
KYBERNETIKA-VOLUME 18 (1982), NUMBER 6

VARIABLE METRIC METHOD WITH LIMITED STORAGE
FOR LARGE-SCALE UNCONSTRAINED
MINIMIZATION

LADISLAV LUKSAN

This contribution contains a description of a variable metric method with limited storage
for large-scale unconstrained minimization. The quadratic termination of this method is proved
and an algorithm which implements this method is presented. Efficiency of the algorithm is
demonstrated on test functions.

1. INTRODUCTION

We are concerned with the problem of finding a local unconstrained minimum
of a real-valued function F(x) defined in the 77-dimensional vector space Rn and having
continuous second-order derivatives. The variable metric methods aie widely used
for solving this problem when n < 100, say. They construct a sequence of symmetric
positive definite matrices of the order n, so it is necessary to have n(n + l)/2 locations
in the high-speed computer storage. As 7! increases, n(n + l)/2 becomes too large
and the variable metric methods cannot be used.

Probably the first efficient method for large-scale unconstrained minimization
was the method of conjugate gradients. It is an iterative method, whose fc-th iteration
(k = 0, 1,2,...) has the form

(1.1) *it+l = Xj. + a..s..

where sk is a direction vector and ak is a steplength. The direction vector sk must
satisfy the condition

(1-2) -sjgk £ E0\\sk\\ \\gk\\

where gk = g(xk) is the gradient of the objective function F(x) at the point xk and
0 <-s0 < 1 is a small positive number. The steplength ak is taken to satisfy conditions

/, v, JIV+i - Fk -S Ěi«kSk0k
)sjgk

517

where Fk+1 = F(xk + 1),Fk = F(xk),gK+1 = g(xk+i), gk = g(xk) and where 0 <
< 2cj < 1 and 0 < 2e2 < 1. Note that s1gk+1 ~ 0 when perfect line search is
performed. The direction vector sk is computed recursively by the rule

(!-4) sk+1 = -gk+l + fiksk

where (ik can have three alternative values

(1.5a) h = ^ f^" (Hestenes - Stiefei [9])
hyk

(1.5b) pk = ^ + ' g t + 1 (Fletcher - Reeves [6])
gkgk

(1.5c) p, = 9-^~^_ (Polak - Ribiere [16])
9k9k

(we use notation dk = xk+1 — xk = aKst and vfc = ak + 1 — gk through this paper).
The method of conjugate gradients was introduced by Hestenes and Stiefei for

solving systems of linear algebraic equations and by Fletcher and Reeves for un
constrained minimization. Since that time it has been improved by many authors.
An important modification of the method of conjugate gradients is based on the
addition of one or several terms into (1.4) which vanish for g1+1sk = 0 (perfect
line search). A suitable selection of these terms causes that (1.4) can be expressed
in the form

(1-6) sk+1 = -Hk+1gk + 1

where Hk+1 is a symmetric positive definite matrix of the order n which satisfies
the so-called quasi-Newton condition

(1-7) Hk+lVk = dk

This condition is satisfied when Hk+1 is the inverse of the Hessian matrix of the
objective function F(x) at the point xk + 1 and it forms a basis for the broad class
of quasi-Newton methods.

The addition of auxiliary terms into (1.4) was introduced by Perry [15]. Shanno
[20] has shown that the matrix Hk + 1 in (1.6) can be chosen in such a way that

Hk+1 = yk (Hk + ~ dkdj - 1 Hkyk(Hkyk)
T +

\ Jk<*k ?k

+ L(l*dk-Bkyk)fedk-H-k

where Hk = I (the unit matrix of the order n) and yk > 0 is a free parameter. Further
more <rk = y1dk and xk = ylHky>k. The above expression for Hk + i is just the genera
lized one-step BFGS update (see Broyden [3], Fletcher [7], Goldfarb [8] and

518

Shanno [19]). Shanno [20] has also proposed an algorithm which uses the two-step
BFGS update. The relationship between the method of conjugate gradients and the
BFGS method was also studied in [4], [5] and [11]. It gave rise to the combined
conjugate gradient quasi-Newton algorithm. All these methods work with limited
storage.

We are proposing a variable metric method with limited storage, which uses the
m-step BFGS update. It is very close to the method proposed in [13] but it uses
geneial values of free parameters. Moreover, an efficient algorithm is presented and
its efficiency is demonstrated on the standard test problems.

2. PROPERTIES OF THE NEW METHOD

The variable metric method with limited storage (or the m-step BFGS method)
studied in this section is an iterative method, whose fc-th iteration has the form
(1.1)—(1.3), where

(21) st = -Hkfigk

and where Hk0 is a symmetric positive definite matrix of the order n obtained by the
771-step BFGS update

(2.2) HkJ._ = y,_j (HkJ + -^J~ dk_jdr
k_j -

V lk-fk-j

- •— Hk,jyk-j(Hkjyk-jf +
rk-j

+ _ L /_*_! 4 _ . - Hk,Jk_j) fe=L dk_j - HktJyk-j
*k-j \Vk-j J \°k-j

for 1 __ j __ k, k = min (fe, m) where Hkk- = I (I is the unit matrix of the order n),
yk_. > 0 and Qk_} > 0 are free parameters and ok_j =)'l_jdk_j, xk_j = }'l-jHkJ.
•)'k-j- Then for an arbitrary vector v

(2.3) HkJ_ _v = yk_j (fíkJv - ^ Hkjyk_j +
V <tk-j

(í_k__j + Ч-Л dí-jV _ + [[_ _ _ + _ _ _ .) ___il _ _ _ _ _ _ _ _ _) dk_
Vk-i

?k-j

(HkJyk_jfi

7k-j

holds. This expression contains only n-dimensional vectors and it can be used for
consecutive evaluation of the term Hkfigk which appears in (2.1).

Now we are proving the main results about the behaviour of the m-step BFGS
method applied to the quadratic function

(2.4) F(x) = i(x - xf G(x - x)

supposing perfect line search is performed.

519

Theorem 2.1. If the m-step BFGS method is applied to the quadratic function
(2.4) and if the steplengths are chosen by perfect line searches, then

(2.5) * - -d\yk-.)(9k-
Jhr~d^

J=I \ yk-idk-i
for 1 __[k __ n, where k = min (k, in).

Proof. Let 1 < k < n and k = min (k, m). If the perfect line search is performed
in all subsequent iterations we have d1_jgk + 1_j = 0 for 1 <_ j < Jc and from (2.3)
we obtain

(2.6) HkJ_l9k+1_j = yk_j (HkJgk+l_j - __z i_^g_±--J d__\

for 1 < j < k. Since Hkil = / , (2.5) holds for k = 1. Now we use induction. Let
(2.5) holds for k = I — 1 __ 1. Then search directions sb 1 __ i < I are parallel
to the search directions of the method of conjugate gradients, so that

(2.7) dTy, = yjdj = 0 , 1 < i < j < I

(2.8) djgj - 0 , 1 __i <j _. I

(2.9) g\g} = 0 , l _ i < j ^ l

Now we shall prove that

(2.10) ff.,O0, = (n . , - .) (« . - £ ^ «*«-?
i=i V ;=i _•._, y

where J = min (/, m). We prove it by induction again. Let

(2-11) ff,,o-, = (f t V.-«) (II,,,-; ~ t ^ - - ^ _,_.)

for ; < /. From (2.6) it follows that (2.11) holds foi j = 1. Since df_j-i9, = 0
for j < I by (2.8), we obtain

(2.12) Hlj9l = y ^ - j H ^ g , - ?!=J^Sl____il rf;_
\ 0 - / - J - 1

from (2.3). Since y]_idl_j_1 = 0 for 1 < i g j by (2.7), we have y1^Hij9i =
= 7i-j-iyl-,Hi,J+1g, for 1 < i g ; . Setting it together with (2.12) iflto (2-H),
we obtain

Hг,0g, = (П-«-«) (..-.-1II«_ + i-i - ľł_,_. УЬ^EbШІl d._.__ ~
í = 1 V o - i - j - i

-Іy.-i-i$^^dЛ-
i-l cr^i /

J ' + 1 / J ' + 1 „ т w \ - (Пл-Ofw. - I ____________ rfг_;\
i=l \ 1-1 . , _ ; /

520

which is just (2.11) with j increased by 1, so that (2.10) is proved since H,, = I.
Now yj_l9l = (.. + 1 _ i . , - _ __,_,) = 0 for 2 5_ i 5. / by (2.9), so that (2.10) gives

«, = -IIi.o-i = - (rly.-Of-i - ^ ^ -,-i
1=1 V (T;-!

which is just (2.5) with fc increased by 1, so that (2.5) is proved for all 1 g fc __ n, __

Theorem 2.1 implies that the m-step BFGS method applied to the quadratic
function (2.4) is equivalent to the method of conjugate gradients when the perfect
line search is performed, so that it finds a minimum of the quadiatic function (2.4)
after at most n iterations.

Theorem 2.2. If the assumptions of Theoiem 2.1 are satisfied, then

(2.13) Hk,oyk_j = (J] .__.) ^ __-, , i _ j g f c
' = i 7k-j

for 1 __ fc __ n, where fc = min (fc, m).

Proof. We prove this theorem by induction. Let

(2.14) ff_,-_v,-. = (f l Vt-d-^d^j, _ __j Si J
«-=i r , - .

for some / < fc, where 7 = min (/, m — k + I). This relation is true for / = fc — fc,
where fc = min (fc, m), since the condition 1 _ j _ ! cannot be satisfied for any
index j(l = min (fc — fc, m — fc + fc — fc) = 0 for / = fc — fc). Since djy,_j = 0
by (2.7) and yjH„,__,>',_j = 0 by (2.7) and (2.14), we obtain

Hk,k-,-iyi-j = y,!/M_,y,_j = (fl .,_,) - ^ d,_j, _______
1=0 . , _ j

from (2.3) and (2.14). After changing the indices (increasing; by 1) we obtain

(2.15) Hk,k_l_1yl + 1_j = (f\yl + 1_i)^^-dl+1_j,2_ij_;T+l
»-• y . + i - .

where / + 1 = min (/ + 1, m — fc + / + l). Furthermore, we have

HM-,-,>. - 7. CHM-C - " HM-^. + ff~ + -) - - h) A =
\ Oi \\Vi -«/ <?, <V /

7i

from (2.3). This expression and (2.15) give

--__-i-.i>.+_-_ = (flyi+1-i)—— d,+i-., i =. = r+T
'•=i V i + i - j

which is just (2.14) with / increased by 1, so that (2.13) is proved. •

521

Theorem 2.2 implies that setting yk_j = 1, 1 _= j < k, yk_li = y and Qk_} = (?,

we have satisfied k generalized quasi-Newton conditions

Hk,oyk-j = Qdk-j, i<J^k

Parameter y introduced in [14] serves for conditioning and improving stability

of the BFGS update (see also Shanno and Phua [21]). Parameter Q was introduced

in [2], For the quadratic function (2.4) the best choice is Q = 1. Special choices

of the parameter Q can improve the behaviour of the ?n-step BFGS method for non-

quadratic objective function.

3. IMPLEMENTATION OF THE NEW METHOD

The /tt-step BFGS method uses recunence relation (2.3) for consecutive evaluation

of the search direction (2.1). This recurrence relation can be rewritten in the form

where

Bkj-_v = (p(dk_j, HkJyk_j, v, HkJv, ak_p Tk_j)

(3.1) <p(d, u, v, w, a, x) = y I w u + {I - + — J J a j

Note that y and Q are not parameters of the function cp but they are implicitly assumed

to appear in (3.1). For m = 3 we can write the chart of computation in the following

form

н k - l y k - l d k - l

t
н k - 2

y k - l
t

н k - 2

y k - l | H k - 2

У k - 2 d k - 2 |

t
H k - З y k - 1

t
H k - 3 У k - 2

t
H k - З y k - 1

t
H k - 3 У k - 2 I Hk-З yk-3 d k - 3

t
H k - l 9 | <

f
H k - 2 9 k

î
Hk-З9|<

Some vector in this chart is computed by means of four vectors. They are the

closest vector in the same column (see arrows), the vector on the bottom of the same

column (see rings) and the framed vectors in the previous row. Therefore 9 n-dimension-

al vectors must be stored simultaneously for m = 3 (the method of conjugate gradients

uses 5 n-dimensional vectors). These 9 n-dimensional vectors are denoted x, g, s, xu

di, x2> 92, xi, 03 in the description of the algorithm. Vectors x, g, s, xu gt represent

the vectors xk, gk, sk, xk_u gk_t and vectots xu gu x2, g_> x3, 93 represent the vectors

<4-i> yk~i, dfc-2, yk-2, d/i-3, yk-3- Note that vectors xt, gx represent both xk_u

9k-1
 a n d

 dk_u yk_u

Now we are in a position to describe the algorithm of m-step BFGS method.

We use Q = 1 in (3.1). The choice of the parameter y is controlled by the integer /.

522

Algorithm 3.1.

Step 1: Determine the initial vector x and compute values E : = E(x) and g : = g(x).
Step 2: Test for convergence. If the termination criteria are satisfied (for example

if \\g\\ is sufficiently small) then stop.
Step 3: In the first iteration go to step 4 else go to step 5.
Step 4: Set s := -g. Set k := 0 and go to step 17.
Step 5: Set I := I and k := min (k, m). Set xx := x - xt, gl := g — gr, and

s := g.
Step 6: If k~ = 3 go to step 7 else go to step 8.

Step 7: Compute T3 = gTg3. Compute s := <p(x3, g3, g, s, a3, r3). Set x0 := g2,
g0:=g1, compute x0:= <p(x3, g3,g2,x0,a3,x3), g0 := <p(x3,g3, gu g0,
a3, x3) and set x3 := x0, g3 := g0 (vectors x0 and g0 need not be stored
if the computation runs by coordinates). Function q> is defined by (3.1)
where y = l i f / = 0 o r y = CT3/T3 if / = 1. Set / := 0 and go to step 10.

Step 8: If k = 2 go to step 9 else go to step 11.
Step 9: Set x3 := g2 and g3 := gv

Step 10: Compute T2 := grx3. Compute s := <p(x2, x3, g, s, a2, x2) and g3 : =
:= (p(x2,x3,g1,g3,a2,x2). Function q> is defined by (3.1) where y = 1
if I = 0 or y = a2\x2 if I = 1. Set I := 0 and go to step 12.

StepU: Setg3 := gv

Step 12: Compute ax := g\x1 and Tj := g\g3- \ial=Qotxl=0 go to step 4
else go to step 13.

Step 13: Compute s := cp(xu g3, g, s, au xt). Function q> is defined by (3.1) where
V = l i f / = 0 o r y = aljx1 if I = 1. Set s := —s.

Step 14: If m = 3 set g3 := g2, x3 := x2 and a3 := a2.

Step 15: If m = 2 set g2 := gu x2 := xt and a2 := ax.
Step 16: If -sTg = e0\\s\\ \\g\\ go to step 17 else go to step 4.
Step 17: Set xy := x, gx:= g, F1:= F. Use a standard procedure to determine

the steplength a so that F — Ft = sla.sTgl and sTg = (1 — £2) s
Tgx holds,

where E and g are new values E : = E(x) and g : = g(x) at the point x : =
: = xx + as. (These values are determined in present step by use of a stan
dard procedure.)

Step 18: Set k := k + 1 and go to step 2.

Algorithm 3.1 uses two integers / and m. Here I is a parameter controlling whether
we use the value y — 1 (/ = 0) or the value y = a\x(l = l) and m is a maximum
number of BFGS updates in each iteration (m S 3). In the step 17 of Algorithm 3.1
we can use any standard procedure for the determination of the steplength a. The
safeguarded cubic interpolation has been used in our realization of the algorithm.
Values e0, fij and £2 in steps 16 and 17 of Algorithm 3.1 are usually small. Numerical
experiments were carried out with the values £j = 10"3 and ^ = £2 = 10 - 2 .

523

4. NUMERICAL EXPERIMENTS

Efficiency of Algorithm 3.1 was tested by means of 18 standard problems

1) F(x) = (I0(x. - x2)
2 + (x. - I)2)4

x = [-1-2; 10]T

2) E(x) = (10(x. - x2)
2 + (x. - l)2)1'4

x = [—1-2; 10]T

3) E(x) = 100(x2 - x2)
2 + (xx - l)2

x = [-1-2; 10]T

4) E(x) = 100(x2 - x2)
2 + (x, - l)2 + 90(x2 - x4)

2 + (x3 - l)2 +
+ 10-l((x2 - I)2 + (x4 - I)2) + 19-8(x2 - l)(x4 - 1)

x = [-3-0; -1-0; - 3-0; -1-0]T

5) E(x) = (Xl + I0x2)
2 + 5(x3 - x4)

2 + (x2 - 2x3)
4 + 10(x, - x4)4

x = [30; -1-0; 00; L0]T

6) E(x) = (exp (x,) - x2)
4 + 100(x2 - x3)

6 + tg4 (x3 - x4) + x\ + (x4 - 1)
x = [1-0; 2-0; 2-0; 2-0]T

13
7) F(x) = I (1*4 exP (-*iz .) - xs exP {-xzzd + Xe exp (-x3zt)) - yf

i = l

yt = exp (-z ;) - 5 exp (-10z;) + 3 exp (-4z ;); z; = I/IO
6

x = £ e, + e2

8)E(x) = K20 i (l 6 - i j (x ; - l) 2)
i = 1

x = 0
9) F(x) = 1(20 £ (16 - i) (x; - 1)2J + lo(20 £ (16 - i) (x; - I)2)2

> = i i = i

x = 0

10) E(x) = (1 - x,)2 + (1 - x10)2 + 10 £ (10-0 (x2 - x ;+1)2

i = l

x = e10 - \-2e1

ll)E(x) = (X / 3 (x ; - l) 2) 3

i = l

x = 0
12)E(x) = (£ i 3 (x ; - l) 7 / 3

1 = 1

x = 0

13)E(x) = g(lOO(x 2 -x ; + 10)2 + (x ; - l) 2)
i = l

10

* = ! > . • + i o - l-2e,)

524

14) F(x) = | (100(x2 - x ; + 5) 2 + (x; - l)2 + 90(x2
+lo + x ; + 1 5) 2 + (x ; + 1 0 - l)2 +

+ HM((x; + 5 - l)2 + (x ; + 1 5 - l)2) + 19-8(x, + 5 - l) (x ; + 1 5 - 1))
5

x = - £ (3 e ; + e i + 5 + З e ; + 1 0 + e / + 1 5)

1 5) ғ (*) = I ((* i + l t e i + s)2 + 5(xi + 1 0 - x ; + 1 5) 2 + (x ; + 5 - 2 x ; + 1 0) 4 +

+ 'lO(x; - x ; + 1 5) 4)
5

X = Z (З Є І - Є i+5 + Єi+lS)
i = l

3 0

16) Ңx) - I / ? (x)
30 / - \ l / 2 / / - \ l / 2

/,(x) = 420x; + (i - 15)3 + Ç (xj + т) (sin5 log (xj + -) +

>l/2\

+ cos'' log I x? + T

30

x = -2-8742711 . 2 > ; / . (0)
i = l

17) F(x) = £ (y{ - £ («,-; sin x, + 5 ; , cos x,))2

i = i j = i

30

^i = E (aU Sil1 ^ + &'V C 0 S Z])
j=l

a,j, bu — random coefficients uniformly distributed within the interval
<-100,+100>

£j, Sj — random coefficients uniformly distributed within the interval
< - 7 t , +7T>

x = c + 0-1.5

ЩF(x)=l-ЄW(-i-0Zxђ
; = i

•-JИ(1+ií)*
The objective function E(x) and the initial vector x are given for each problem.
Here et is ith column of the unit matrix of a desired order. The minimal value of the
objective function is always zero. Results of the tests are shown in Table 1.

Columns in Table 1 correspond to combinations of values I (choice of y) and
m (number of BFGS updates). Rows in Table 1 correspond to the test problems
given above. Table 1 contains two values for each run, which are separated by the
stroke. The first is the number of iterations and the second is the number of function
evaluations. An asterisk in the row 7 shows, that an alternative local minimum was

525

1

/ = 0 /= 1

m= 1 m=2 m= 3 m= 1 m= 2 m= 3

!. 169-185 290-327 69- 91 48- 50 49- 52 48- 51

2 86-219 39-101 28- 95 54-111 35— 87 36-116

3 30- 76 30- 57 34- 54 40- 58 46- 60 39- 53
4 55-112 45- 94 47- 126 102-120 54- 65 42- 48

5 118-232 106-214 36- 60 195-238 111-137 148-188

6 A 244-255 81- 84 125-179 55- 64 65— 74
7* 331-527 208-281 51- 72 A 146-194 86-111

8 6- 13 6- 13 6- 13 11- 13 11- 13 10- 12

9 22- 44 22- 51 19- 43 13- 14 15- 16 15— 16

10 A A 385-1106 A A 275-320

11 A A A 110-119 113-128 101-107

12 240-688 266-650 265- 791 256-279 242-282 154-183

13 21- 52 16- 25 22- 30 51- 64 28- 36 28- 43

14 58-119 45- 94 47- 126 124-150 55- 65 42- 48

15 261-518 276-554 36- 60 149-182 A 204-243

16 10- 21 12- 25 16- 33 10- 12 10- 12 10- 12
17 240-481 246-493 252— 505 A 294-319 357-404

18 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7

found (instead of global minimum). The letter A shows that 300 iterations did not

suffice to find a minimum.

To compare known methods for large-scale unconstrained minimization Table 2

has been set. Columns of Table 2 correspond to the PARTAN method [18], the

method of conjugate gradients (CG method) with formula (1.5a) and with restart

after each 2n iterations, the method of Nazareth [12], the method of Beale [l]

modified as in [17], the two step BFGS method of Shanno [20] and our method

with / = 1 and m = 3. The meaning of numbers in Table 2 is the same as in Table 1.

The same termination criteria, namely | |a t | | g 10~8 or Fk ^ 10~ 1 6 or

||"fc — xk~i\\ = 10~8 and I**- ! — 3CJc_2|j _̂ 10~8 were used for all methods in both

tables. The results slightly differ since different initial estimates of the steplength

ak were used. Results in Table 1 correspond to initial estimate

ak = min (1, 4
F-F,

sT

kgk

while results in Table 2 correspond to initial estimate

F-F,
«* = 2

hвk

(here F is a lower bound for minimum value of objective function F(x)).

526

PARTAN CG Nazaгeth Beale Shanno m-step

meťhod method [12] [1] [20] BFGS
method

1 2 7 - 38 2 9 - 92 2 7 - 79 3 1 - 94 2 4 - 28 2 4 - 27
2 10— 40 56-123 43-115 2 4 - 63 2 8 - 73 3 7 - 100
3 4 1 - 90 2 7 - 47 2 5 - 48 2 7 - 50 2 3 - 44 2 3 - 37
4 4 5 - 79 150-446 130-377 1 2 0 - 356 3 4 - 53 3 0 - 46
5 1 1 7 - 218 93-177 77-168 5 1 - 91 89-153 8 2 - 159
6 1 0 3 - 226 3 4 - 53 55-110 3 4 - 56 4 9 - 80 3 9 - 56
7* A 231-649 91-252 9 8 - 277 131-345 5 5 - 140
8 1 4 - 15 1 6 - 17 2 4 - 39 2 1 - 22 1 0 - 11 9 - 10
9 1 7 - 19 1 8 - 26 3 0 - 72 2 0 - 28 1 4 - 18 1 4 - 18

ÎO A A A 378-1535 A 266-1015
11 2 2 - 701 132-309 126-320 1 0 5 - 219 102-221 1 0 6 - 174
12 391-1107 270-710 298-830 2 6 0 - 688 225-564 1 9 8 - 468
13 3 0 - 57 3 1 - 43 2 8 - 62 3 1 - 43 22— 38 1 8 - 28
14 4 5 - 79 186-484 139—307 1 2 6 - 307 4 2 - 74 3 0 - 46
15 1 2 3 - 229 72-132 62-120 5 7 - 105 123-267 8 9 - 173
16 1 2 - 13 3 6 - 37 2 4 - 37 3 6 - 37 1 0 - 11 1 0 - 11
17 A 225-442 276-544 2 1 3 - 397 189-352 2 4 3 - 475
18 6 - 7 7 - 11 7 - 8 9 - 14 6 - 7 6 - 7

5. CONCLUSION

The numerical experiments show high efficiency of the m-step BFGS method

when complicated problems are solved (problems 10-18). This method has been

implemented in the software package for optimization and nonlinear approximation

SPONA (see [10]) as program POPT 96.
(Received October 20, 1981.)

R E F E R E N C E S

[1] E. M. L. Beale: A derivation of conjugate gradients. In: Numerical Methods for Non-linear
Optimization (F. A. Lootsma ed.), Academic Press, London 1972, 39—43.

[2] M. C. Biggs: Minimization algorithms making use of non-quadratic properties of the
objective function. J. Inst. Math. Appl. 5 (1971), 3, 315 — 327.

[3] C. G.Broyden: The convergence ofaclassof doublerankrninimizationalgorithms2. Thenew
algorithm. J. Inst. Math. Appl. 6 (1970), 3, 222-231.

[4] A. G. Buckley: A combined conjugate gradient quasi-Newton minization algorithm. Math.
Programming 15 (1978), 2, 200-210.

[5] A. G. Buckley: Extending the relationship between the conjugate gradient and BFGS
algorithms. Math. Programming 75 (1978), 3, 343—348.

527

[6] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7
(1964), 2, 149-154.

[7] R. Fletcher: A new approach to variable metric algorithms. Comput. J. 13 (1970), 3, 317— 322.
[8] D. Goldfarb: A family of variable metric algorithms derived by variational means. Math.

Comp. 24 (1970), 109, 2 3 - 2 6 .
[9] M. R. Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems.

J. Res. Nat. Bur. Standards 49 (1952), 6, 409-439.
[10] L. Lukšan: Software package for optimization and nonlinear approximation. Proc. of

2nd IFAC/IFIP Symposium on software for computer control, Prague 1979.
[11] L. Nazareth: A relationship between the BFGS and conjugate gradient algorithms. SIAM

J. Numer. Anal. 16 (1979), 5, 794-800.
[12] L. Nazareth: A conjugate diгection algorithm without line searches. J. Optim. Theory Appl.

23 (1977), 3, 373-387.
[13] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comp. 35 (1980),

151, 773-782.
[14] S. S. Oren, D. G. Luenberger: Self-scaling variable metric SSVM algorithms 1. Criteria

and sufficient conditions for scaling a class of algorithms. Management Sci. 20 (1974), 5,
845-862.

[15] A. Perry: A modified conjugate gradient algorithm. Oper. Res. 26 (1978), 6, 1073 — 1078.
[16] E. Polak, G. Ribiere: Note sur la convergence de methodes des directionsconjugees.Revue

Fr. Inf. Rech. Oper. 16-Rl (1969), 3 5 - 4 3 .
[17] M. J. D. Powell: Restart procedure for the conjugate gradient method. Math. Programming

72(1977), 2, 241-254.
[18] B. V. Shah, R. J. Buehleг, O. Kempthorne: Some algorithms for minimizing a function

of several variables. SIAM J. 12 (1964), 1, 74-92.
[19] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math.

Comp. 24 (1970), 111, 647-656.
[20] D. F. Shanno: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3

(1978), 3, 244-256.
[21] D. F. Shanno, K. H. Phua: Matrix conditioning and nonlinear optimization. Math. Pro-

gramming 14 (1978), 2, 149-160.

Ing. Ladislav Lukšan, CSc, Středisko výpočetni techniky ČSAV(General Computing Centre —
Czechoslovak Academy of Sciences), Pod vodárenskou věži 4, 182 07 Praha 8. Czechoslovakia.

528

