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DIFFUSION APPROXIMATION
FOR A CONTROLLED SERVICE SYSTEM

VERA LANSKA

The aim of the paper is to suggest a procedure how to control a service system under the
possibility of the system’s ruin, when the additions of the capital are random variables with
a given distribution function. Using diffusion approximation for the capital the original problem
is converted into the problem of controlling continuous Markov processes. A procedure how
to compute the optimal control policy is presented.

1. INTRODUCTION

A service system M/M/1 without possibility of queueing is considered. Its input
is composed of n mutually independent Poisson processes with arrival rates a;q > 0,
i=1,...,n The service time of the i-th type of customer is a random variable
having exponential distribution with a service rate b,g > 0, i = 1, ..., n. (The para-
meter q is sufficiently large). The behaviour of the system is described by a random
process {i,, t € [0, T} with a finite set of states {0, 1,...,n}. i, = O means that the
system is vacant at time ¢, i, = j, j = 1, ..., n, means that the system serves a customer
of j-th type. Further, we assume that the functioning of the system depends on a quan-
tity varying in time according to its performance. The quantity is called capital,
it is denoted by {V,, te[0, T]}, and it has a positive initial value V, > 0. During
the service of a customer of type i, i = 1, ..., n, the capital increases by a random
variable X per unit time with a given distribution function F i(x), i=1,..,n The

yield X’ of the next served customer is independent with the distribution function
’ F,(x), where k denotes his type, etc. The distribution function has the following
properties:

(1) f xdF,»(x)=c,->0,J x*dF(x) =dgq >0,

J. x*dFx) = 0(¢%), i=1,...n.
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Let x, denote the rate of increase of the capital at time 1. Thus, x, is piecewise constant,
Following the state change a new value of x, is selected.

If i, = 0, the capital has a constant decrease ¢, < 0 per unit time. If the capital
reaches zero, the ruin occurs, and the system ceases to work. The ruin moment is
a random variable T = inf {t, ¥, £ 0}. To measure the utility of the system’s per-
formance, we introduce the optimality criterion

EyU e~ M dV, - Ne"‘}.
0

where E, is the mathematical expectation under the condition that the initial capital
equals y, the discount factor A is a chosen positive number. N > 0 denotes the penalty
for the ruin. With regard to the danger of the ruin the strategy has to depend on the
actual capital. It is given by a vector function u(y) = (uy(y), ..., u,(»)), where
0 < uy) < 1 has the following meaning: if the system is vacant and if the capital
equals y and the i-th customer arrives, then u(y) denotes the probability of his
accepting. The strategies with a bounded derivative are admissible and their
totality is denoted by %.

The system with d; = ¢}, i = 1,...,n was investigated in [2]. No diffusion
approximation was used; the system of Bellman’s equations was derived directly
for the expected discounted criterion.

2. LIMIT DISTRIBUTION OF THE CAPITAL

We shall prove a limit theorem for {V,, t € [0, T]} under the assumption that the
parameter ¢ tends to infinity and u(y) €% is a stationary control policy.

Let us define 0(x(y)), o*(u(y)) (further the abbreviated denotation 6(y), ¢*(y) will
be used) together with w(i, x, y) and w,(i, x, y), i = 1, ..., n, as a solution of the
following system of equations

) x—bgw(i,x,y) = 0(y) =0, i=1..,n,
co + 2 aq uk(}')J w(k, x, y) dF(x) — 0(y) = 0
k=1 ~a
(3) w(i, x, ¥)? = big wy(i, %, ) — oi(y) =0, i=1,..,n,

kglaAq uly) J‘io [wik, x, y)? + wa(k, %, y)] dFi(x) — o3() =

(We set w(0, x, y) and w,(0, x, y) zero.)
Letting ¢ to infinity we obtain

G+ 3 ) 25, %
k - 0'2(}1) .

1+z"§éu,‘(y)’ 1+i—uk()

ady

u(y)
“) 0(y) =

260



We are going to show that the evolution of V, will be sufficiently closely described
by the stochastic differential equation

%) do, = 0(v,) dt + o(v,)dW,, v, =V,, 1€[0,T],

where {W,, 1€ [0, TT} is a standardized Wiener process.

Let Cy be the space of all continuous functions on [0, T] with the uniform metric.
Further, for 1 € [0, T], let &, be the g-algebra on C; generated by the sets

{feCrf(s) £x}, se[0,1], xe(—o0, ).

The random function {y,, te [0, T]} is defined on (Cy, ;) by the relation y,(f) =
= f(t), 1[0, T], fe Cy. The probability distribution of {V,, te[0, T]} is the
probability measure 2% induced on (Cy, €7) by {V,, te [0, T]}.

Theorem. Let the stationary control u(y) have a bounded derivative on (— o, o).
Then 2% converges, as ¢ — o0, weakly to the probability distribution 2 of a random
process {v,, t € [0, T]} such that

(6) dv, = 0(v,) dt + ov,)dW,, te[0,T],
Prlvo = Vo) = 1,

where {W,, te [0, T]} is a standardized Wiener process.

According to the result of [5] 2, is unique. The proof of the theorem will be de-
composed into a sequence of lemmas. Let &, be the o-algebra of random events
defined by the history of the service system up to time ¢.

Lemma 1. Let
M, = Vo= Yy~ f or)as + J:(w(s) — w(s ~))dn,,
where w(s) = w(i,, x,, V;)and N, = }: x{vi £ 1}, v; are the moments of state changes.
Then {M,, 1[0, T]}is a martingalej with respect to {#,, 1€ [0, T]}.
Proof. Let 4 be arbitrarily small.
E[Ms— M| (inx, V) = (i +0,%,y)] =
= (1 — bigd) (x4 — 0(y) 4) — bigd w(i, x, y) + o(4) = o(4).

The last equality holds in virtue of (2). The same is valid for i = 0. Thus {M,, te
e[0, T]} is the martingale. 0

The above mentioned martingale has the following property.
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Lemma 2. For0£t, <1, T
B(My, — M)* £ B(t; — t,) + A(1, — 1),
where 4 — 0 as ¢ —» o0 and B is a constant with respect to q.
Proof.Let 4 = (t; — t)n™', Y= Mysys— My,
Then
n~1 n—1 n—1
(M, — M)* = E(L V) = B(X ¥+ 4 X (Y Yo Yo +
k=0 k=0 m=0 k<m

n—1
+6L (T V) Yy).
m=0 k<m
Letting n — o we get

e, = 1,0 = € ([ (o) - vl an, +

’ 4& (Moo = M) (wls) = w(s ~))* dN, +

#6700 = .7 06 - (s )P o).

L33

Let us denote by ‘N, the counting process of transitions into statc i and by 0, the
corresponding transition rate. If we define

wi, y) = J w(i, x, y)f dF (x),

we have
ty 53
E(M,, — M, ) — EU w(s =) 00, ds 4J (M, - M,).
t L
2
w(s—)*0,ds + 6] (Mo — M) w(s =)*°0,ds +
1y

tL q W0, V,) 0, ds + ‘T (M. — M,)Wy(i, ) 'Q.ds +
i=1 t .

s

+6 j (M, = M, ) #,(i, V) ‘Q, ds)].

3

Using Hélder inequality and the fact that E(M,, — M, )* = f(t,) is a non-decreasing
function in f,, we obtain

f(t2) S Axts — 1) + Aty = 1) f(1)'"* + By(ty ~ 1) f(22)"2

where Ay, A, = 0as g — oo and B, is independent of g. The statement of the lemma
follows from the above inequality. a
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Lemma 3. For 1¢ [0, T]
J-o (W(s) - w(s—)) dN, = w(t) — W(O) - f; X w’(s) ds,
where w'(s) = (8/ey) w(i, x,, V,).

Proof. Let (v, v,,,) be the interval between two transitions and v, < t < v,
Then x, = x, i, = i, V; = y + x(s — v,) for s € (¥,, t) and

at1e

w(t) — w(ve) = w(i, x, y + x(t = v)) = w(i,x, y) = JY x w(i,x, V) ds.
va

Composing all such intervals we obtain the assertion of the lemma. O

Let us denote
7 Y,:V,—Vo—-J';E)(VS)ds, tef0, 7],
and let %4 be the probability distribution of {Y,, te [0, T]}.

Lemma 4. The family of %% is tight.

Proof. According to [1] it is sufficient to prove that

(8) lim Tim 24 (sup |y, — »,

540 g lt-s]<s

>eg)=0, ¢>0.
By Lemma 3

Y, = M, — w(t) + w(0) + jt x, w(s)ds.
Takee > 0,6 > Oand g > 0. Then ’

R sup |ys = y| > ) = P(sup |, - Y| > ) £
Jt-s| <o

Jt—sl <6
< P( sup ]M, - M| > i) + P( sup |w(t) — w(s)| > i) +
lt=s] <6 3 [t—s] <3 3

+ P< sup

ft—s]<é

. R 0] e
J x, w'(u) dL41 > ~) < ZP( sup IM_v - Miél > 4> +
3 j=0 9

R jBSsS(+ 1)

-
+ P sup 2w(s)| > E+p ixs w'(s)| ds > )<
0<sST 3 ° 3
[T/3] 7g\4 . 6\ . 3. (7 )
<y (—) E(M(js1y5 — Mp)* + (~> E sup [w(s)|* + = Ef fx, w'(s)] ds .
j=0\& € 0SsST & °
In the last step submartingale inequality was used. From Lemma 2
4 6\¢ 3
R (sup |y, — v > ¢) £ (I + 1) (3) (B3* + 46) + (~> C+>D,
lt~s|<5 d & g g

where each of A, C, D tends to zero as ¢ — 0. Thus (8) is immediately obtained. [J

263



The weak limit of any convergent subsequence %%, q; — @, is denoted by #.
Its existence is guaranteed by Lemma 4.

Lemma 5. {y,, 1€ [0, T]} is on (Cyr, %1, #7) a quadratically integrable martingale
with respect to {%,, te[0, T]}.

Proof.Let0 <s; <5, <...<s, <S5 <tx Tandletf(xy, ..., x;) be a bounded
continuous function on R*. From the martingale property of {M, te[0, T]}
follows

EM, — M)f(M,,,...,M,)=0.

From the proof of Lemma 4 results

) Esup [M,~ Y[*>0 as g— 0.
0st=T
Using (9)
(Y, — T f(H - V) = E(M, — M) (M, o M) = O
as q — .
This gives the martingale property of {y,, t € [0, T]}. The integrability of its square
follows from (9) and Lemma 2. O

Lemma 6. On (Cy, €1, %)

(10 0= | 6) = o[ 2| )

holds for 0 < s < t £ T, where {v,, t € [0, T]} is the solution of
T

(11) o= Vo + y, + J 6(v)ds, tefo,T].
0

(¢ denotes the mathematical expectation with respect to #y).

Proof. Note that 6(y) is Lipschitz continuous, and hence (11) has the unique
solution. As in preceding proof, to establish (10) it suffices to show that

J(y. = ¥ S s s V) Ay = I ( J‘ o3 (1,) du f(eys s V) dgar),
when sy, ..., 5, and (f(¥;, ..., x;) are the same as in Lemma 5. From (9)
(12) EM,— MPf(spr o) — E(Y = X f(Yepo o ¥) > 0 a5 g > 0.
Let t < s, then

(13) (M, ~ M| #) = E{j' (V) du + wls) - walt) + J' X, wy(u) du| 3",}.

s

The relation (13) is proved by proving martingale property for

7, = [ ) = o)y an, - [[eias + [ ) = wmtspam..

[
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The same method as in Lemma 1 is used with respect to (3). Lemma 3 also holds
for w,.

From (13)
(14) EM, — M) f(Y,,...Y,)—E f o (V) duf(¥Y, ... Y,) = 0
o
as g — .
(12) and (14) together give the assertion of this lemma. O
Corollary.

t
Vo= yo + [ a(v)dW,, te[0,T],
v 0
where {W,, 1[0, T]} is a Wiener process on (Cy, €y, Z7).
Proof. {W, = [¢o(v,)"" dy,, t€ [0, T]} is a martingale, which satisfies

Sr{(W, — W)

¢} =t—s for 0Ss<tsT.
This relation is a characteristic property of a Wiener process. m}

The proof of the Theorem follows with regard to (7) and (11) from the fact
that (6) holds on (Cr, €y, #71).

3. OPTIMALITY

Let us make a slight change in denotation.
0(u) = 0(u(y)), (u) = 3c*(u(y)) for u(y)=ueU =[0,1]"

For the limiting diffusion the optimality criterion has the form

E, {J. e~ dv, — Ne"“}, Ai>0,
(4]
or

(15) o) = E, {J‘;e’“ 0(v,) dt — Ne'“},

where {v,, t € [0, T]} satisfies (5) with v, = y and = inf {t > 0, v, £ 0}.
The problem of maximization of v(y) is the problem of controlling the one-dimen-
sional Markov process with differential generator
d d2
O(u) — + x(u) —
dy dy?
in such a way that (15) is maximal.
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We define

(16) #(y)y = supu(y).
uelt
#(y) fulfils the Bellman equation
(17) max {s(u) 8"(y) + 6(u) (0'(y) + 1) — A8(y)} = 0
uelU
(see for example [3]) with initial condition 8(0) = —N and #(oc) < c0. The primes

denote the derivatives with respect to y. The optimal process has the generator
d d?
0(a(y)) — + =(a(y)) —,
(G0) 5+ (i)

where #(y) is the maximizer of the curly bracket in (17). z()) is not necessarily an
element of %.

Now, we shall construct the optimal strategy t;(y). The whole construction is divided
into four parts.
1. Let us put y = +o0. Then

8(e0) = 27 max 0(u) = 27" 8(d(0)) .
uslU

2. Further, we solve for y 2 0
(18) w(i(e0)) v"(y) + 0(i(=0)) (v(y) + 1) = 20(y) = 0.

The only bounded solution has the form

o(y) = Ke™ + 271 0(a(0)),
where p is the only negative root of the quadratic equation corresponding to (18)
and K is an unknown constant. We shall assume K < 0. In such case v is the in-

creasing function. When chossing K two cases can occur:
(i) There exists K so that »(0)= —N and simultaneously

(19) (el@{o0)) — #(u)) v'(0) + (0(a(c0)) — 0(u)) ('(0) + 1) Z 0
forall uelU.

Then the construction is finished and the optimal strategy i(y) = d(co) for all
yzo
(i) Case (i) does not hold. Then we choose K so that

min [((d(o0)) — x(u)) v'(0) + (0(a(0)) = 9('*)) @O+ 1] =0.

3. Let (ii) occur. The strategy by which the minimum is achieved is denoted by
%4 and we solve the following equation for y £ 0

#(%u) v"(y) + 0Cu) (v'(y) + 1) — Av(y) =0
with terminal conditions

v(0) = K + 471 0(i(0)), v'(0)=Kp.
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Either, for yy < O such that ¢(yy) = —N the following inequality holds

(20) min {((u) — () " (yx) + O(Cu) — 0)) (V(yv) + )} 20,

ueUN{i( o)}

and the construction is completed. Or, there exists 0 > y, > yy, such that

min {(4(%u) — #()) v'(ve) + (00) = 6(u)) (#(3a) + 1} =0

uelU —{8(w)}
The minimizing strategy is denoted by 'u and the whole procedure is repeated
for y < y, so many times till we obtain such yy that v(yy) = —N and correspond-

ing inequality (20) holds.
4. The last step of the construction is the shifting of the end point yy into zero.
The resulting strategy is thus

a(y) = ‘uly + yy) for y; Sy + yy < yioi-

Its optimality follows from the construction.

4. EXAMPLE

In this section a numerical example is given. Only two types of customers are
considered. The following paramecters are chosen:
a; =1 a, = 0,1 co=—1
by =1 b, =05 A= 1
=1 ¢ =50
dy=1 d, =100

1. According to the foregoing section the optimal strategy for y = + o0 equals
i) (8y(c0), d(0)) =(0,1) and

0(i(0)) = 7, 5, x(z’l(c@)) = 33,33.

2. The solution of (18) is

I

v(y) =Ke %% 4+ 75,

3. When choosing K, case (ii) occurs. We get “u = (1, 1),
6(°u) = 4,55, »(°u) = 18,64 and the parameter K = —5,57. For y < 0 the follow-
ing equation is solved

18,640"(y) + 4,55('(y) + 1) ~ v(y) = 0
with terminal conditions v(0) = 1,93 and v'(0) = 9,28. The solution has the form
o(y) = —18,54e7%3% 4 15926214 4+ 4,55,

For fixed N we find yy < 0 such that t(yy) = —N.
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The following table gives several mutually corresponding values.

Ni135;10)1'00
|

N 1
4. The optimal strategy #(y) equals

oy f(1,1) for 0Ky < —yy
a(y) = {(O, 1) for —yy<y.

Remark. If d, < 15,00 the optimal strategy would equal (0,1) forall y = 0.
(Received January 6, 1982.)
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