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ALGORITHMS FOR DETERMINING 
THE MODEL STRUCTURE 
OF A CONTROLLED SYSTEM 

MIROSLAV KARNY 

Determination of the model structure of a controlled system is the necessary first step for the 
design of majority of sophisticated controllers including self-tuners. The Bayesian theory 
of system classification proved to be suitable for this task. However, the set of possible hypothesis 
given by orders, delays, numbers of inputs, additional measured variables including external 
ones etc. is too large to be fully compared. To obtain a practical tool some procedure selecting 
the tested hypotheses is needed. Such a procedure as well as all substantial supporting algorithms 
for computer-aided structure determination of a multivariate regression model is described in the 
present paper. 

1. INTRODUCTION 

The structure as well as the parameter values of an optimal controller are fully 
determined by the performance criterion and the model of the controlled system. 
Self-tuning controllers, determining the parameter values on-line on the basis of the 
measured data, decrease the demands for a prior knowledge of the model substantially, 
Real-time parameter estimation moreover admits to track slow changes of a system, 
increasing in this way the flexibility of the model. However, the need for the prior 
knowledge of the model structure remains. This implies the necessity of a preliminary 
step of the model structure determination before an implementation of self-tuners. 

The theory of the Bayesian system classification elaborated in [6], [7] has appeared 
to be a suitable tool to solve this problem (cf. [2]). The effectivity of this approach 
has been confirmed by many experiments with simulated as well as real data. 

The algorithms described in the paper try to extend this approach in the two 
directions: 

— to restrict the need for a detailed understanding of the used theory by non-speci
alized users 

— to generate automatically new hypotheses which are worth of being tested. 
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The first point lies just in the line of the whole development of self-tuners, to mini

mize the number of tuned factors which are not directly connected with the observ

able closed loop behaviour. The second one tries, in this special case, to overcome 

the computational burden resulting from the dimensionality of the problem. The 

proposed algorithm concatenates the Bayesian classification theory presented in [6], 

[7] with the LDLT-decomposition technique of [ l ] , [5] and with a rather simple 

hill-climbing technique in order to generate different sets of hypotheses. 

Special attention is paid to the numerical behaviour of algorithms (the problem 

is as a rule ill-conditioned) as well as to the computation speed. 

2. PRELIMINARIES 

Some results, which try to keep the paper self-contained, are given in this section. 

The notations are also introduced in this way. 

2.1. Elimination of the unknown parameters in the fundamental model 

Let the controlled system be described by a multivariate normal linear-in-para-
meters regression model, called fundamental model for brevity, 

(2.1) p(yl1)\d^-i\uU),&) = NyJyu),Q-'), t Z t0 g: 1 

where 

p(a. | P) — probability density function of a conditioned on P 

\Q\ 
ЗД.Ö"1)-

1/2 
expГ-Ky- ý)тQ(y~ ў)] 

\2-

t — discrete time 

J-'(r) — v-vector of system outputs 
u(t) ~ /.-vector of system inputs 

dm = ( , ) — A-vector of measured data, X = v + a 

^ > = ( d ( 1 ) , d ( 2 ) , . : . , d ( 0 ) . 

The linearity-in-pararneters means that 

0 - Pr7 y(t) — r z ( t ) 

where g-dimensional vector statistic z(.) maps 

(2.2) z ( - ) : - * " 1 ' , «(„-->-«). t ^ t 0 ^ l . 
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The unknown parameters 0 of the model are P and Q where Q is the inversion of the 
covariance matrix in the normal model (2.1). 

The structure of the model (2.1), fixing linearity and normality, is determined 
by the structure of the statistic z(-) in (2.2). The structure is assumed to be fixed 
in the present section. This fact will be denoted by conditioning on the hypothesis 
Hz-

The class of input generators satisfying the natural conditions of control (see [7]) 

(2.3) p(u(t) | &-», 0, Hz) = p(uit) | d ^ ) 

will be assumed throughout the paper. The probability density function of the 
observed data is then given by 

(2.4) p(d<* [ __,) = n [p(u(T) | d^»)] . p(d<'°-^ | Hz) . 
T = f 0 

f II bO'(T) I ^-'\ ulx), 0, Hz)] P(0 I S'°-x\ Hz) d0 
J T = T0 

where the prior probability density of the unknown parameters p(0 j d ( '0_1), Hz) 
has to be specified. Denoting 

T = ( 0 

-?(.)(») = II W)'(T) I d*-*>, _(t), O, /__)] p(0 I d('°"« Hz) 
T = ( 0 

then Eq. (2.4), for the model (2A) and for the assumed conjugate probability density 

function p(0 | d ( '0_1), Hz) [3], i.e. having the functional form of the product FT [•] 
T = t 0 

in ££ cf. Eq. (2.5), can be rewritten 

fnT'M-i 44p T K, H I ) < ^ 
m HKfl[-j^{-ji^° 

where 

(2.7) 3 ( t ) = 3 ( _ 1 ) + l , r ^ r 0 

(2.8) ^ = v , + h|HT^& M. t = to . 
LJ'toJL^oJ LK*y(o yy«)J 

The initial conditions of the recursions of the sufficient statistic (2.7), (2.8) are the 
parameters of p(0 | d ( t0_1), Hz). The poor prior information is assumed which 
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(2.15) p(dU) I Я.) = IV, /i V*(<>/2 CÍ> 

1 , / 

can be modelled by 

(2.9) s.._-i> = e + >'+ 1 

(2A0) V((0„,, = e / , e > 0 , e small 

The integrals of the same type in the numerator and the denominator of Eq. (2.6) 
take the form [7] 

(2.11) J(k} = |V ( t ) | "
v / 2 |Aw |- ( a< f c>~e-v-1) /2 tf(v, Blk) - (?), k = /„ 

where (compare (2.8)) 

(2.12) A = V,, - v]yv:'v2y 

and ^f is some function dependent only on / and v for the choice (2.9). 
Using (2.9), (2.10), (2.H) and denoting 

(2+3) x(t) = B(l) - Q - v - 1 = *„_j) + 1 , x ( , 0_ n = 0 

and 

(2.14) _?(f) = _?(0Jf(v, x w + v + 1)/JT(V, v + 1, 

the final form of Eq. (2.4) reads 

2.2. Fast accumulation of the sufficient statistic 

The solved problem requires to assume the statistic (2.2) of a high dimensionality. 
The computational burden connected with the recursion (2.8) even for a medium-
amount data is then considerable. 

The substantial reduction may be achieved when the statistics z in (2.2) has the 
"shifting" structure as it is typical of dynamical systems assumed. The algorithm 
given below is presented just for its ability to decrease the computations required. 
To simplify notations f0 = 1 is set without loss of generality. Let 

(2.16) V(D — V(t-i) + ./(<)./(() — = \Vf Vn 
k/Ti v, Jj 1 ' 

Vm = sl 

where the vector/has the structure 

(-.17) j , 0 = 7W " 
/(.-» 

• / ( . - ) 

.1 J }1 

H 
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for some n > 0. The unit is the only non-shifted part of f,y Taking (r, s) = (iX + 
+ k,jX + I) entry of V(f), with 0 < j < i < n, 1 < k, I < X, the following identities 
are easily derived 

(2-

V(,)r, = V(o,r, + I / м J w . = Қo.r, + 
t = ì 

( Ï + I ~ ľ )/,t-i),/(t-.)/ = K(0)r,s + 
t = j + l t = l t = t + l 

t J 

2_/<t-(i-j))iij(t)/ + _L [/(o-(i-t))/c/(o-(j-t))/ ~ f«-<i-т,)*/(í-(.-t,,íJ = 
t = i t = i 

J _ 
V(0,r,s + F(,)(i-j)Ä + k.i + Z_ Lj<o)<i-t)л+/Łj(ox;-t)/+/ ~ 

t = i 

~ /(t)<i-t)i+J(i)v-i)я+i] 

where 

(2.19) ғ « , = ғ « - i ) + j<o 

/(.-.) 
/«>> ғ<o, = 0-

The accumulation of F (2A9) instead of V_ requires (approximately) at any time t 
only nA2 multiplications instead of _{n + l ) 2 X2. The similar algebra shows that 

for s < (n + 1) X + I 
j 

(2-20) V«).s,(n+1)A+1 = j«)( + L Lj(0)(j-t>;. + / — j(f)fj'-t)A+/J 
t = 1 

where 

(2.21) / ( , ) - / « - „ + / ( , ) . j«o) = 0 . 

It remains to notice that the recursions of # ( / ) and V1(() (2.16) coincide. 

2.3. LZ)Z,T-decoinposition as a tool for ^(d"' | H_) computation 

The positive definite matrix (2.8) can be decomposed (cf. [ l]) in 

(2.22) V = LDLT 

where L is the unique lower triangular matrix with units on the diagonal and D is the 
positive diagonal matrix. The definition (2.22) diiectly implies that 

(2.23) 
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and it can be shown that 

(2.24) |A | = n Dt 
i = a+i 

i.e. having the decomposition (2.22) the value of the probability density function 
p(du> | H,) (2A5) can be easily computed. The algorithms which make possible 
to determine (2.22) for different models form the core of this paper. But they need 
to have (2.22) for some initial model. The required algorithm resulting directly from 
definition (2.22) has become the standard part of software packages but the following 
modification is needed for our purposes. Let us assume that the matrix Vis stored 
in the strict upper triangular matrix, say V, and the diagonal part in the vector, say 
VG. The fixed structure of the vector statistic / c 0 (2.17) is assumed and (2.22) is 
determined for the permuted vector 

(2-25) / ; = / „ 

where the permutation vector a permutes the numbers {1,2. ..., k(n + l) + 1}. 
The resulting decomposition of a submatrix of the type (co, co), storing Linto the strict 
lower triangular part of Vand D on the diagonal part of V, is computed as follows 

/ = 1, 2, ...,co 
V = q{ 

A = VGt. 

k = 1 , 2 , . . . , / - 1 

R. = Vik * Vkk 

A = A - Vik * Rk 

end of k 

(2.26) VH = A 

j = i + 1, i + 2,..., co 

f = 1J 

if /' > / then B = V.... 

else B = Vvy 

k = 1,2, . . . , / - 1 

B = B - Rk * VJk 

end of k 

V}i = B\A 

end of; 

end of / 

Notice that the co-vector R is introduced to save multiplications. The do-loops, 
in the pseudo-programming language used, are assumed to be empty when the lower 
bound is greater than the upper one. 
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3. COMPARISON OF STRUCTURES OF THE MODELS 

The finite amount of possible structures of models, given by z', i = 1, 2, ...,N, 
is assumed in this section. The prior probabilities of the hypotheses Ht = Hz,, 
i = 1, 2 , . . . , N are corrected by the observed data into the aposterior ones according 
to the Bayes rule 

(3.1) K - 3 - . K ) - / ^ I ^ K I I . ) 
YJp(d^\Hk)p(Hk) 

k=i 

The following simplifying but reasonable assumptions are accepted: 

(i) The initial time t0 is the same for all hypotheses and the initial data d{t0~l) are 
not used to correct the probabilities of hypotheses, i.e. 

(3.2) p(Hi\d""-^) = p(Hi) 

or equivalently 

(3.3) p(d^-^\Hi) = p(d^^) 

The relation (3.3) implies the functional independency of S\t) on Ht in (2.5). 

(ii) The initial uncertainty of unknown parameters within any structure is modelled 
by the conjugate prior distribution given by the parameters in (2.9), (2.10) 

having the same £ for all H's. 

(hi) No reason exists to expect one hypothesis to be more probable than the others, 
i.e. 

(3.4) p(H,) = 1 . 

The assumptions (i), (ii), (iii) and the natural conditions of control (2.3) imply 
that Eq. (3.1) takes the form 

(3.5) p(Hi\d") = ^ -

k=l 

where 

(3.6) y, (oHM~v/2Kol~* ( t , /2^v/2 

(3-7) Am =- V, ~ VlyV^Viiy 

4. SELECTION OF CLASSES OF THE COMPARED MODELS 

Let us take a collection of all scalar functions of the past process history which are 
the candidates to be incorporated into the regressor (2.2). If the number of such 
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functions is Q then the number of possible hypotheses about the model structure 
is 2e, being too large to be taken as N in Section 3, i.e. too large to be completely 
compaied. 

The following strategy to produce automatically "reasonable" and sufficiently 
small sets of hypotheses will be adapted here instead. Let the "maximal" regressor 
z(-) mentioned above be divided into two parts 

«,) , - £ ]> 
where za (a stands for accepted) is a reasonable guess of the regressor structure and 
zr (r-reject) is the complement of za to z. The two sets of the tested hypotheses are 
formed: 

Extension — the best system description lies in the set formed by za concatenated 
with just one entry*from zr. 

Restriction — the best system description lies in the set formed by za with just one 
entry removed. 

The extension and restriction, concatenated with the hypothesis that za appears 
to be best regressor, contain Q + 1 hypotheses. This small number admits to chain 
the pairs of extensions and restiictions in such a way that the most probable partition 
(4.1) from the last step forms the initial partition for the new one. This process is 
stopped when either za does not change after the pair of extension and restriction 
or some number of steps is exhausted. 

The above procedure can be viewed as some sort of a hill-climbing when the maxi
mum likelihood hypothesis is searched. The full search is performed in the neighbour
hood of the current guess za, the neighbourhood being defined through the restriction 
and extension. 

It is known, and it has been confiimed experimentally, that at least for small and 
medium amount of data the likelihood function is a multimodal one. It follows that 
the search has to be repeated for different initial guesses za, e.g. Q = 0 and g = g 
are usually the reasonable starting points when the prior information is poor. How
ever, a guess of an expert has to be preferred when it is at disposal. 

Notice that the above way of forming of new hypotheses does not cover directly 
the problem of the selection between two disjoint groups, having more than one 
member, of the regressor entries. This problem occurs, e.g., when for a dynamic 
system one of two inputs has to be selected. However, two separate runs selecting 
the best guess in each group can be compared when comparing the final values 
of the likelihood functions. 
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5. SYSTEM DESCRIPTION FOR NESTED STRUCTURES 

Let us assume two hypotheses about the model structure H.t = Hh i = I, 2 
where 

(5.1) 

then the submatrices of V(2.8) fulfill 

(5.2) [V* : "|}в 
L... • J}1 

(5.3) 
V2„ = 

Q 1 

i • 

Let the LDLr decomposition of the matrix V corresponding to z 2 is at disposal, 

(54) v=\v> M = P * ° i p 2 ° i r L í Llve 

V Wl Vy\ lLzyLy\\S) Í)JL 0 LJ.\}V 

LT LT
y-\} g + 1 

e + i v 

The identities (5.2;, (5.3) imply that 

9 , A.2 = 
(5.5) 

" Ь z l 0 1 } Q , 

L... J }1 
б 1 

£>zi 0 

Л , = LX,DЉT, 

}g, Ц = [ L г J á ] } v 

and some algebra confirms that 

(5.6) 

Moreover, see (5.5), 

(5.7) A2 = At - P85T. 

It means that to arrive at LDLT decomposition of A1 matrix, only a one-rank modi
fication of A2 decomposition is needed. The definition of the LDLT decomposition 
can be used to derive the algorithm performing this task for A,-, i = 1, 2 in dependence 
on the sign of a = +/?. The modified decomposition is assumed to be stored in the 
lower triangular part of some matrix, say G, Dy is stored in its diagonal part. Notice 
that the algorithm below destroys the content of the vector S. 
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(5.8) S = 1 

j = 1, 2, ..., v 

H =3, 

A = a * H * S 

B =Gn 

C = B + H*A 

Gj} = C 

S = S*B\C 

A = AJC 

i =j+ Uj + 2, ..., v 

B = G y 

5t =8i-B*H 

G,j = B + A* 5,. 

end of i 

end of j 

The above algorithm and some details can be found elsewhere (see [l]). 

To proceed further, let us assume the case when the LDTT decomposition of the 

statistic V belonging to z = 

accordingly 

is available. The matrices L, D are divided 

(5.9) D = 

(5.10) L = 

~DZ„ 

к 
0 

0 IЛ 
Q 

Q V 

~LZ. 0 

L z a z , к Lz«y LІ 
yц 

The foregoing discussion continues that L2 and Dz really lie in the denoted subfields. 

Moreover, the LDT~ factorization of A is easily obtained by the successive application 

of the algorithm (5.8) to the LyDyL~ with columns of Lzry in the role of S's and with 

diagonal entries of D.r in the role of a's (with plus sign). 

The accepted strategy of searching for the best structure, described in Section 4, 
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requires to move some entry from za to zr or in the opposite direction. The algorithm 
proposed for such a task in [5] will be briefly reviewed now. 

Let the ith entry, i ^ Q, of ^-vector za has to be moved to zr. It can be shown 
that it is reasonable firstly permute z ;<-+z ;+1 then z;<-»z; + 2 ... zi<->zg and to de
crease Q by unity. Each of these permutations corresponds to some permutation 
in V and destroys the LDTT factorization. The reason to perform the permutation 
z ; <-> zc in the above-mentioned way lies in the fact that the algorithm, say.S?, which 
reconstructs LDTT decomposition is rather simple. The solution of this task, which 
produces description of one member of the restriction set, can be formalized 

(5.11) z i<-*z j+1-.z i<-*z i+2!-. ... z;<-*zfi_2, set Q= Q- 1 

Similar is the case of forming of the extension set, i > Q, 

(5+2) z i<->z i_1_.z i<-»z i_2._?...zj<->ze + 1_. , set Q = Q + 1 

The algorithm zt <-> zl + 10t, resulting directly from the definition of LDTT factoriza
tion and from the form of the matrices L, D after permutation zi «-* zi+1, is 

fc= 1,2, . . . , / - 1 
H = Vik 

Vik = V+u 
Vi+lk = H 

end of k 
H = V„ 
S = vi + u+1 
5 1 = vi+li 
Hi = S + H* SI ** 2 

(5.13) C = Sl*#/m 
vi+li = c 
VH = HI 
H\ = sjm 
V + n+1 =Hl*H 
k = i + 2, i + 3 , . . . , g + v 

II = !_, 
s = V,-+1 
Vfc; = C * H + S * HI 
Vti+1 = H- S*S1 

end of /c 

This algorithm saves the substantial amount of computation time decreasing 
the number of operations from the order Q3 for the plain repetition of the LDTT 

factorization to the order Q2. 
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6. SUMMARY OF THE ALGORITHMS AND USER-ORIENTED 

COMMUNICATION 

The purpose of this section is to give overall view on the computer program and 

its use. 

At the very beginning the user has to select the system output as well as the entries 

of the "maximal" regressor I which contains the union of all z's and to generate it 

in the shifting form (2.17) from the recorded data. 

This part of data handling suits for subtraction of mean values from measured 

data. It restricts the possibility of numerical troubles by decreasing the numerical 

values of the data used. 

Then the statistic Vin (2.16) is formed (for full data record length available) with 

the help of the statistic (2.19), preferably in the separate task because different 

searches for the same Vare usual. To construct Vonly e (2.16) has to be specified. 

A set of possible alternatives z and an initial guess za has to be selected at the next 

step. The following style of user-oriented communication seems to us to be satis

factory. The character string 

(6-1) [ + + / « . ) + + / 2 W - + + f ( ( ) & & L + i ( ( ) ---&& j ; . (o . & & j i ( r- i )-

. . . & & / , ( ( _ ] ) , . . . & & j 1 ( ( _ f i ) . . . & & / , ( t _ f l ) , & & const.] 

is formed. The starting v-entries correspond to the system output and the last one 

to the constant term. The prefixes && have to be filled by symbols + + , + —, 

— + , — — , having the meaning: 

+ + : this entry has to be used in the accepted model, 

+ —: this entry can be used in the accepted model and it is an entry of the initial 

— + : this entry can be used in the accepted model but it is not an entry of the initial 

guess, 

: this entry must not be used in the accepted model. 

These symbols are translated in the initial value of the permutation vector q 

(2.25) and in the dimensions Q of za and Q or z. It has to produce the following 

re-ordering 

(6.2) ( M = 

" z a . . . + + part 

!• + — part !• 
zr - + part 

У + + part 

— — part 

-
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The next program steps are the computation of the initial permuted LDTT decom
position (2.26) with co — Q + v and the determination of LDLT factorisation of A 
corresponding to za, i.e. successive application of the algorithm (5.8) for all columns 
of Lz,y (5A0). Then the principal part of the likelihood function yt (3.5) can be 
determined from the relation (2.23) and its analogy for the matrix A. The log-form 
of y is more reasonable because of its exponential growth with length of data record: 

(6.3) 21n(y a

0) = - v l n \VҐ , In |A f l ( 0 | + QV In (s) = 

- УAn (V,-,) - x ( 0 X ln (G„) + QV ln (в) 

Having ya the extension, see Section 4, is tried for all entries of zr. The permutation 
vector q is of course permuted accordingly. If it is found some entry causing (maximal) 
growth the extension is taken as new za. Then the restriction is handled in the same 
way. 

The computations are stopped if either no growth of y" is accounted through the 
trial extension and restriction or a given number of steps is exhausted. 

Partial as well as final results are displayed similarly as the input information. 
The character string of the type (6A) corresponding to the current division of z 
in (6.2) is used. The entries of za are denoted by + + and of zr by — —. The value 
of ya is of interest when two runs differing in initial guess are compared. 

7. ILLUSTRATIVE EXAMPLE 

The purpose of this section is to demonstrate the behaviour of the program. 
The selected example illustrates that seemingly simple problems of structure deter
mination fall in the class having too much members to be fully compared. 

U 1.-1 u 2(t) *(t) 

$ (2.00 -IЩ2) Ѓ{Q.t)-QЩ) 0.33 

1-0.961 1-0.965 1 - 0.96$ 

* > 
Fig. 1. 

У(t 
Let us assume single-input (u2(t)) single-output (y(1)) system with one external 

measurable variable («i ( 0)- The scheme of it is given in Fig. 1 (£ — delay operator, 
£( ' ) ( 0 = (•)(,_!•,) where uiU), e(t) are mutually independent white Gaussian'noises 
A'(0,1). Notice that the common denominator and the properties of <?(0 imply that the 
system in Figure 1 is the fundamental one. 
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The unknown structure paiameters and their bounds are: 

fi — number of inputs 0 ^ ft ^ 2 
<5,-, i = l , 2 - delays 0 _£ 6t 

«,-, i = 1, 2 — orders of denominators 0 _ <3; + n; = 7 
fi — order of numerators 0 _ n _ 7 

The maximal regressor concatenated with output and with the unit corresponding 
to the constant term contains subvectors 

/(.-.) = / = 0, 1, ..., 7 , i.e. 1 = 3 , ë = 25 . 

_ M 2 ( ( - / ) _ 

It implies 22 5 « 3 . 107 possible hypotheses. 
Two runs for initial g = 0 and Q = Q, with 500 items ofj(() weie performed. The 

structure was tested after each 125 steps starting with V(see equation (2.10)) given 
by e = 0.01. The resulting partition of z formed the initial condition for continuation. 
The CPU time (IBM 370/135, PL-1 language, interactive mode), including two 
complete simulations and accumulations of the statistic V, was 4 min. 32 seconds. 

The right structure was found at time 125 for the initial guess given by Q = Q 
and at time 375 for the initial Q = 0. The first case needed maximally 20 pairs of ex-
sions and restrictions, the second one only six. 

The different results at times 125 and 250 respectively were caused by multimodal 
character of likelihood function y. The wrong guess implies values -18.03 and 
17.90 in comparison with 177.68 and 415.41 for the right one. These values are, 
of course, sufficient for the selection of the better structuie. 

8. CONCLUSIONS 

The proposed computer program for the Bayesian testing of the regressor structure 
in multivariate normal linear-in-parameters dynamic regression model has, according 
to our opinion, a rather wide range of applications in practice. It admits to determine 
not only delays, orders, significant inputs and/or external variables, but it might be 
used to confirm or reject whether some nonlinear function of the observed data is to 
be used in the regressor. The possibility to use the Bayesian theory to the given 
problem in practically met dimensions has been achieved by the algorithm generating 
chain of small sets of sufficiently probable hypotheses. It results in the several-minute 
runs in IBM 370/135 CPU time when the tested regressor has several tens of entries. 
The effectiveness of the way used was confirmed in simulated as well as real-data 
test cases. 

Let us remark one important still explicitly unmentioned fact: the separation 
between the structure determination and the final control problem was enforced, 
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the aposteriori probabilities of hypotheses are not weighted by control-aimed loss 
function. This fact has to be taken into consideration when competitive hypotheses 
are of almost the same high probability. 

The generally known observations about the behaviour of aposteriori probabilities 
are applicable to the solved problem in order to obtain some asymptotic results: 

— if the right model structure lies in the class of the tested hypotheses, and 
- if the observed data are sufficiently rich (in the terms of equivalency of some 

(T-algebras) or equivalently inputs and external variables are sufficiently exciting 
then the aposteriori probabilities asymptotically converge to 1 for the right structure. 

These results stress two fundamental facts: 
- modeling, it means the selection of z(-), is of the first class importance 
— sufficiently "informative" data have to be collected. 

At the end the two possible extensions are mentioned: 

— overall algorithm can be done more sophisticated by exploiting the nesting 
property in the way similar to [4] 

- the same type of algorithm can be used to determine sampling periods for simple 
models as an integer fraction of control period. It can be shown that for restricted 
model order the testing of models of the type 

Ht :y,,) = r4)'(,-D + 4)\,-2) + . . . 

Hi • }'(,) = «1 )\,-2) + «2 V(r-4) + • • • 

has a nontrivial solution. 
(Received May 26, 1982.) 
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