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SOME REMARKS ON THE STABILITY PROBLEM FOR 
LINEAR SPACE AUTOMATA AND SEMICONTINUITY OF 
CUT POINT LANGUAGES* 

ERNST - ERICH DOBERKAT 

The stability problem for linear space automata is formulated for state spaces that are comple
tely metrizable topological vector spaces. It is shown that a well known characterization of stable 
automata carries over to the general situation, provided the state space is normed; an example 
due to Dubinsky shows that the latter condition must not be relaxed. Moreover a uniformity 
on the set of all such automata is defined which allows a topological characterization of stability. 
This uniformity is used, too, for an investigation of the semicontinuity of cut point languages, 
and it is shown that there exists a stochastic system which produces any cut point language with 
probability 1. 

INTRODUCTION 

Let E be a real linear space, X a nonvoid set. s& := (X, E; H) is said to be a linear 
space automaton with input alphabet X, and state space EifH:XxE->Eis 
a map such that H(x, •) is linear for any x e X. s4 is said to be stable if small perturba
tions for input letters cause only small perturbations for arbitrary input words. 
In order to define this more precisely, in [12] E is assumed to be an Euclidean space, 
i.e. E = M" for some ne N, and X to be finite. Let || • | be a norm on E, and denote 
by I'll, too, a consistent matrix norm for n x n-matrices (i.e. | | / A | :£ | / | ||A|| 
holds for any / e E, and for any n x n-matrix A). Then si is said to be stable (strongly 
stable in [12]) if given another linear space automaton s4' : = (X, E; H'), c > 0, 
there exists 8 = <5(e) > 0 such that 

sup {\\H(x, •) - IT(x, -)\\; x eX] < 8 

implies 

sup {\\H(v, •) - H'(v, -)|| ; veX*} <s, 

* Some results of this paper have been presented at the Fundamentals of Computation 
Theory Conference FCT '79 at Berlin/Wendisch-Rietz (GDR) in September 1979. 



where 5 does not depend upon s4'. The main result in [12] then is that stability of s4 
is equivalent to \H[v, *)\ -> 0, as \v\ -> oo. 

In this paper an attempt is made to have a look at the problem from a more general 
point of view. X is no longer assumed to be finite, and E is assumed to be in a class 
of topological linear spaces which includes Banach spaces as well as Frechet spaces. 
An additional requirement is that H(x, •) is continuous for any xeX. In absence 
of norms, stability has to be reformulated, and it is shown that stability implies 
the convergence result above, when the norm is replaced by an arbitrary continuous 
seminorm. If moreover E is normed, one gets the equivalence cited above. Since any 
topological linear space automaton generates an automaton which works on the 
topological dual E' of E, the question arises whether stability carries over to the dual 
automaton. After characterizing those automata on the dual space which arise as 
dual automata, it is shown that stability of the dual automaton implies stability 
of the given, and that the converse is true, too, provided £ ' has a special property 
(which is shared by normed spaces). An elegant counterexample provided by Ed. 
Dubinsky demonstrates that the equivalence cited above is indeed a speciality of 
normed spaces: he shows that H(v, •) -> 0, as \v\ —> oo does not imply stability in case 
the space is a Frechet space which does not admit a norm. The concept of nearness 
of two states carries over to the concept of nearness of two automata. This gives rise 
to define for every language L <= X* a uniformity °UL on the set of all automata 
under consideration, and stability of an automaton turns out to be describable by 
a comparison of the local neighbourhood bases of the topologies generated by °llx, 
and <%x*, respectively. 

The latter uniformity is helpful, too, in the investigation of the set valued mapping 
which assigns to any automaton si and to any cut point 6, 0 ^ 6 g 1, the cut point 
language S(s/, 9). For this, X is assumed to be a compact topological space, and the 
automata considered are assumed to be acts, i.e. jointly continuous in both arguments. 
This yields that stf \~> S(s4, 6) is both complementary lower and upper semicontinuous 
with respect to the topology generated by °Uxt. 

Using this, it is shown that if X is metrizable the production of S(s4, 6) may be 
represented in a stochastic manner, i.e. that there exists a stochastic system Qg 

such that if Qe is endowed with the data of si, S(s/, 6) is produced with probability 
one by Qe, and that the latter is in some sense the smallest set with this property. 

STABILITY OF TOPOLOGICAL LINEAR SPACE AUTOMATA 

Let £ be a locally convex Hausdorff topological vector space as the set of states, 
X an arbitrary set as the set of inputs. 

sś -. (X, E; H) 
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is said to be a topological linear space automaton (abbreviated by tlsa) if 

H :X x E-y E 

is a map such that H(x, •) is continuous and linear for any x e X with the additional 

property that, given / e E, 

{H(x,f);xeX} 

is bounded in E. If si is in state /, sf will be in state H(x, f) after input of x e X; 

informally the continuity condition means that if two states are close (i.e. represent 

similar information), an arbitrary input does not disturb this closeness. The condi

tion that, given/e E, {H(x,f); xeX} is bounded can be reformulated: given a con

tinuous seminorm p on E, 

sup{p(H(x,f));xeX} < m 

holds; less formally it means that the set of possible new states is geometrically not 

too large. H is extended in the usual way to 

H : X* x E -> E 

by defining 

H(e,f):=f, 

and 

H(vx,f):=H(x,H(v,f)), 

thus H(v, •) is linear and continuous for every v e X*. This is not difficult to establish. 

1. Examples. 

a) Let (Z,3) be a measurable space in the sense of Probability Theory, and let 

given x e X, K(x, z) be a measure on 3 such that 

z^K(x,z)(C) 

is a bounded 3-m e a surable function on Z for every C e 3 (in Particular, yx : = 

sup {K(x, z) (Z); z e Z} < oo). Denote by J^(Z, 3) the linear space of all bound

ed 3 - m e a s u r a D l e functions on Z, and endow this space with the usual supremum 

norm pm (with p^(f) = sup {|/(z)|; z e Z}). Defining 

we have 

i f/eJ^(z, 3) , and 

Я ( x , / ) : : и [fàK(x,z), 

H(x,f)є^(Z,3), 

px(H(x,f))йpM)У*-
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Thus, if 
y : = sup {yx; x e X] < co , 

then (X, #"(Z, 3) ; H) is a tlsa. In particular this is true if (X, (Z, 3 ) ; K) is a stochastic 
automaton, i.e. if 

K(x, z) (Z) = 1 

for any input letter x e X and any state ze Z. 
b) Now assume that X and Z are topological spaces such that X is compact. 

Z is endowed with the Borel sets, i.e. the smallest c-field on Z that contains the open 
sets. Let K be as above, and assume that K has the following property: if (xa), and 
(zfi) are nets in X resp. Z such that 

Xa -+X,Zp-*Z, 

this implies 

[f&K(x„z,)-*[fAK(x,z), 

whenever fe^(Z) := {#; g : Z -» W is bounded and continuous}. Define H as 
above, then (X, <^(Z); H) is a tlsa, since y < co in this case, when ^(Z) is endowed 
with the norm topology, or with the topology of pointwise convergence. 

c) (cp. [7]) Let X, and Z be finite, say Z = { 1 , . . . , n], and assume (X, Z; K) 
to be a stochastic automaton. Since ^(Z) equals R" in this case, H(x, •) is represented 
by a stochastic n x n matrix H(x); moreover, i f / e R", the equality 

H(x,f)~fH(x) 
holds. Q 

Let .a/ = (X, E; H) be a tlsa, then ja/ will be identified with H, when no confusion 
arises; define the linear operator H(v) by 

H(v)(f):=H(v,f). 

In order to make life easier, a technical assumption on E is imposed: we assume E 
to be barreled; an equivalent formulation is that every seminorm on E which is upper 
semicontinuous is continuous. The class of barreled spaces includes the complete 
normed spaces as well as the complete metrizable locally convex spaces ([11], II.7.1). 
Denote by EE the set of continuous seminorms on E, and by A(E) the linear space 
of all continuous linear mappings from E to E. A(E) is topologized as follows: 
given p e EE, and a bounded set B <= E, define for Le A(E) 

qB,p(L):=SuV{p(L(f));feB}, 

and take as a base for the neighbourhoods of 0 e A(E) sets of the form 

{L; qBuVi(L) < eh 1 < i < n] , 

where Bt <=. E are bounded, e; > 0, pt e EE. 
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(In terms of topological linear spaces, this topology is the y-topology on A(E), 
where y is the set of all bounded sets in E, cp. [11], § III.3). Let IA(E) be the set 
of continuous seminorms on A(E) with respect to this topology. Note that if E is 
a normed space, i.e. if 

*E = {p}, 

then A(£) is a normed space, too, where 

EA(E) = {«} , 
and 

q(L) = sup [p(L(f)); p(f) < 1} . 

After these preparations, stability of a tlsa can be defined. Roughly, a tlsa is stable 
if small perturbations for input letters cause only small perturbations for arbitrary 
input words or, equivalently, if H is approximated by another automaton H' on input 
letters, this approximation holds for input words, too. If E is a normed space, the 
formulation due to [12], Definition 6, quoted in the Introduction above can be used. 
In absence of norms, this leads to 

2. Definition. The tlsa H is said to be stable if the following condition holds: given 
s > 0 and q e 2^(E), there exist q e IA(E) and 5 > 0 such that for an arbitrary tlsa H' 

sup {q(H(x) - H'(x)); x eX} < 8 

implies 

sup {q(H(v) - H'(v)); veX*} < s . 

An equivalent formulation for the latter implication is that, given a bounded set 
B c E, and a neighbourhood U of 0 in E, there exists a bounded set C a E and 
a neighbourhood V of 0 in £ such that 

{H(x,f) - H'(x,f); xeX, feC} c V=> 

=> {H(v, f) - H'(v,f); v eX*,feB}czU. 

This yields as an immediate consequence 

3. Proposition. If H is stable, then |u| -» co implies q(H(v)) -* 0 for every continuous 
seminorm g on A(£). 

Proof. 1. Since, givenje £, [H(x,f); x e X} is bounded, and £ is a barreled space, 
{H(x);xeX} is equicontinuous. This means that given qeIA(E), e > 0, there 
exists q e 2^ ( £ ) , S > 0 such that 

<?(#(*,/)) < £ 

for any xeX, provided 

q(f) < * , 
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hence {H(x); xeX] is bounded in A(E) ([11], III.4.1, 4.2), or equivalenlly, 

sup {q(H(x)); x e X} < oo 

holds for any q e ZMEy 

2. (cp. [12], proof of Theorem 6) Define for r, 0 < r < 1, 

Hr(x,f):=r.H(x,f), 

then Hr(v) equals r'"1 . H(v), and 

^ ( H ( , ) - H r ( , ) ) = ( l - , > I ) . ^ ( H ( , ) ) , 

where <? e 2^(E) is an arbitrary seminorm. Now fix e > 0, q e ZAiE), and choose Q, 
5 > 0 for H according to the definition of stability above for q and e/2. Since Hr(x) -> 
-* H(x) uniformly in x, as r -* 1, there is r such that 

q(H(x) - Hr(x)) < 5 

for any x e X, thus 
«j(H(t>) - H,(v)) < ell 

for any v e X*. But this implies that there exists k e N such that for all v e X* with 
\v\ ^ k 

q(H(v) < e 
holds. • 

In a special case, the converse of Proposition 3 holds: 

4. Proposition. If E is a normed space with adjoint norm q on A(E), and if q(H(v)) ~> 
-> 0. as |t>| -* oo, then H is stable. 

Proof. The arguments follow rather close the argument for the proof of the if-part 
of Theorem 6 in [12] and are given in detail for the reader's convenience. 

Since £ is a Banach space, A(E) is a Banach algebra, and consequently the norm 
1| • || on A(E) has the property that 

|| L,L21| < I^H.II^II 
holds. This is the crucial property since 

H(Vlv2) = H(Vl) H(v2) 

holds for all vt e X*. Note also that since {H(x); x e X} is bounded, 

R :== sup |H(x)|| 
xsX 

is finite. We may and do assume that R <. 1. 
Now let s > 0 be given, and choose e0 > 0 with 

kek
0~~l < e 

94 



for any keN. This is possible since k\-> krk~l is a decreasing function, provided 
0 < r < 1. Now choose et > 0 such that 2g. < £0. For BX there exists N0e N such 
that 

IIIIOOI < i- i 
for any veX*, \v\ 5: N0. Since semigroup multiplication is uniformly continuous 

in A(Ef°, there exists <5 > 0 such that 

sup \H(x) - H'(x)\ < 5 implies sup \\H(v) - H'(v)\\ < fa . 
xeX* ' \"\=No 

In particular, this implies that ||ff(f)|] < £0
 a n d [III'(U)|| < Eo n°ld f° r a n y v of length 

N0. 
Now let 

sup \\H(x) - H'(x)\\ < 8 
xeX 

and assume that weX* is given with |w| > JV0. Then w is split into v0, ...,vk such 
that |u;| = 7V0 for i = 1, . . . , k, and |;;0[ <_ NQ. Consequently, we have 

\\H(w) - H'(w)\\ S 

= 1 \\H(v0)t H l I ^ - 0 I • \\H(vt) - H'(vt)\\. \\H'(vi+,)\\ \\H'(vk)\\< 

< fa 4 + Ž 4 l fa4 1 ' < i£i 14 + iei • k. 4 * < E . D 

Any topological linear automaton H with state space E yields an automaton on 
E : = [cp : E-+R; (pis linear and continuous} by a canonical construction in 
the following manner: if q> e E', x e X a n d / e E, define 

h(x,<p)(f):=cp{H(x,f)), 

hence h(x, q>) makes the following diagram commutative: 

H ( x , . } 

h(x ,cp) 

IR 

It is then easily seen that h(x, cp) e E' for any xeX,cpe £', and that h(x) is always 
linear. In order to investigate the continuity of 

h(x) : cp i-+ h(x, cp), 
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E' must be topologized. This is done by the strong topology on E', which is generated 
by the seminorms 

q'(<p) := sup {\cp(f)\; p(f) - 1} 

(p e Z(E)). Now from a well-known Theorem for topological vector spaces ([9], 
21.6(i)) it is derived that h(x) is continuous. Thus it remains to demonstrate that 
{h(x, cp); x e X] is bounded in E' for any <p e E'. Given 8 > 0, 

U:={feE;\cp(f)\<£} 
is open in E, and 

V:= n { H ( x ) _ 1 [ U ] ; x e X } 

is open in E, too, since {H(x); x e X] is equicontinuous ([11], III.4.1 (a)). It is easily 
seen that 

\h(x, cp) (f)\ < e 

for any x e X, provided/e U, thus {h(x, cp); x e X] is equicontinuous, hence bounded 
([11], III.4.3). 

Consequently, st* := (X, E'; h) is a topological linear automaton and is called 
the dual of s4 := (X, E; H). In [7], the dual of a linear automaton is introduced 
in case the space E of states is R" for some «e/V. Note that in that paper no additional 
topological considerations have been necessary. Those automata with state space E' 
which arise as dual automata, and stability properties of dual automata are char
acterized by the following Theorems. 

5. Theorem. Let 2 = (X, £ ' ; h) be a tlsa. Then there exists a tlsa si = (X, E; H) 

such that 2 = std if and only if {h(x); xeX} <= A(E') is equicontinuous. 

Proof. 1. Assume Si = s4d, then given a neighbourhood U of 0 in £', it has to be 
shown that there exists a 0-neighbourhood V in £ ' such that 

h(x, cp)eU 
for any xeX whenever 

cpeV. 

Without loss of generality, U can be assumed to be the polar B° of a bounded set 
B c £ , i.e. 

U = {cp; VfeB:cp(f)£ 1} 

([1], Proposition 23.14). Since {H(x);xeX} is equicontinuous, 

A:= KJ {H(x) (B); x e X] 

is bounded in £ ([11], III.3.3,c), thus 

V:=A° 

is the looked for 0-neighbourhood in £'. 
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2. Fix for the moment xeX. Since 

h(x) : £ ' - > £ ' 

is strongly continuous, it is continuous when both copies of £ ' are endowed with 
the weak topology o(E', E) (which is generated by the seminorms 

qf(<P)-(W(f)\,feE) 

see [6], Proposition 3A2.6. From [9], 21.5, we infer that there exists a linear map 

H(x) : £ -> £ 
such that 

h(x,tp)(f) = cp(H(x,f)) 

holds for any cp and for any / , and H(x) is continuous when both copies of £ are 
endowed with the weak topology a(E, £') (which is generated by the seminorms 

cp e £'). From [6], p. 258, Proposition 3.6.8, it is seen that H(x) is continuous with 
respect to the given topology on £, since £ is barreled. In order to complete the proof, 

{H(x,f); xeX} 

has shown to be bounded in £ for any fixed/ From the equicontinuity of {h(x); 
xeX} we infer that, given B c £ bounded there exists C <= E bounded such that 

h(x, cp) e B° 
for all x G X whenever 

cpeC0. 

B can assumed to be closed, convex, and circled. Thus the equicontinuity of {h(x); 
xeX} implies 

B° c {H(x,f);feC, xeX}0 , 
hence 

{H(x,f);feC, xeX} <={...}° c B00 = B, 

since B00 is convex and a(E, £')-closed, hence coincides with B by [2], Cor. 1 for 
Proposition 3.3.2.L Thus in particular 

{H(x,f); xeX} 

is bounded, hence s/ = (X, E; H) is a tlsa, and obviously Qi = s/d. • 

If s4 is stable, the question arises whether sid is stable, and conversely. For this, 
A(£') has to be topologized; this is done exactly in the same manner as it has been 
done for A(£) above by the seminorms 

{qp; psiE}. 
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Thus a base for the neighbourhoods of 0 e A(E') is formed by the sets 

{M(V°, B°); U is a O-neighbourhood in £, B c £ is bounded} , 

where 

M(E, Q) :== {Ee A(E'); E(E) c Q} , 

is defined for P, Q c £'. 

6. Theorem. Let jaf = (X, £; 77) be a tlsa with dual J*"* = (X, £ ' ; h). Then the 

following holds: 

a) If J / is stable, and £ ' is barreled, then sdd is stable; 

b) If s4d is stable, then s4 is stable. 

Proof, a) Given a bounded S c £ ' and a O-neighbourhood IV c £', it suffices 
to demonstrate that there exist T c £ ' bounded and a O-neighbourhood V c £' 
such that 

{%) - h'(x); xeX} cz M(T, V) 

implies 

{h(v) - &'(»); r e X * } c M(S, V) 

for any tlsa J1 = (X, £ ' ; h'). Since, given q> e £', {ft'(x, q>); x e X} is bounded in £', 
and £ ' is barelled, {h'(x); x eX} is equicontinuous ([11], III.4.2), hence $ is the dual 
of a tlsa # = (Z, £; 77') by Theorem 5. Since S is bounded, there exists a closed 
convex O-neighbourhood G c £ such that 

S c G ° , 

and there exists a bounded set B c £ such that 

B ° c G . 

•s/ is stable, hence there are C c £ bounded, and a O-neighbourhood E c £ such that 

{H(x, / ) - ff'fx,/); / e C, x e X} c E 

implies that 

Consequently, 

provided 

{Я(r,/) - # ' (>,/) ; Ľ Є Z * , / є E } c G. 

{h(v) - h'(v); vєX*} c M(G°,£°) , 

{/z(x) - h'(x); x e l j c M(E°, C°) . 

b) Stability of si can be proved by a similar argument, having in mind the only-if 
part of Theorem 5. Q 



Note that £ ' is barreled in case E is a Frechet space, i.e. a locally convex space 
which is metrizable by a complete metric. 

Summarizing, the following diagram shows in what a manner the stability of 
a topological linear automaton can be related to the stability of its dual; for this 
let sJ = (X, E; H) be the automaton with its dual sid = (X, E'; /;). 

M. is 
stable 

H(v) - O 

as 

lvl - » 

4 d is 

stable 

1 î 
h ( v ) - 0 

as 

l v l - • 

* holds in case E is a Banach space 

** holds in case E* is barreled 

We will now deal with an example, kindly provided by Ed. Dubinsky [5], that 
shows that the statements connected with the simply starred arrows do not necessarily 
hold in case E lacks the Banach space property. 

Let X : = {x} be a one letter alphabet, and let E the Frechet space consisting 
of all real sequences r = (r„), ne N with 

pk(r) := sup {\r„\ exp (—nj(k + 1)); n e N} < oo , 

the topology of which is generated by the set {pk; k e N} of seminorms. This Frechet 
space is nuclear, and is isomorphic to the complex functions analytic on the open 
unit disk with the compact open topology. A subbase for the neighbourhoods at 
0 e E is given by the sets {Uk; k ^ 0}, where 

Uk:={reE; pk(r) < lj(k + 1)} . 

From the nuclearity of E it is deduced that any bounded set is contained in a set 
of the form Bt, where t e E has only positive components, and Bt is defined by B, : = 
:= {se E; \s„\ < t„ for every ne N}. 

Let m e E be arbitrary such that m„ > 0 for any ne N, then it will be shown that 
one may find a continuous linear operator T: E —> E with the property that the 
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T(Ba) c Uk implies Tg(Bm) <= U: for any g e N 

is false for any as E,ke N. This will give the required counterexample upon defining 

H(x) : = 0 , 

H ' ( x ) : = T . 

This suffices since X has only one letter. 
Now let a e E be fixed with a„ > 0 for every ne N, and let fce/V be arbitrary. 

Since a e E, we know that 

lim a„ . exp ( - ( « + l)/(/c + 1)) = 0 , 

thus there exists n0e N such that b„ = e for n > n0, where bn is defined by 

Z?„ := min {e, l/[(fc + 1). A„] . exp ((n + l)j(l + 1))} . 

Let g' e N be so large that a > n0, and that 

bx K0. e x p ( - ( n 0 + 1/2) + gjl) > l/m, . 

Define now the operator T: E —> E in the following way: 

2 g n ^ o + 2 (Tr) : _J*- - r - - ' if 
v ' [ 0 , otherwise. 

It is obvious that T is linear and continuous. Now let r e _a, then \r„\ g a„ holds 
always, and if 2 g n ;_ fl + 2, then 

|(Tr)„| = [r„_,| . &„_, ^ Ir,,.^ . l/[(fc + 1). a„] exp (-«/(/c + 1)) S 

^ l/(/c + 1) . exp (nj(k + 1)) , 

hence Tre Uk. On the other hand let i\ := mu and let r„ :— 0 if n > 1, then r is 
a member of B„„ and 

(TBr)g+l = bx bg.m1 > m ^ j ft„o. exp (o - n0) > 

> exp (H0 + 1/2 - gj2 + p - n0) - exp ((<? + l) /2). 

This shows TBr$Uv 

Thus i/(y) -» 0, as |t>| -> co does not imply stability in the sense defined here, 
hence the corresponding question posed on p. 32 of [4] has to be answered in the 
negative. On the other hand, Dubinsky's example demonstrates convincingly that the 
definition of stability has implications that are counterintuitive — since the first 
example of a stable automaton of course should be that of one with constant state 
transitions. 
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SEMICONTINUITY OF CUT POINT LANGUAGES 

It will now be investigated how stability may be characterized using a uniformity 
on the set of all tlsa, where an extra condition, viz., joint continuity, will be added. 
This characterization may be considered as generalization of Rabin's notion of stabi
lity, which has originally been formulated in terms of cut point languages. 

Let in what follows now X be a compact Hausdorff space, and let £ be a locally 
convex linear space over R with topological dual £'. Endowed with the topological 
sum from (X")n^0, X* is locally as well as a-compact. 

We need a specialization of topological linear automata, namely state linear acts, 
in which an initial state will be fixed. 

7. Definition. The tlsa (X, E; if) is said to be a state linear act iff the following 
conditions hold: H : X x £ -> £ is continuous, H(x, •) is linear for any input letter 
x e X, and f0 e £ is a fixed initial state. 

Note that any state linear act constitutes a tlsa upon neglecting the initial state, 
since compact subsets in topological vector spaces are bounded. As above extend H 
to a map H : X* x £ -> £, then H is readily seen to be continuous such that H(v, •) 
is linear for any v e X*. Now let 3/P be the set of all state linear acts (with fixed X, E, 
and /o), and identify (X, E; H) with H for the sake of simplicity. Consider a conti
nuous and linear ¥ : E -> R with ¥ 4= 0. This linear form can be regarded as a mathe
matical model of measuring: think of H as a mechanical or biological system, which 
is given by a linear space of continuous functions over the time axis and which — as 
time passes — changes continuously and is linearly dependent upon external stimuli. 
Fix some epochs th 1 ^ i S n, such that the average value of H(v,f0) at these 
moments will be considered as the measured value after input of v e X*, hence the 
value in question is 

- tH(v,f0)(tl)=:¥(H(vJ0)), 
n ; = i 

ii 

where ¥ := ljnj]s(t,), and ^(t)(f) : = f(t) is the evaluation map at t. Now fix 
i = l 

OeR, then 

S(H, 6) := {veV*; ¥(H*(v,f0)) ^ 0} 

is sais to be the language at the cut point 9. These languages have been introduced 
by M. Rabin in his classical paper [10] in which he discusses (finite) stochastic 
automata for the first time; in that paper, too, a discussion of the stability of stochastic 
automata is found. Roughly speaking, Rabin calls a stochastic automaton stable if 
the cut point language is not affected when instead of the given automaton another 
with only slightly different behavior is considered. This looks like a topological 
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characterization of stability. Before working this out, bibliographical accuracy de
mands to mention that the cut point languages discussed by Rabin are actually the 
complements of the languages considered here. This change to the complement has 
been undertaken in order to get rid of some tedious formalities which would arise 
in this case below. 

Define a uniformity on #f in the following way: Hx and H2 are thought to be close 
iff they behave in a similar manner for all those states which come from a bounded 
set in E. Formally, let B c £ be bounded, and U an open neighbourhood of 0, 
then upon defining 

P(B, U) : - {(Hu H2); Vje B to e X* : Hx(vJ) - H2(v, f) e U) , 

the sets 

{P(B, U); B <= E bounded, U open 0-neighbourhood} 

evidently constitute a base for a separated uniformity on Jf. Assume for the moment 
that for the topological linear automata, rather than for the acts Ht, i = 1, 2, 
(HltH2)ePL(B, U) holds whenever H^vJ) - H2(v,f)eU for all feB and all 
ve L, then this constitutes the base for a uniformity °UL on the space of all topological 
linear automata. This uniformity is separated in case X c L holds. Now denoting 
by °UL(H) the neighbourhood filter for H induced by °UL, the foretold topological 
characterization of stability is now evident: H is stable iff <9lx(H) coincides with 
°UX,(H). But now again let us restrict our attention to state linear acts (which has 
some technical advantages). 

Denote by E the topology generated by this uniformity, then T has some pleasant 
natural properties in the following sense. 

9. Lemma. a)Hi-> H(v, f0) is continuous for fixed v; 
b) if E is endowed with the weak topology G(E, £'), then 

X* X 3f -*E 

(v,H)^H(v,f0) 

is (jointly) continuous. 

Proof, a) is evident from the boundedness of {j0}. 

b) Consider the space ^(X*, E) of continuous maps from X* to E, and endow 
<8(X*, E) with the compact open topology, which has as a subbase the sets 

{W(K, U); K c X* is compact, U is a a(E, E')-open set in E} , 

where g e W(K, U) iff g[K] <= U, see [8], p. 22If. Since X* is localy compact, the com
pact open topology is the smallest topology on ^(X*, E) which makes the evaluation 
map 

' X* x <$(X*, E) -* <e(x*, E) 
(v,g) ^(v^H*(v,f0)), 
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continuous. Now define 

f J f -> V(X*, E) 
•\H ^(v^H*(v,f0)), 

then it is enough to show that, given H e ff, K a X* compact, and a er(E, E')-open 
set U, there exists a bounded set B a E and a O-neighbourhood U0 in the given 
topology of E such that 

(H,, H) e P(B, U0) => F(HX) e W(K, U) 

holds, provided E(H) e W(K, U). 
From the definition of <r(E, E') we see that it is no loss of generality to assume that 

there exists h e E, (p e E', £ > 0 such that 

U = /« + { jeE ; \9(f)\ < e] , 

hence 

holds. Putting 

y : = max |<p(Я(í;,j0) - h) 

U0:={/eE; \<p(f)\ <c-y}, 

the desired implication holds. • 

This in mind semicontinuity of S can be investigated. Remember that a set valued 
map F : A -» ^(E) := {B0; B0 c £} is upj7er (/ovver) semicontinuous in a iff {%; 
E(x) <= U] [resp. {x; E(x) n U + 0}] is a neighbourhood for a, provided U <= B 
is open. Call a set valued map F : A -* 3P(B) complementary lower semicontinuous 
in a iff E — E:xt-*E — E(x) is lower semicontinuous in a. 

10. Proposition Let H e 3/e be a state linear act such that 0 * S(H, 0) + Z* holds. 
Then S(',6) is upper, and complementary lower semicontinuous in H. 

Proof, "lower": this part is an immediate consequence of part a) in the lemma 

above, since 

{H; T(H(v,f0)) > 9} 

is open in X . 

"upper": Because of part b) in 9, 

W:= {(H,v); veS(H,9)} 

is closed in ffl x X*. Now let M be a closed subset of X* such that 

S(H, 9)nM = 0 

holds, then M„ : = M n X" is compact, and 

W n ({#} x A/„) = 0 
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for any n e N. Since {H} x M„ is compact, the Theorem of Gottschalk - Hedlund 
([8], Theorem 5.12) implies that there exist open neighbourhoods K„ <= X" of M„ and 
G„ c 3tf of H such that 

Wn (Gn x K„) = 0 

for any « e /V. Consequently, 

F : = u{G„ x K„;«e/V} 

is open in ffi x X*, and 

U:= { ^ ( f f j . p j e K for some » e l * } 

is an open neighbourhood of H with the property that 

S(HU B)nM = 0 

holds, whenever Hy e U. • 

Now we have gathered enough information in order to demonstrate that S(-, 0) 
is weakly measurable on 

.*%: = {HeJt?;S(H, 0 )4=0} . 

This means that 

{H e JT,; S(H, 0) n U + 0} 

is measurable, provided U c X* is open. But this requires that 3ifg has shown 
to be a Borel set with respect to (the Borel <r-field generated by) P. The latter is 
accomplished in the following manner: 

K0 := {H; W(H(v,f0)) = 0 for some veX"} 

is a measurable subset of Jf, since 

{H; V(H(y,f0)) = fl for some veX"} 

is closed in .^because of the compactness of X, and the continuity statted in Lemma 9, 
b). The construction of T now yields that 

K! := {H; «P(jff(c,/0)) § fl for all i> eX*} 

is closed, too, consequently 

{H; S(H, 9) = 0} = K' - K0 

is measurable, hence Jffl is, as the complement of the latter set. Now endow #?g 

with the trace of the Borel c-field defined by f, then 

S(-, 0) : ̂ f„ -> {F c Z*; F is closed} 

is weakly measurable, if X is in addition a metric space. Hence one gets from Corollary 
4.2 in [3]: 
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11 . Theorem. If X is a compact metric space, there exists a transit ion probabil i ty 

Q0 from ftf0 to X * such that S(H, 9) is the smallest closed subset C of X* such tha t 

Qe(H) (C) = 1 holds for any H e 3fe. 

N o w it becomes clear why we have restricted our at tent ion to J f 0, rather than 

to Jf, since the s tatement on S(H, 0) implies the contradict ion 0 = Qe(H) (S(H, 0)) = 

= 1 in case H $ Jfe. 

Let us interpret Qg as a stochastic system that , if endowed with the da ta of H, 

accepts the language B c X* with probabili ty Qe(H) (B) — strictly speaking we must 

restrict our a t tent ion to Borel languages B. Then the Theorem above states tha t 

S(H, 6) is the smallest closed language which is accepted surely, i.e. with probabili ty 1. 

In this sense cut point languages have a kind of threshold character . 

(Received February 2, 1980.) 
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