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ON DIFFERENCE EQUATIONS AND
DISCRETE SYSTEMS

PAVEL ZORNIG

Discrete systems described by certain non-linear difference equations are studied in this paper.
Such systems are represented by discrete Volterra-series. The paper recalls such notions as
compositional, convolutional, time-invariant and stable systems and the paper defines the pro-
perty of V-analyticity which depends on Volterra-series.

This paper deals with difference equations and discrete systems described by them.
It is shown that under certain conditions it is possible to express such discrete systems
by means of the so called discrete Volterra-series and denote them as V-analytical
systems. This form of Volterra-series allows to represent the investigated system
by a sequence of systems connected in parallel. Each one of the systems in the sequence
has special properties which make it easy to analyse. The first system is a linear,
the second one is of a quadratic nature, the third one is of a cubic nature etc. This
representation of the non-linear system as a sequence of systems is suitable for the
interpretation of the investigated system.

The considered equations have the form
Ly+epoy=x.

The first term on the left-hand side of the equation is a linear difference operator
with constant coefficients and the second one is a non-linear operator determined
by a power series

d N
Maz.
j=2

This paper is connected with the general work of B. Pond&ligek [1] and, where
possible, the same notation is used. :

225



1. GENERAL REMARKS; DISCRETE VOLTERRA-SERIES

Let # denote the set of all real numbers, € denote the set of all integers, 4" is the
set of all natural numbers and let, for i € 47, ¥ is the cartesian power of €. By %,
we denote the set of all bounded sequences of real numbers, defined on %, for
which the following condition holds:

he B, <> (hky, ks, ..., k) e R, kyelky, ky, ..o ki),
ky £ 0= h(ky, ks, .. k) = 0).
For all x € # we define the following function F: # — A":

0 for x<0O
F(x)*<n for xedln—1,n).

This function is non-decreasing, right-continuous and piecewise constant.
According to the definition of the function F we express summations using the
integrals of Stieltjes. Let f : # — £ be uniquely defined for x = n e A" and such that

a§2n:<b{f(n)| <%

then
b
0 Jf(x)dF(x) = ¥ f(n), abe.
a agn<b
The convolution /1 * x of sequences h € %, x € %, can then be written in the form:
forke®

[h = x] (k) :é:oh(k — 1) x(1) :k:g;h(k - 1) x(t) =
- f: Wk — 7) x(x) dF(z) = J : Wk — 7) x(x) dF(z) .

because the following implication holds:
T2 k=hk—1)=0.

When xe4, we denote for ie A x*|(ky, ky, ..., k) = x(k,) x(k,) ... x(k;),
then x*'e #,. If for each i = 1,2, ... the sequences h; € #; and x € #,, we define
for k € % the generalized convolution h; = x* € 4,

(2) [h; = x*] (k) =

k—1k—-1 k-1

=Y YooY hfk =1,k =tk — 1) x(t,) x(1y) ... x(z) =

71=012=0 ;=0
=j J' J' Bk = o1k = 53y oo k — 1) T] () dF(xy)
oJo 0 k=1
Every sequence h; € 4, determines a mapping H;: #, - #,, Hx = h; » x*".
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Definition 1. Let h; € %, k; € B;, x € B,. For mappings H,, K; we define the follow-
ing operations:
1) for ae® oHx = ah, *x*",
2) for i=j, Hx+ Kx=(H;+K)x=(h + k)»x*,
3) for i, jeA,

(Hx) - (Kjx) = (H; . Kp)x = (b k) s x*77

Note. The operations 2 and 3 are evidently commutative.

Definition 2. Let for all members of the family h, h,,..., h;, ... hold h,e %,
let for x € %, every h; determine the mapping H;: %, — %, by the expression

Hx = h; » x*. The series Y H;x, which is determined by the family hy, h,, ..., hy, ...
i=0

is called a discrete Volterra-series.

2. LINEAR EQUATION

For we & we denote 7", « %, the linear subspace of all sequences a € %,
for which a(u) = 0 if u < w. Let L, be a lincar difference operator L, : %, — A,
for y € #, defined as follows:

(3) Ly=ylk+n)+ b, ylk+n—1)+ ..+ b, yk),
by-t> by—sr o bgEeR .
If x € 4, then the relation L,y = x is a linear difference equation of order n.
Theorem 1. Let he By, h(1) = h(2) = ... = h(n — 1) = 0, h(n) = 1 satisfy the
equation Ly = 0. Then the sequence u € ¥", determined by the rule u = h*x
solves the initial-value problem L,y = x, y € ¥7,.
Proof. Yu=hxx=ue?,
2) Substituting for u in the equation we get
u=hsxx=>Lu=x.

3) Since such an initial-value problem has exactly one solution, the theorem is proved.

O

Corollary 1. The discrete system @ : &, — ¥, described by the difference equa-
tion L,y = x, ye ¥, x€ %, is linear, convolutional, causal and time-invariant.

Furthermore if ) [h(k)[ < o, @ is stable.
k=1
Proof. The first part of the assertion follows from Theorem 2.4 of [1].
L]
Because sup Z[h(k —1)| =Y |n(k)] < oo, @ is stable according to Theorem 3.1
k T k=1
of [1]. O
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Corolarry 2. The discrete system from Corollary 1 is expressed in the form of the
discrete Volterra-series determined by the family of sequences hy = h, h; = 0 if
iz 2

3. NON-LINEAR EQUATION

Letaje Z for j = 2,3, ... and let a real function of a real variable

@) o) = a7

be given as a power-series with the radius of convergence ¢ > 0. The function
d @ .
¥(z) = — oz} = ¥ ja; 7’
dz j=2

as a power-series has the same radius of convergence.
For a € %, we shall use the norm [a| = sup |a(k)|. The symbol f. g means the
‘ ked”

composition of functions f and g.
In the next section we shall consider a non-linear difference equation

(5) Ly+epoy=nx,

x€4#,, ye 7, ¢ls areal constant.
Let h be the sequence from Theorem 1. On applying the convolution to both sides

of the equation (5) we obtain

hs(Ly +epoy)=lsx.
From the linearity of a convolution and from the properties of &, we have
(6) y=hxx—shsxpoy.

It can be easily shown that a sequence y € ¥, satisfies (5) if and only if it satisfies (6).

4. CONTRACTIVITY OF THE MAPPING; CONDITIONS FOR THE
UNIQUE SOLUTION
For a fixed x € #, we denote 4 the mapping from ¥, to ¥,
(7) Ay =h*x —eh*@oy.
The initial-value problem y = Ay, y € ¥7, will be solved by using the Banach prin-

ciple.
Forareal R, 0 £ R < ¢ we define the function

HR) = sup [ < 3]
rll=R
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Lemma 1. The function 4: <0, g) — R is non-decreasing, continuous and ).(0) =0.
Proof. It is easy to show that 1(0) = 0 and ) is non-decreasing. Furthermore
let o/ and # be the sets defined as follows:
oA ={xeR|x=|p(K)|. ke, [y] <R},
B = {xewl x = |¥(2)] |z| <R}.
Evidently & = 4. Since # is a bounded and closed interval, sup 4 exists and
sup 4 = sup |y(z)| = sup ¢ - v = A(R).
fzl R IyIl=R

1f }z| < R < g,y is a continuous function on {— R, R). The continuity of 4 is then
a consequence of the uniform continuity of . d

Lemma 2. Let yy, v, be any pair of sequences from #,. such that |y,| £ R,
[y2]] £ R. Then
(8) ooy —@er] £ AR) [y =]

Proof. It holds for the function ¢ : if z € (—g¢, o) then ¢ is continuous and differen-
tiable. Let z;, z,€ (—R, R) = (—g, g): it follows from the Mean Value Theorem
that

oy = =]

lo(z1) = w(z,)| §IZSIU§ ]:: o(2)

Consider the pair y{, y, from Lemma 2. For k e 4, we denote y,(k) = z,, yo(k) =
= 7, . Clearly |z,A,‘vL |zo4| < R. Therefore

}(p(zl,k) - ‘I’(Zz,k)| §|5‘UPRN’(2)| . 131.1\' - :2,k|
for every ke A". -
This can be rewritten as
lo(ri(k) = o(r2(k))| < sup. W) - i) = ralk)] <
§[S|u;l)(|l[/(z)’ ) S1up %J"l(") - J'a(k)l = /R) ”J'l - J':H
= z{ <R
according to the definition of 2.
Hence
©) locyy = @0y AR 3y — yaf - O
w .
We denote Y |h(k)| = H; suppose H < cc. Then for | h « x|. h e #,. x € #, we have
k=0
k k
e xl = 3 b = ) (] = 1 3otk = ] ) =
(10) = | X n(k = )l sup [<(a)]| = [x] sup Zn\h(k — )| =

= x| 3 Jh) = 1] #
k=0
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For any pair yy, ¥, € &, such that | y,]| £ R, |,] £ R we obtain
| 4y: = Ay = h*x —ehx oy, — hxx +ehx oy, =
(11) =le| [hx(@or. = @oy)| S lelHlooy2 = 0on| =
< e[ HAR) |y, = wi -
by using (8), (9) and (10).
Conscquently the following theorem holds:
Theorem 2. Let R, > 0 be a real constant such that

MRy) < ML]_—I

Then the mappiné A:¥, - ¥, (7)is a contraction on the sphere
Uy ={ye?| || < Ro}
with the constant of contractivity K = |¢| A(R,) H.
Proof. The proof follows from the formula (11). O
We shall use the Banach principle in this form:
Theorem 3. (Banach) Let 2 be a Banach space, let a mapping 4: 2 — 2 bea con-

traction with a constant K e(0, 1) on a set # = 2, with % non-empty. Let the
closed sphere

" K
(12) Fo=4ve?| |y = nl £ —— 1y = »l} s
1 -K
determined by points y,€ 2 and y; = Ay, satisfy &, < %. Then the mapping 4

has in &, exactly one fixed point J such that § = 45. The point j is the limit point
of the sequence of iterations y,4+; = 4y,, n =0,1,2,....

Theorem 4. Let the mapping A defined by the relation (7) Ay = hxx — ch* oy
be a contraction with a constant K & (0, 1) on a nonempty sphere

2= (ve, | D] SR

Then for every x € 8, satisfying the condition

I - K
(13 Il s =5 r

the equation y = Ay has exactly one solution y € %,

Proof. If yo = (0,0,...,0,...) € #,, then y, = Ay, = h x x. According to (10)
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we have {|y,|| < x| H. Substituting (13) into this relation we obtain

(14) Iyl <t = K)R,

hence y, € %,. As in Theorem 3 let

K
&= {ye ully =l s = I - )’o”}-

Consider any v e &, ; then

K
J‘}’1 - }’0" .

Io - nl = 5|

Therefore
lol = {v = yo+yd = o= wif + 3] =

K
= 7% 90 = vol + 74} -

As yo = 0€ %, we have

o] = (ILK + l) |y:| and, using (14),

nu||<( K +1)(1—K>R=R,

1 -K
hence v e %,.
Now it follows that &, — #%,, the mapping A is a contraction on ¥, and, in
accordance with Theorem 3, there exists exactly one j € %, such that j = Ay. [J

Note. If x e %, is bounded by the condition |x|| < ((1 — K)[H) R, then the
equation L,y + ¢p < y = x has a solution j for which
contained in the text.

|7| £ R under all conditions

5. PROPERTIES OF THE ITERATIONS
In the same way as in Section 4, let x€ B,, ye ¥, let ¢ be a power-series (4), h
be from Theorem 1 and let 4 :¥", - ¥, be the mapping defined by the formula
Ay =hxx —ch*xq@oy.

We shall investigate the sequence of iterations yo = 0€ By, y,+1 = Ay, for n =
=0,1,2,..., which converges to the solution of the equation y = Ay under the
conditions of Section 4.

Lemma 3. If y, = 0%, then y; = Ay, and y, = Ay, are discrete Volterra-
series.
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Proof. When y, = 0%, then y, = hxx. We denote h = h{V e %, h{" =
= 0e, for k = 2,3,.... So we obtain the discrete Volterra-series for the first itera-
tion y, = H{"x.

For y, we have

@
yp=hxx—ehsgoy =hsx —chsY a(H xy.
i=2

By Definition | we have

@0
ya=hwsx —ehxy a[(BPY « x7].
=2

For a fixed j = 2 we get

e
' b —1,) i]jlx(r,») dF(r[)jI dF().

The integrals express summation by Section 1. After a reordering of the finite sum
in the last formula we obtain

fff[_w‘f h(k =0 h(z = 7). bz = 7)) dF(r)]‘t[1 x(z;) dF(z).

We note h\*» = i, and for j = 2,3, ...

Pk -1,k — 15, k— 1)) =
w
- _ea,f Wk — ) iz — 7,)... bz — 1) dF(z).
0
Then the family of sequences h'®, h, h¥, ... determines the discrete Volterra-
series of the second iteration. |
Lemma 4. If y, is a discrete Volterra-series determined by the family of sequences
RS0, R, ..., b € #,, the next iteration y,,, = Ay, is a discrete Volterra-series

too, with the determining family h{"* D, hy* D, a0+

o
Proof. Suppose v, = Y. H{"x, x € &, then
i=1

. .
Vaer = e = ehn {3 a5 B}

After reordering the sum enclosed in the braces according to degrees of the terms
it may be shown that
(15) Yar1 = hxx = ghx {ay(HPY + ¥ {a(H{) +

i=3

min(l,i~1)

i-2
t Y[ X (EPYTYED) (HY) L (H)C ] %
i=1 =1 P

2
w
[



with the conditions for the summation
P=(l<ri<rn<..<r), (+v+...+v=rp),

(ryvy + 12y + oo+ 1y, =1+ p)

and
e (57
VY2 Vs v v, vy .
We put
(16) A = =g

For the second degree we rewritte for k € A
[—eh = ay(HP)x] (k) =

— rh(k - )U . j " e = ) b - ) x(r) x(rz)dr(r.)dr(a)]dr(r),

o 0J0

and we reorder the integration

~ ea j : j 0 UD (k= 1) h(r = ;) hs = 73) dr(f)] *(1,) x(e2) dF(z,) dF(5y).
Put

B Ok = Tk — 1) = —sas J Wk ~ 1) h(x — =) h(x — ) dF()
0

Similarly for i 2 3 the ith term has the form

min(l,i— 1)

—ohelfaly ¥ S a5 W

s
XY (Y (Y €l LT e x).

P
If we reorder the summation in the last expression, we can denote

Bk =tk —1p, 0k — 1) =

min(l,i~1

(17) - _SJ: h(k B T) {ai(h)i +:-Z_—:12ai-’[ pZ1 )(h)iil“p-
Y G (W) T ]} ()

P= (l <rp<r << rz),(vl A +1.“:p)’
(ryvy + ravs + o+ 1y, = [+ p).

The independent variables (z — 74,7 — 75, ..., T — r‘.) are omitted in the braces.
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We have found the family AY*D, B0+D B¢+, which determines the discrete
y 2 3
Volterra-series of the (n + 1) th iteration. |

From Lemmas 3 and 4 it follows

Theorem 5. Let for a given x € %, there exist exactly onc y € 77, satisfying the
equation y = Ay. Let us set y, = 0€ #, and define y,,, = Ay, fork =0,1,2,....
Then y, is a discrete Volterra-series for all natural n.

A property of members of the family h{", h§, h$”, ..., determining the discrete
Volterra-series is described by the following

Theorem 6. Let h{”, kP, h{, ..., h{, ... and A{YO, h$HO, L A, L, b,
"+ e B, for i = 1,2,3, ..., be the family determining the discrete Volterra-series
of the nth and the (n + ¢)th iteration respectively. Then for all natural n and ¢ =

= 1,2,3,... it holds
h® = plnto

Proof. According to (16) A" = / for all natural n. Let for n z 2

(18) R = WY for ¢ =1,2,3, ...
Using (17) we obtain
(19) ROk = Tk ~ Tk = 1,) =
0 n—2 min(l,n—1)
= Aij h(k — 1) {a,(h)" + Ya,f Y (ny'77.
o =1 p=1

T (RGO (RO L (TP, LT A ()
+
with the conditions
P=(l<r <ry,<..<r), (y+v+...4+v=p),
(rvy 129+ =1+ p).
We shall find the greatest value the indices ry, 1, ..., 7, can reach.
Let 1 £/, £ n — 2. From the summation conditions P we obtain v, + v, + ...

c V= Po, Fyvy vy 4+ o+ Y, =g + po- At least one number
Vi, Vas V3, -.-s ¥, Is non-zero; let vy # 0. Then
1
rp=—(lg + Po—ravs — ravs — ... = 1Y,).
Vi
Because r; = 2 and v; 2 0 for i = 1,2,...,a, the number r; reaches its greatest
value for v, =1 ano v, = vy =...=v,=0. Then p, =1 and ry =y + py =

=1y + 1.
Furthermore we put the greatest possible value of Iy (I, < n — 2), hence r, =
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n—2+41=n— 1 Incompliance with the last result &, can occur with r, =
n — 1 in the product

(h(n+rfl))v, (h(nf-c—l))v;, e (h(n»#c—l))vu .
r ra . Ta

IA 1

It follows that r; < n — 1 for every i = I, 2, ..., . According to the assumption
(18) we have
]7,(1"—'1“” = h::h—_ll) 5
therefore
REreTD = g1 for i=1,2,...
Putting this result into (19) we obtain

W = p{™  for all natural nand ¢ = 1,2, ....
Definition 3. A discrete system @ is called V-analytical on a set % < A, if there

exists a family of sequences hy, h,, ..., h;, ..., h; € B, determining a discrete Volterra-
series such that for every xe %
w
D(x) =Y Hx
i=1
with Hpx = h; % x*.

6. CONCLUSION

Let a discrete system @: B, — %, be described by a non-linear difference equation
Ly+epoy=x,

L, is a lincar difference operator defined by (3), ¢ is a power-series from (4), x € 4,,
ye¥, ¢is a real constant.

Lethe¥",_, < 9%, be the sequence from Theorem 1. Let K & (0, 1) be the constant
of contractivity of the mapping 4 : ¥", - ¥, from (7), R, be the constant from

Theorem 2, H = ), |/1(k)|. Then the discrete system @ is V-analytical on the set
k=0

7= {xe%, x| <! ;K Ro}.
(Received June 1, 1982.)
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