* \) we have \(m_V(x) = \max \{m \in N : \chi_V(x, m) = 1\} \), in case \((x, 1) \in V \), and \(m_V(x) = 0 \), in case \((x, 1) \notin V \).

This shows that \(m_V \) is recursive. \(\square \)

Actually, the object of our paper will be the study of some properties of recursive \(M - L \) tests.

Theorem 2. Let \(V \subseteq X^* \times X^* \) be a recursive \(M - L \) test. Then there exists a p.r. function \(\phi : X^* \times N \rightarrow X^* \) such that \(V = V(\phi) \).

The p.r. function \(\phi \) can be taken to possess the following properties:

(a) The function \(\phi \) is injective.

(b) The graph of \(\phi \) is recursive.

(c) For every \(x \in X^* \), we have the equivalence: \((x, 1) \in V \) iff \((x, 1) \in V(\phi) \).

Proof. The set \(A = \{(x, m_V(x)) \mid x \in V_1\} \) is obviously recursive. We distinguish two cases: i) \(V \) is infinite and in this case there exists an injective recursive function \(g : N - \{0\} \rightarrow X^* \times N \) such that \(g(N - \{0\}) = A \); ii) \(V \) is finite and \(A \) has \(q \) elements, and in this case there exists an injective (p.r.) function \(g : \{1, 2, \ldots, q\} \rightarrow X^* \times N \) such that \(g([1, 2, \ldots, q]) = A \). In all cases, if \(i \) is in the domain of \(g \), we put \(g(i) = (x_i, m_V(x_i)) \). Moreover, due to the recursiveness of \(V \), we can suppose that \(g \) has the following "lexicographical" property: for all natural \(1 \leq i < j : \)

u) \(l(x_i) \leq l(x_j) \),

v) if \(l(x_i) = l(x_j) \), then \(m_V(x_i) \geq m_V(x_j) \).

We can define the procedure for \(\phi \).

For \(i = 1 \), \(g(1) = (x_i, m_V(x_i)) \) and we put \(\varphi(x_i, l(x_i)) = x_i \), where \(z_i = y(s(l(x_i) - m_V(x_i) - 1)) \). See the definition of \(s \) in Section 1.

Next, let \(i = 2 \), so \(g(2) = (x_2, m_V(x_2)) \). In case \(l(x_1) \neq l(x_2) \), we put \(\varphi(x_2, l(x_2)) = x_2 \), where \(z_2 = y(s(l(x_2) - m_V(x_2) - 1)) \). In case \(l(x_1) = l(x_2) \), we consider the greatest element (according to the lexicographical order) of the set \(\{y(1), y(2), \ldots \} \).
\[\ldots, \mathcal{y}(l(x_2) - m_\nu(x_2) - 1)) = \{z_1\}, \text{ and we shall call this element } z_2. \text{ Put } \mathcal{y}(z_2, l(x_2)) = x_2. \]

Continuing the procedure we reach the step \(i > 1 \). There are two cases. In the first case let \(l(x_i) = l(x_j) \), for all \(j < i \). In this case we put \(\mathcal{y}(z_i, l(x_i)) = x_i \), where \(z_i = \mathcal{y}(s(l(x_i) - m_\nu(x_i) - 1)) \). In the second (opposite) case let \(j(1) < j(2) < \ldots \) \(< j(k) < i \) be all indices \(j < i \) such that \(l(x_j) = l(x_i) \). In fact, \(j(2) = j(1) + 1 \), \(j(3) = j(2) + 1, \ldots \), due to the properties of the enumeration function \(g \). We define \(z_i \) to be the greatest element (in lexicographical order) of the set \(\{j(1), j(2), \ldots \} \). Put \(\mathcal{y}(z_i, l(x_i)) = x_i \). Notice that \(\mathcal{y} \) acts as a function, because if \(l(x_i) = l(x_j) \) we have \(z_i \neq z_j \).

The construction is possible and the motivation follows. Put \(l(x_i) = l(x_{j(1)}) = \ldots = l(x_{j(k)}) = l \). We have \(m_1 = m_\nu(x_1) \leq m_k = m_\nu(x_{j(k)}) \leq m_{k-1} = m_\nu(x_{j(k-1)}) \leq \ldots \leq m_1 = m_\nu(x_{j(1)}) \). For every natural \(r \in \{1, 2, \ldots, k\} \) let \(B_r = \{j(1), j(2), \ldots, j(s(l - m_r - 1))\} \). Notice that \(B_1 \subset B_2 \subset \ldots \subset B_k \subset B_i \) and \(B_i = B_i \{u < v \} \) iff \(m_u = m_v \). We shall try to describe in a detailed manner the action of \(\mathcal{y} \) and this will complete the motivation.

Clearly, \(z_{j(1)} = \mathcal{y}(s(l - m_1 - 1)) \). In order to obtain \(z_{j(2)} \), we distinguish two possible cases: a) \(m_1 > m_2 \) (and in this case \(z_{j(2)} = \mathcal{y}(s(l - m_2 - 1)) \); b) \(m_1 = m_2 \) (and in this case \(B_1 = B_2 \), so \(z_{j(2)} \) must be \(\mathcal{y}(s(l - m_2 - 1)) \)). It is to be seen that in case b) one has \(s(l - m_2 - 1) = 1 \geq 1 \) (in other words the construction is possible) because \(2 \leq \text{card} \{x \in X^* \mid l(x) = l \text{ and } (x, m_2) \in V\} \leq (p^{r_m - 1} - 1) \). It is to be seen that strict inclusion occurs between the \(B_i \)'s being clearly favorable, we focus our attention to the "bad" situation \(m_k = m_{k+1} = m \ldots = m = m \geq 1 \leq r \leq i \). Here, in case \(h > 1 \), we consider \(m_{h-1} < m_1 \). We have \(B_h = B_{h+1} = \ldots = B_i \). The construction gives: \(z_{j(h)} = \mathcal{y}(s(l - m - 1)) \), \(z_{j(h+1)} = \mathcal{y}(s(l - m - 1) - 1) \), \(\ldots \), \(z_{j(h)} = \mathcal{y}(s(l - m - 1)) \). It remains to show that \(s(l - m - 1) - (r-h) \leq 1 \), i.e., \(r - h + 1 \leq (p^{r_m - 1} - 1)(p-1) \). This inequality follows from \(r - h + 1 \leq \text{card} \{x \in X^* : l(x) = l \text{ and } (x, m) \in V\} \leq (p^{r_m - 1} - 1)(p-1) \).

It is worth to add the fact that in case \(V \text{ is finite and the set } A \text{ (see the beginning of the proof) has } q \text{ elements, the procedure stops at step } q \).

The injectivity of \(\mathcal{y} \) is derived from the injectivity of \(g : \{x, m_\nu(x)\} \to \{x, m_\nu(x)\} \) iff \(x_1 \neq x_2 \) or \(m_\nu(x_1) \neq m_\nu(x_2) \). This implies that for different \(i \) and \(j \) one must obtain different values \(\mathcal{y}(x_i, l(x_i)) = x_i \) and \(\mathcal{y}(x_j, l(x_j)) = x_j \).

Our next task is to prove the inclusion \(V \subseteq V(\mathcal{y}) \). Indeed, in case \((x, m) \in V \) let \((x, m_\nu(x)) = (x, m_\nu(x)) \) in the enumeration given by \(g \). So \(m \leq m_\nu(x) \) and \(x = \mathcal{y}(z_i, l(x_i)) \) where the length of \(z_i \) is less than \(l(x_i) - m_\nu(x_i) - 1 \), which shows that \(K_0(x, l(x)) \leq l(x_i) - m_\nu(x_i) - 1 < l(x_i) - m_\nu(x_i) \), i.e., \((x, m_\nu(x)) \in V(\mathcal{y}) \). Consequently, \((x, m) \in \mathcal{M} - L \text{ test } V(\mathcal{y}) \).

Moreover, we can prove here also point (c), because it is seen that for every \(x \) in \(X^* \) such that \((x, 1) \in V(\mathcal{y}) \) there exists a natural \(i \) such that \(x = x_i \) and \((x_i, m_\nu(x_i)) \in V \), which implies \((x, 1) \in V \).
All it remains to prove is point (b), i.e. the recursiveness of the graph of φ. This is seen taking arbitrarily $(z, t, x) \approx (z, t, x)$ in $X^* \times N \times X^*$ and checking if (z, t, x) belongs to the graph of φ, according to the following decision algorithm:

1. If $m_\psi(x) = 0$, NO. Stop.
2. If $l(x) \neq t$, NO. Stop.
3. Choose i such that $g(i) = (x, m_\psi(x))$ and $x = x_i$.
4. Run the first i steps in the procedure defining φ in order to find z_i.
5. If $z = z_i$, YES. Stop.
6. If $z \neq z_i$, NO. Stop.

Remark. It is obvious that for a given recursive $M - L$ test V there are many p.r. functions $\varphi : X^* \times N \rightarrow X^*$ such that $V \in V(\varphi)$, e.g. our construction depends on the enumeration function g.

Theorem 3. Let V be a $M - L$ test. Consider the following assertions:

(1) V is representable.

(2) For every natural $m \geq 1$, one has

\[\forall \ n \geq m + 1, \ \text{card} \{ x \in X^* \mid l(x) = n, m_\psi(x) = m \} \leq p^{n-m-1}. \]

Then (1) \Rightarrow (2) and in case V is recursive the implication (2) \Rightarrow (1) holds too.

Proof. (1) \Rightarrow (2). The hypothesis is that $V = V(\varphi)$ for some p.r. function $\varphi : X^* \times N \rightarrow X^*$.

Fix the natural numbers $n > m > 0$. For every x in X^* with $l(x) = n$ and such that $m_\psi(x) = m$ there exists y in X^* with $l(y) < l(x) - m$ and $\varphi(y, l(x)) = x$.

We have $l(y) \leq n - m - 1$.

We shall show that $l(y) = n - m - 1$. Supposing by contradiction $l(y) \leq n - m - 2$, let $l(y) = n - m - 1 - h$ with $h > 0$. This will lead us to the false relation $(x, m + h) \in V$. Indeed, $l(y) = n - m - h - 1 < n - m - h$ and $\varphi(y, l(x)) = x$ show that $(x, m + h) \in V(\varphi) = V$.

The just proved equality $l(y) = n - m - 1$ shows that

\[\text{card} \{ x \in X^* \mid l(x) = n, m_\psi(x) = m \} \leq \text{card} \{ y \in X^* \mid l(y) = n - m - 1 \} = p^{n-m-1}, \]

and the assertion (2) is proved.

Assuming that V is recursive we shall prove (2) \Rightarrow (1). The hypothesis is that (1) holds for every $m \geq 1$. We shall show that $V = V(\varphi)$, where φ is the p.r. function constructed in Theorem 2, namely we shall show that $V(\varphi) \subset V$.

Take $(x, m) \in V(\varphi)$. In any case $(x, 1) \in V$ (see Theorem 2). We shall prove that $(x, m) \in V$ by proving that $m_\psi(x) = m_{V(\varphi)}(x)$. Since $V \subset V(\varphi)$ (see Theorem 2) we have $m_{V(\varphi)}(x) \geq m_\psi(x)$ and all it remains to prove is that $m_\psi(x) \geq m_{V(\varphi)}(x)$.

Supposing the contrary, it follows that $(x, m_\psi(x) + 1) \in V(\varphi)$, hence there exists z in X^* with $l(z) = l(x) - m_\psi(x) - 1$ and $\varphi(z, l(x)) = x$.

530
Let $g(i) = (x_i, m_F(x_i))$ where $x = x_i$ in the enumeration given by g (see the construction of φ in the proof of Theorem 2). We let the procedure giving φ run i steps and we obtain the string z_i such that $\varphi(z_i, l(x_i)) = x_i$. We shall show that $l(z_i) = l(x_i) - m_F(x_i) - 1 = l(x) - m_F(x) - 1$, thus deriving a contradiction (in view of the injectivity of φ).

Now the reader must remember the action of φ (see the proof of Theorem 2).

In case $l(x_i) = l(x_j)$ for all $j < i$, we have $l(z_i) = l(x_i) - m_F(x_i) - 1$, and the proof is finished in this case. In case $l(x_{j(1)}) = l(x_{j(2)}) = ... = l(x_{j(k)}) = l(x)$, we saw that $l(z_i) = l(x_i) - m_F(x_i) - 1$, and again the proof is finished. The most complicated case is when $m_F(x_{j(1)}) = m_F(x_{j(2)}) = ... = m_F(x_{j(k)})$, where $0 \leq r < k$. In this case we must put $z_i = y(s(l(x)) - m_F(x) - 1) - (r + 1)$.

In any case we have $r + 2$ elements x such that $l(x) = n$ and $m_F(x) = m$ (we put $(x, 1) \notin V = V(\varphi)$). The next result establishes a precise connection between the Kolmogorov complexity K and the critical level m_F in case $V = V(\varphi)$.

Theorem 4. Let V be a representable $M - L$ test and let $\varphi: X^* \times N \to X^*$ be a p.r. function such that $V = V(\varphi)$. The following assertions hold for all x in X^*:

(a) $m_F(x) = 0$ iff $K(x \mid l(x)) \geq l(x) - 1$.

(b) If $m_F(x) > 0$, then $K(x \mid l(x)) = l(x) - m_F(x) - 1$.

In the particular case when φ has the additional property that range $\varphi = \{x \in X^* \mid (x, 1) \in V\} = V_1$, point (a) can be stated more precisely, namely:

(a') $m_F(x) = 0$ iff $K(x \mid l(x)) = \infty$.

Proof. (a) Assume $m_F(x) = 0$, therefore $(x, 1) \notin V = V(\varphi)$. This shows that for every y in X^* with $l(y) < l(x) - 1$ we have $\varphi(y, l(y)) = x$. Then, either $\varphi(y, l(y)) = x$ for all y in X^* (which shows that $K_{\varphi}(x \mid l(x)) = \infty$), or there exists y in X^* with $\varphi(y, l(y)) = x$, but this y must have $l(y) \geq l(x) - 1$. So, $K_{\varphi}(x \mid l(x)) \geq l(x) - 1$.

Assume now that $K_{\varphi}(x \mid l(x)) = \infty$. There are two cases:

i) if $K_{\varphi}(x \mid l(x)) = \infty$, then $\varphi(y, l(y)) = x$ for all y in X^* and then $(x, 1) \notin V(\varphi)$.

ii) if $K_{\varphi}(x \mid l(x)) < \infty$, then there exists at least one y in X^* with $\varphi(y, l(y)) = x$ and one must have $l(y) \geq l(x) - 1$. This shows that $(x, 1) \notin V(\varphi)$.

(b) According to the hypothesis, there exists y in X^* such that $\varphi(y, l(y)) = x$.

531
We have: $m_y(x) = m_Y^r(x) = \max \{m \geq 1 \mid \text{there exists } y \text{ in } X^* \text{ with } l(y) < l(x) - m \text{ and } \phi(y, l(x)) = x\} = \max \{m \geq 1 \mid \text{there exists } y \text{ in } X^* \text{ with } m < l(x) - l(y) \text{ and } \phi(y, l(x)) = x\}$. The last maximum is attained for those y in X^* which have minimum length, i.e. for those y in X^* with $l(y) = l(x) - m$. In the particular case, all it remains to prove is the implication: $m_y(x) = 0 \Rightarrow m_y(x) = 0$.

Corollary 5. Let V be a recursive representable $M-L$ test and let $\varphi : X^* \times N \to X^*$ be a p.r. function with the properties $V = V(\varphi)$ and range $\varphi = V$. Then the partial function $U_\varphi : X^* \to N$ given by $U_\varphi(x) = K_\varphi(x \mid l(x))$ is a p.r. function with recursive graph.

Proof. Relations (a') and (b) in Theorem 4 applied to the present function φ show that U_φ is a p.r. function. The graph of U_φ is recursive because the pair $(x, m) \in$ graph (U_φ) if and only if $m_y(x) > 0$ and $m = l(x) - m_y(x) - 1$. Here we made use of the recursive­ness of the function m_y (see Theorem 1).

Remark. The p.r. function φ given by the proof of Theorem 3 is a function satisfying the property that range $\varphi = V$.

Theorem 6. Let $\varphi : X^* \times N \to X^*$ be a p.r. function such that range $\varphi = V$. Then the following assertions are equivalent:

(i) For all natural $n > m - 1$, we have:

$$\text{card } \{x \in X^* \mid l(x) = n, \ (x, m) \in V\} = \frac{(V_\varphi - 1)}{(p - 1)}.$$
(ii) For all natural \(n > m \geq 1 \), we have:

\[
\text{card } \{ x \in X^* \mid l(x) = n, m_v(x) = m \} = p^{n-m-1}.
\]

2. If one of the above conditions (i) or (ii) is fulfilled for a set \(V \) having properties (a) and (b), then \(V \) is a recursive representable \(M-L \) test. Such \(M-L \) tests will be called full.

Proof. 1. (i) \(\Rightarrow \) (ii). The conditions (a), (b) and (i) insure that \(V \) is a \(M-L \) test, hence \(m_v \) takes only finite values.

On the other hand, for every natural \(j \geq 0 \) and \(n \geq j + 1 \) one can see, using condition (b), that

\[
\{ x \in X^* \mid l(x) = n, m_v(x) = n - (j + 1) \} = \{ x \in X^* \mid l(x) = n, (x, n-j-1) \in V \}.
\]

Consequently, card \(\{ x \in X^* \mid l(x) = n, m_v(x) = n - (j + 1) \} = \frac{(p^{n-(j+1)} - 1)(p - 1)}{(p - 1)} = \frac{p^n - 1}{p - 1} \)

(\((i) \) \(\Rightarrow \) (ii)). For every natural \(n > m \geq 1 \) we have the equality

\[
\text{card } \{ x \in X^* \mid l(x) = n, (x, m) \in V \} = \text{card } \{ x \in X^* \mid l(x) = n, m_v(x) = m \} \cup \\
\cup \{ x \in X^* \mid l(x) = n, m_v(x) = m + 1 \} \cup \ldots \cup \{ x \in X^* \mid l(x) = n, m_v(x) = n - 1 \}.
\]

In fact, \(A_u = \{ x \in X^* \mid l(x) = n, m_v(x) = n \} = \emptyset \), because \(A_u \subset A_{u-1} = \{ x \in X^* \mid l(x) = n, m_v(x) = n - 1 \} \), according to condition (b) and card \(A_{u-1} = 1 \).

If \(A_u \) were non-empty, then card \(A_u = 1 \), so \(A_u = A_{u-1} \) and this is impossible. Again condition (b) guarantees also that \(A_u = \emptyset \), where \(u > n \). Thus the proof of (***) is complete.

Consequently, (***) yields

\[
\text{card } \{ x \in X^* \mid l(x) = n, (x, m) \in V \} = \\
= \sum_{j=m}^{n-1} \text{card } \{ x \in X^* \mid l(x) = n, m_v(x) = j \} = \sum_{j=m}^{n-1} p^{n-j-1} = \frac{(p^n - 1)(p - 1)}{(p - 1)}.
\]

2. All it remains to prove is that (i) implies the recursiveness of \(V \) (because in this case \(V \) will be a recursive \(M-L \) test satisfying condition (2) in Theorem 3).

The case when \(V \) is finite is obvious.

Assume therefore that \(V \) is infinite and let \(g : (N - \{0\}) \to X^* \times N \) be an injective recursive function such that \(g(N - \{0\}) = V \). Put \(g(i) = (x_i, m_i) \) for all natural \(i \geq 1 \).

We take arbitrarily \((x, m)\) in \(X^* \times N \) and we describe an algorithm for testing if \((x, m)\) is in \(V \). Put \(l(x) = n \). There exists a natural \(q \geq 1 \) such that the set \(G = \{ g(1), g(2), \ldots, g(q) \} \) contains all the elements \((y, m)\) in \(V \) with \(l(y) = n \). Moreover, \(q \) can be effectively found. For instance, \(q \) can be taken to be the least natural number \(h \) such that the set \(\{ g(1), g(2), \ldots, g(h) \} \) contains exactly \((p^{n-h} - 1)(p - 1) \) pairs \((y, m)\) with \(l(y) = n \). If \((x, m) \in G\), then \((x, m) \in V\) and if \((x, m) \notin G\), then \((x, m) \notin V\).
Example 8. We shall exhibit an example of $M - L$ test V which is full and we shall also construct the associate p.r. function φ such that $V = V(\varphi)$ given by Theorem 3.

a) In order to give the $M - L$ test V we shall denote, for every $n > m \geq 1$, by $A(n, m)$ the set $\{(x, m) \in V \mid l(x) = n\}$. It is clear that the $M - L$ test V will be completely determined if we shall give all the sets $A(n, m)$.

Put $A(n, m) = \{(y(s(n - 1) + i), m) \mid i = 1, 2, \ldots, s(n - m - 1)\}$ (see Section 1).

It is seen that for every $m > 1$ one has

$$V_m = \bigcup_{i=m+1}^{n} \{y(s(n - 1) + i) \mid i = 1, 2, \ldots, s(n - m - 1)\}.$$

The reader can see now that this V is a full $M - L$ test. Moreover, an elementary computation gives the form of the function m_V. We have for all $n \geq 2$:

$$m_V(y(s(n - 1) + 1)) = n - 1,$$

and

$$m_V(y(s(n - 1) + i)) = n - k - 1,$$

for every $1 \leq k \leq n - 2$, where $i \in \{s(k - 1) + 1, s(k - 1) + 2, \ldots, s(k)\}$; also

$$m_V(x) = 0,$$

for the other x in X^*.

An inspection of $A(n, 1)$ shows that for $n \geq 2$ one has:

$$\text{card} \{x \in X^* \mid l(x) = n, \text{there exists } m > 1 \text{ such that } (x, m) \in V\} = s(n - 2).$$

b) In order to do the construction indicated in the proof of Theorem 2, we shall choose an enumeration function g for the set $A = \{(x, m_V(x)) \mid x \in V\}$. This g will satisfy the conditions u), v) required in the proof of Theorem 2 and it possesses the supplementary property (which completely determines g):

w) if for $i < j$ one has $l(x_i) = l(x_j)$ and $m_V(x_i) = m_V(x_j)$, then $x_i > x_j$ in lexicographical order. This means that for every $n > m \geq 1$, the set $\{x \in X^* \mid l(x) = n, m_V(x) = m\}$ is ordered by the inverse of the lexicographical order.

The p.r. function $\varphi : X^* \times N \rightarrow X^*$ produced by the proof of Theorem 2 is given by

$$\varphi(y(i), n) = y(s(n - 1) + i),$$

for every $n \geq 2$ and $i = 1, 2, \ldots, s(n - 2)$.

An alternative of Theorem 7 (which was based upon the equalities (i) and (ii) guaranteeing the recursiveness of V) will be the following theorem. Here we shall actually replace the equalities (i) and (ii) in Theorem 7 by inequalities and we shall assume the recursiveness of V.

Theorem 9. Let $V \subseteq X^* \times N$ be a set having the following properties:

(a) The set V is recursive.

(b) For every natural $m \geq 1$, we have the inclusion $V_{m+1} \subseteq V_m$.
(c) For all natural $n > m \geq 1$, we have

$$\text{card } \{x \in X^* \mid l(x) = n, m_\nu(x) = m\} \leq p^{-n-1}. $$

Under these assumptions the set V is a representable $M - L$ test.

Proof. In view of Theorem 3, all it remains to prove is the fact that V is a $M - L$ test. This can be done using the equality (***) in the proof of Theorem 6, which yields

$$\text{card } \{x \in X^* \mid l(x) = n, (x, m) \in V\} = \sum_{j=m}^{n-1} \text{card } \{x \in X^* \mid l(x) = n, m_\nu(x) = j\} \leq \sum_{j=m}^{n-1} p^{-j-1} = (p^{n-m} - 1)/(p - 1). \quad \square$$

3. REMARKS AND OPEN PROBLEMS

Our representability theory (see also [2]) is an attempt to compare Kolmogorov’s complexity theory of strings which uses algorithms [3] with P. Martin-Löf’s complexity theory of strings which uses $M - L$ tests [5]. We have already seen that there exist non-representable $M - L$ tests [2], i.e. these theories are not equivalent. For instance, take $p = 2$, $X = \{0, 1\}$ and $V = \{(000, 1), (010, 1), (111, 1)\}$.

In this direction we could obtain the following result concerning recursive sets:

If we call K-test a set $V \subset X^* \times N$ having properties (a), (b) and (c) in Theorem 9, then Kolmogorov’s complexity theory and P. Martin-Löf’s complexity theory done only with K-tests are equivalent. This means that for every p.r. function $\psi : X^* \times \rightarrow X^* \times N \rightarrow X^*$ we can obtain the K-test $V(\psi)$ and for every K-test $V \subset X^* \times N$ we can obtain a p.r. function $\varphi : X^* \times X^* \rightarrow X^*$ such that $V = V(\varphi)$ (see Example 10 in [1], Theorems 3, 4 and 9).

We set the following natural open problems:

A) Does the equivalence $(1) \Leftrightarrow (2)$ in Theorem 3 hold also for non-recursive $M - L$ tests V? Equivalently, does the result in Theorem 9 hold also for non-recursive $M - L$ tests V?

B) Does the result in Theorem 2 hold also for non-recursive $M - L$ tests V?

(Received December 10, 1982.)

REFERENCES

Dr. Cristian Calude, Dr. Ion Chitescu, Department of Mathematics, University of Bucharest, Str. Academiei 14, R-70109 Bucharest, Romania.