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A NOTE ON NECESSARY CONDITIONS 
IN MATHEMATICAL PROGRAMMING 

JAROSLAV DOLEŽAL 

A problem of necessary optimality conditions in general mathematical programming problems 
is investigated. It is shown that a unifying approach of Boltjanskij to the solution of this class of 
optimization problems remains valid when some other kind of the so-called first-order conical 
approximation to a set is used. 

1. INTRODUCTION 

Necessary optimality conditions for a general class of mathematical programming 
problems were studied by a number of authors in the past. In [1] the abstract theory 
developed by Neustadt [2] was applied to obtain necessary conditions also for prob
lems with implicit set constraints. To do this, a concept of the so-called conical 
approximation to a given set was introduced also originating from the general ideas 
of [2]. Later, similar concept was used by Boltjanskij [3, 4] to deal with mathematical 
programming problem having variety of possible constraints. 

In [1] the equality type constraints were alternatively treated separately as sug
gested by the original scheme given in [2]. Such approach enables to overcome 
certain difficulties resulting from equality type constraints and offers an additonal 
possibility to refine the obtained conditions as the "constraints qualification" is 
concerned. On the other hand, the unifying approach developed in [3] can be 
applied practically to any type of a mathematical programming problem not a priori 
distinguishing equality type and other constraints. 

In this note it is briefly demonstrated that also somewhat more general concept of 
a first-order conical approximation can be alternatively used within the context 
of [3, 4]. The corresponding proof of the respective basic theorem of [3, 4] is in
dicated in brief. Its idea is due to Miljutin — see [4, footnote on p. 16]. In this way 
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the desired basic result is obtained in a straight-forward manner on applying general 
separation theorem of [2]. Some applications of this result to mathematical program
ming problems are also reviewed. 

2. PRELIMINARY RESULTS 

Let us mention some basic definitions and results used in the sequel. For a set 
Q c R" let us denote Q and co Q its closure in R" and its conical hull, respectively. 
If C c; R* is a convex cone with vertex in x, then C = {a e R" | <x - x, a} S 0, 
x e C) represents the polar (dual) cone to C in R". As usual, <•,•> denotes the scalar 
product in R". 

Definition 1. Let C}, ..., C, be a family of convex cones in R" having common 
vertex x. We say that this family exhibits a separation property in R" if there is one 
cone which can be separated (in the classical sense) from the intersection of the 
remaining ones. 

In this form the defined concept is due to Boltjanskij [3, 4], where also the following 
alternative characterization is given. 

Proposition 1. The family of convex cones C}, ..., Cs exhibits a separation property 
iff there exist vectors a{ e C\, i = 1, ..., s, with at least one of them being nonzero, 
and such that a} + ... + as = 0. 

Definition 2. Let Q c R". A convex cone C(x, Q) with vertex at x will be called 
a first-order conical approximation to the set Q at x e Q if for any finite collection 
Xj, ..., xk of vectors in C(x, Q) and arbitrary neighbourhood U of the origin there 
exists a positive number F.0 such that for every E, 0 < e < G0, there is a continuous 
map Ce from co (xj, ..., xk} into Q such that Cc(x) e x + E(X — x) + £U for all 
x e c o { x j , ..., xk}. 

Slightly different definition of the so-called conical approximation of the second 
kind was used in [1] or [5]. In a more general setting the above concept was intro
duced by Neustadt [2] assuming only "convex set" approximation in order to deal 
with abstract optimization problems. Also the well-known results of Dubovickij 
and Miljutin [6] are closely related to this subject. For a sake of comparison let us 
finally recall the alternative concept of a "mantle" used in similar meaning by 
Boltjanskij [3, 4]. 

Definition 3. Let xeQ a R" and let K be a convex cone with vertex in x. The 
cone K is called a mantle to the set Q at x if there is a neighbourhood U(x) of x and 
a continuous map i// from K f) U(x) into Q, such that \j/(x) = x + o(x — x), where 
o(x) = 0 for x = 0 and lim |jo(x)||/||x|| = 0. 

ll*ll-o 
One can show that K being a mantle to Q at x is in the same time also a first-order 
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conical approximation C(x, Q). Especially in our finite dimensional setting the both 
concepts are practically equivalent1). Alternatively, in [4] the additional requirement 
of \j/ being continuously differentiable is imposed. Also then the validity of most 
basic results is still maintained. 

3. BASIC THEOREM 

Now let us formulate the fundamental result which will show that the mentioned 
general scheme of Boltjanskij [3, 4] is applicable also in the case of convex approxima
tions given according to Definition 2. Further details are to be found in the indicated 
references. 

Theorem 1, Let Q0, Qu ..., Qs be a family of sets in R" the intersection of which 
consists of a single point x, and let C(x, Qt), i = 0, 1, ..., s, be the corresponding 
first-order conical approximations to these sets at x. Assume that at least one of 
these cones is not a hyperplane (of any dimension). Then there exist vectors at e 
e C'(x, Qj), i = 0, 1, ..., s, not all zero, and such that a0 + a1 + ... + as = 0. 

Alternative conclusion due to Definition 1 is that the family of cones C(x, fi;), 
i = 0, 1, ..., s, exhibits a separation property. For the case of a "mantle" the some
what lengthy proof of this result is given in [3]. On the other hand, if the mentioned 
continuous differentiability of \j/ in Definition 3 holds, the corresponding proof is 
considerably simpler [4]. Here the idea of Miljutin will be used, as discussed earlier, 
together with the general result of [2]. 

Proof of Theorem 1. Consider a product-space R = R<s+i)n = R" x R" x .. . 
. . . x R", i.e. (s + l)-times the original space R". In this space define the sets 

(1) K = C(x, G0) x C(x, Q.) x ... x C(x, Qs), 

and 

(2) Q = Q0 x Qt x ... x Qs. 

It is not very difficult to see that jftT is the first-order conical approximation to the set Q 
at the point * = (x, x, ...,x),xe R, i.e. K = C(x, Q), which is not a plane. Further 
let 

(3) A = {x e R | x = (x, x, ..., x), x e R") . 

The set A is a proper linear subspace of R, as can be directly verified. This in turn 
implies that C(x, A) = A for any x e A. 

Moreover, the sets Q and A have only the point x in common. As an easy con-

1) Note added in proof. An exhaustive classification of various conical approximations was given 
recently by D. H. Martin, R. J. Gardner, G. G. Watkins: Indicating cones and the intersection 
principle for tangential approximants in abstract multiplier rules, J. Optim. Theory Appl. 33 
(1981), 4, 515—537, where also a similar construction was presented. 
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sequence of [2, Theorem 2.2] one obtains that then there is a nonzero vector a e R, 
a = (a0, ait ..., as), a(e R", i = 0, 1, ..., s, such that 

(4) <x - jc, a> < 0 g <y - x, a> for all xeK, ye A. 

As x = (x0, X], ..., xs) e K implies x ; e C(x, Q), x ; e R", i = 0, 1, ..., s, for the left-
hand inequality in (4) can be written 

(5) £ <x; - x, a;> g O for all x ; e C(x, 0,) , i = 0, 1, ..., s . 
i = 0 

Then necessarily a ; e C"(x, £>,), i = 0, 1, ..., s. 

Owing to (3) the right-hand inequality in (4) simply says that 

(6) 0 g <x - x, a0 + ax + ... + as> for all x e R", 

and thus a0 + al + ... + as = 0. This completes the proof of the theorem. Q 

4. MATHEMATICAL PROGRAMMING PROBLEMS 

Now it is easy to use the methodology of [3, 4] to formulate similar theorems for 
a variety of mathematical programming problems. In general, it will be assumed 
that the aim is to minimize a function f(x), where 

(7) / : R " - R \ 

subject to the constraints 

(8) 3 C 6 i 3 - C 1 n . . . n - - . . 

with Qj c R", i = 1, ..., s. 

It will be shown that the respective necessary optimality conditions for this 
problem are obtained in a straightforward way on applying Theorem 1. However, 
let us first recall some important special cases of first-order conical approximations. 
These results can be easily established realizing the related theory described in [1]. 
The obvious analogy with [3, 4] is also helpful in this respect. By a subscript let us 
denote the respective gradient. 

Proposition 1. Let h : R" —> R1 be continuously differentiable and let hx(x) + 0. 
Then the set {x e R" | <x — x, hx(x)} = 0} is a first-order conical approximation 
to {x e R" | h(x) = 0} at x. 

Proposition 2. Let g : R" -» R1 be continuously differentiable and let g(x) = 0, 
gx(x) 4= 0. Then the set {x e R" | <x - x, gx(x)} g 0} is a first-order conical ap
proximation to both {x e R" [ g(x) <. 0}, and {x e R" | g(x) < 0} U {x} at x. 

Proposition 3. Let Q <= R" be convex. Then the radial (support) cone RC(x, Q) 
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to Q at any x e Q, given as RC(x, Q) = {x e R" j x = y(x' - x), y ^ 0, x' e £2}, is 
a conical approximation to Q at x. 

It can be further realized that in all these cases also other mentioned types of 
approximations have the same form. However, this is not true in general. Knowledge 
of these particular cases, which appear very often in practical problems, enables to 
formulate corresponding optimally conditions in a more familiar form as usual in 
classical mathematical programming theory. 

Theorem 2. Let x be a solution to a mathematical programming problem (7)-(8), 
with / being continuously diflerentiable. Further let C(x, Qt) be a first-order conical 
approximations to the respective sets Qh i = 1, ..., s. Then there is a number n < 0 
and vectors a , e C ( x , Q:), i= ],..., s, such that the following conditions are 
satisfied. 

(a) If ju -= 0, then at least one of the vectors a,, i = 1, ..., 5 is nonzero. 

(b) iifx(x)=- ax+ ... + as. 

Proof. To verify this result one can follow analogical scheme of [3, 4]. IfL(x) = 0, 
the conclusion of the theorem becomes trivial. Assuming therefore fx(x) + 0 denote 
as 

(9) Q0 = {xe R"\f(x) - f(x) < 0} [J {x} . 

According to Proposition 2, the set 

(10) C(x, Q0) = (x e R" | <x - x, fx(x)° ^ 0} 

is a first-order conical approximation to Q0 at x. As in x the minimum of/ over Q is 
attained, then clearly the intersection Q0 f] Qt f) ... f)Qs = {x}. Thus the all requi
rements for the application of Theorem 1 to this particular case are met. This, in 
turn, implies the existence of a ,e C'(x, £>,-), ;' = 0, 1, ..., s, not all of them being 
zero, and such that a0 + aY + . . . + a, = 0. Realizing that a0 = —fifx(x), [X fg 0, 
yields the desired result. • 

In this way all results described in [3, 4] are valid using the concept of a first-
order conical approximation instead of a "mantle". The interested reader can 
consult these references for a number of various particular cases including equality 
and/or inequality type constraints, cases with some of the conical approximations 
in (8) not exhibiting a separation property, etc. For example, if only the overall 
constraining set Q, with a first-order conical approximation C(x, Q) at the minimizing 
point x is considered, the condition (b) of Theorem 2 can be alternatively expressed as 

(11) <x - x, fifx(x)) ^ 0 for all x e C(x, Q). 

Similar form of necessary conditions was used through [1] and [5]. 
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5. CONCLUSIONS 

The aim of this note was to make more explicit the idea briefly sketched in [4]. 

In this way fairly general and unifying scheme of Boltajnskij [3, 4] has shown to be 

applicable also if somewhat more general concept of a first-order conical approxima

tion to a set is assumed. This generalization evidently implies to some other problems, 

e.g. of the minimax type studied in [7]. Moreover, it is felt that on defining a "local" 

analogy of Definition 1 in the same way as in [4] the concept of a local mantle was 

introduced, a further generalization of Theorem 1 would be possible. 

On the other hand, it seems that in the studied finite-dimensional case one can 

hardly expect some basic generalizations in the future without removing a dif

ferentiability assumption concerning various functions in a problem description. 

Especially in this direction a number of interesting results was achieved quite 

recently, e.g. see [8, 9]. 

(Received March 24, 1981.) 
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