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SUB-ADDITIVE MEASURES
OF INFORMATION IMPROVEMENT

D. S. HOODA

<

Additivity plays a great role in the study of information theoretic measures. However, it is
very interesting to consider sub-additivity. Starting from sub-additivity for measures associated
with three probability distributions of a discrete random variable and using another function
of three probability distributions, it has been changed into generalized additivity. Using sum
property of the functions and the generalized additivity, a functional equation and its complex
solutions are obtained. In terms of the real continuous solutions of this functional equation,
three sub-additive measures of information improvement have been defined and characterized.
Particular cases and some simple properties including convexity of these new measures have
also been studied.

1. INTRODUCTION

Let X be a random variable taking n values X,, x,, ..., X, having prediction pro-
bability distribution Q = (g4, 45, ..., 4), i q; £1, g; > 0 which is revised as
R =(ry, 73, .0s ), 2": r; 21,7, > 0onthe ;J_a’sis of a distribution P = (py, ps, .. -»P.)>
Z" p=1,p, 20 s;;;osed to have been realized after some experiment, then the
i';tformation theoretic measure associated with these three probability distributions
P, Q and R is given by

(1.1) - I(P;Q;R) = élp.- log, (r:fq.) -

The measure (1.1) is called Theil’s [7] measure of information improvement and
it has many applications in economics. The measure (1.1) satisfies the property
of additivity which can be expressed as

(1.2) I(P+P'; Q+Q'; R+R’) = 1(P; Q; R) + I(P'; Q'; R')
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where P =(p1, P2 os Dafy P' = (D Pos s D) 5
PP = (1D}, s PiPs -3 PuPis o> Pubu)  €LC.
Using sum property given by
n
(13) I(P; O;R) = X h(pis qis 1) »
i=1

some generalizations of the measure (1.1) have been studied by Sharma and Soni [5]
and by Taneja [6].

Sharma and Taneja [4] have studied three measures of entropy satisfying the
sub-additivity
(1-4) H(PI*PZ) = H(Pl) + H(Pz)
and using another function G of a probability distribution such that
(13) H(P;#P,) = H(Py) G(P,) + H(P) G(P:),

where G(P;) and G(P,) both take values not exceeding unity. The property (1.5)
can be said as generalized additivity. The three measures of inaccuracy and relative-
information associated with a pair of probability distributions and satisfying the
generalized additivity

(1.6)  H(PxP,; 0,%Q,) = H(Py; Q) G(P3; Q2) + H(P; Q,) G(Py; Qy)

have been studied by Sharma and Gupta [3] and by Gupta [2].

In this communication, we study three sub-additive measures associated with three
discrete probability distributions. Simple properties including convexity of these
measures and particular cases have also been studied.

2. GENERALIZED ADDITIVITY AND FUNCTIONAL EQUATION

 Letl (P; Qs R) be an information theoretic measure satisfying

(2~1) 1(P1*P2§ 01%Q5; Rl*Rz) = 1(P1§ Q1 Rx) + 1(P2§ Qs Rz)
Next let G be another function of three probability distributions satisfying
(2~2) I(PyxPy; 04%0;; R1*R2) = I(P1§ 0,; R) G(Pz§ Qs Rz) +

+ I(Pz§ Qs Rz) G(Px§ Q1 Ri)

The relation (2.2) can be said as generalized additivity of information improvement.
Now we suppose that

(23) I(P; &;R) = élh(l’b 9u7:)
(2.4) , G(P; Q;R) = glg(pi, a.7y).
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Using (2.3) and (2.4) in (2.2) we have the functional equation

nom

h m
(2‘5) 21 21 h(l’m P2js 41id2j> P‘n"z;) = Z 111(131;', d1i "u) .
i=1j5

i=1j=
noom

9(p2j> 42> ¥aj) + '21 zih(_l’zj, g2, ’zj) 9(171{, q1is Vli) s
i1 j=
where
Qi G2jp 1 72, €(0, 1] and py,, D2 € [0’ 1].

The continuous functions i and g that satisfy the functional cquation (2.5) are
the continuous solutions of the functional equation

(2.6) h(xx', yy', zz") = h(x, y, z) g(x', ¥', 2') + g(x, y, z) h(x', ¥', 2')
where
»,¥,z,2€(0,1] and x,xe[0,1].

Therefore, we find the real continuous solutions of (2.6) in the following theorem:

Theorem 1. The most general complex solutions of (2.6) are given by

2.7 h(x,y,z) =0, g(x,¥,2z) arbitrary
(2.8) h(x, y, z) = eo(x, v, z) a(x, y, z); g(x, v, z) = eg(x, y, 2)
and
1
(29) h(x, y, z) = % Lei(x, y, 2) = ea(x, », 2)] 5

9(x, 3, 2) = Hea(x, v, 2) + exlx, 3, 2)]

where k % 0 is an arbitrary complex constant and a(x, y, z), e}(x, y,2) (j = 0,1, 2)
are arbitrary functions satisfying respectively

(2.10) a(xx', yy', zz') = ax, y, z) + a(x', ¥, 2')
and
(2.11) e(xx', yy', 22') = ef(x, y, 2) e(x', ¥, 2"} (j=10,1,2).

The proof when functions are of single variable will be found in Aczél [1], p.
205. The above result also follows on the same lines with suitable modifications.

Real Continuous Solutions of (2.6)

The real continuous solutions of (2.6) depend on solutions of the well-known in
auxiliary equations (2.10) and (2.11). If we substitute the solutions of (2.10) and (2.11)
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in the solutions given by (2.8) and (2.9) respectively, these take the form
(2.12) h(x, y, z) = x*yPz%(c, log x + ¢, log y + c;log z),
g(x, v, 2y = xyfz7,

where «, f, v, ¢y, ¢,, ¢y are arbitrary complex constants.
(2.13) h(x,y,z) = i (xyfzr — x°y*2") ;

g(x, y, 2) = 3(xPz7 + xXPpr2),

where a, f8, v, 6, u, v and k are arbitrary complex constants. Further, we sec that
g(x, , z) in (2.12) would be real iff «, B, y are real and it would be continuous if a, f
and 7y are non-negative. It follows that corresponding h(x, y, z) would be real iff
¢y, €4, €3 are real and «, B, y are non-negative. Thus one set of real and continuous
solutions of (2.6) is given by

(2.14) h(x, y, z) = x*17z%(c, log x + ¢, log y + c3logz),
g(x, v, 2) = Xy,
where o > 0, # 2 0,y = 0 and ¢, ¢,, ¢; are arbitrary real constants.

Now g(x, v, z) in (2.13) would be real only under the following sets of conditions:

(i) o, B, 7.6, p, vare ali real or
(ii) «, B, 7, are complex conjugate of J, y1, v respectively.

The continuity of g(x, y, :) requires that o, B, y, 8, i, v are all non-negative. When
g(x, , z) in (2.13) is real, corresponding h(x, y, z) is also real iff k is real. Thus one
of the other two sets of real continuous solutions of (2.6) obtained from (2.13) is
given by

) 1
215) h(x, v, 2) = = (32" — X%z,
2k
9(x, v, z) = (P27 4 x0yrz)
where o, f, 7, 6, 1, v (all non-negative) and k are real arbitrary constants.

For second set of solutions, let o = oy + iay; B = B, +if; 7 =y + iy
8 =0y — oy i =By — ifasv =7y, — iys; k = iR, then (2.13) gives

N 1 o
(2.16) h(x, y, z) = % Yz sin (uy log x + By log y + p, log z),
g%, 3, 2) = xpPi27 cos (w log x + i log y + 7, log 2).
Taking o, B, v, 6, #t, v for ay, By, 1, 2, B2, 72 respectively in (2.16), we have the third
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set of solutions given by

(2.17) h(x,y,z) = 11—{ x*pPz7 sin (0logx + plogy + viog z) s

g(x, y, z) = x*yPz" cos (6 log x + plogy + vlogz),

where «(>0), B(20), »(20), 3, p, v and R are real constants. Hence (2.14), (2.15) and
(2.17) are the only three non-trivial sets of real and continuous solutions of the func-
tional equation (2.6) for x € [0, 1] and y, z € (0, 1].

3. CHARACTERIZATION OF INFORMATION IMPROVEMENT
UNDER GENERALIZED ADDITIVITY
We adopt the following definition:

Information Improvement. The measure of infermation improvement I(P; Q; R)
associated with three discrete probability distributions P, Q and R is given by

n
(3.1) I(P; Q; R) = _Zlh(pi, 90 7i)
where h{p, g, r) is a real continuous solution of (2.5) under the conditions
(32 h(h4,4) =0, A(1,3,4) =0 and h(1,1,§)= 1.

Now we characterize sub-additive measures of information improvement in the
next theorem which follow from Theorem 1 and sum property.

Theorem 2. Corresponding to the real continuous solutions (2.14), (2.15) and
(2.17), the three sub-additive measures of information improvement satisfying (2.2)
can be only one of the following three forms;

(33) I(P: ;R 2, f,y) = 2 3, pidirtloga (rifa)
>0, 20, y20,
(34 (P Qi R:a fy,8) = (277 = 2707 Y piah TP - 3T,

a>0, 20, 620, f+y, d*y
and
(35) F(Pi QiR e fon0) = —— ¥, piqfl‘fsin(élogz L)
. 8In o i=1 q;
x>0, 20, y20, 6+0.
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4. PARTICULAR CASES
(a) Takinga =1, =0,y = 0in (3.3), we get
Il(P; 0:R:1,0, 0) =) p:log, (r,-/qi) s
i=1
which is Theil’s [7] measure of information improvement.
(b) Taking p =y =« — 1 and § = 0in (3.4), we have
IP(P; Qs R0 — Lo — 1,0) = (2! 7% = 1)7! 21)'}‘(11“,-‘“1 -
i=1
which is information improvement of order «. Further we have
lmI?(P; Q3 Rty — L — 1,0) = ¥ p;log, (rifq.) .
i=1

a1

which is Theil’s [ 7] measure of information improvement.

(¢) We see that
lim I'(P; QR 10, B,7,0) = 2 Y pigin} log, (rqs)
50 i=1

which is (3.3).

5. PROPERTIES

Some of the common simple properties of the three subadditive measures of infor-
mation improvement are enlisted below:

(a) Generalized additivity

(b) Sub-additivity

(c) Sum property

(d) Symmetry with respect to its arguments

(e) I(P; 0; Q) = 0.
Next we discuss the convexity of the sub-additive measure I”(P; Q;R;a, B, 7, 6)
with respect to the probability distributions Q and R.

Theorem 3. The sub-additive measure of information improvement I?(P; Q; R :
a, B, 7, §)is a convex N function of the probability distribution Q whenever f < 1 <
<doro <1i<f.

Proof. Let us consider r probability distributions
n

0,X) = {a)(x1) - qs(x)}» afx) >0, Yafx)=1,

i=1
j=1.2,.., rand a probability distribution

r
0o(X) = {qo(x1), .+ qo(x,)} of X such that gox;) = z!aj q;(x))
=
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i=1,2,...,n, where a;’s are non-negative numbers such that i a; = 1. The pro-
bability distribution Q4(X) is a bonafide probability distribution ojf=)x1’ since ilq(,(x,-) =
= é‘x jilaj g;(x;) = 1. Let '

4 =I"(P(X); 0o(X); R(X): 2, ,7,9) ';i:f'f”(f’(X); 0,(X); R(XY: @, B,7,9) .

Then I°(P; Q; R :w, B,7,8) will be a convex mor u function of the probability
distribution Q according as 4 2 0.

Now we have

(1) 4= @ = 27) X 20 (ahe) ) ~ ab) )
— 3,3 ) ) A = alx) o)) ] =
- @ =2 [P U o ) ) -
— (T ) 70} = L) { Z s o) ")
— X a4 7] =
= @7 = 2707 L) (S0 ) = ;o) () -
(S e — S ae)} 7). |

Now by Jensen’s inequality
(52) (_Zlaj a(x)) & Zl"f a5(xi) s
Jj= Jj=
according as k S 1 with equality iff qj(x i) are constants. Further we have
(5.3) @7 — 21 2 0
according as f§ S 4.

By taking f <1 <& or 6 <1 < B it follows from (5.1), (5.2) and (5.3) that
A > 0. The resuit of the theorem is now obvious. ]

Theorem 4. The sub-additive measute of information improvement IF(P; Q;R:
to, B,7,6) is a convex N function of the probability distribution R whenever
y—f<l<y—6oryp—d<l<y—p.

The proof is exactly similar to that of Theorem 3.
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Theorem 5. The sub-additive measures of information improvement I’(P; Q;R:
ta, B,7), I”(P; Q;R: o, B,7,6) and I'(P; Q3R :«, B,7,8) are convex N or U
functions of the probability distribution P according as « S 1.
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