# SOME FUNDAMENTAL NOTIONS OF LARGE VARIABLE SYSTEMS 

MILAN RU゚ŽIČKA

The paper deals with basic notions from theory of large dynamic systems variable in time. There is presented an attempt of exact definitions (or at least specifications) of such a system, its internal, boundary, input and output elements, input and output, environment and response and impuls etc. The concept of subsystem is introduced with a few illustrations covering its possible application.

## INTRODUCTION

Mankind creative activity has in modern time some particular and specific figures. Among others, there is a permanently growing demand towards an integral and systematic approach to reality, which is formed by this work and transformed to human needs. Engineering way of solving problems requires language modelling of large dynamic systems and related selection of convenient language systems as their language models. That is why a reasoning concerning notion "model" and character of a relation setting-up this concept may be very actual.

In this paper I like to show some logical and semantic aspects of this approach and I try to define (or at least specify) some fundamental notions regarding large dynamic systems theory.

## SOME FUNDAMENTAL NOTIONS

First I specify concept of "system". I have a few following requirements for this and other definitions. They are supposed to be consistent (or at least not contradictory) with corresponding terms formed by other authors. Further, definitions will be formulated by precise language and means of set theory. I also like to have all
forecoming notions fully adequate with the former considerations regarding engineering and technical operations with large systems variable in time.

I propose generalized notion of "system" in this way:
D 1. A set $\mathscr{S}$ is system in a time interval $\Delta t$ (symbolically: $\langle\mathscr{P}, \Delta t\rangle \in \mathscr{S}_{y \Delta t)}$ iff:
a) $\mathscr{S}$ is in time interval (period) $\Delta t$ identical with an ordered pair of the type $\langle\boldsymbol{U}, \mathscr{R}\rangle$,
b) $\boldsymbol{U}$ is a set of objects - "elements of $\mathscr{S}^{\prime \prime}$,
c) $\mathscr{R}$ is a set of objects of the type ${ }^{(s)} R_{k}^{(j)} ; 1 \leqq s, 1 \leqq j \leqq n, 1 \leqq k \leqq i_{j}$ (where $s, j, n, k, i_{j}$ are natural variables),
d) for every object from $\mathscr{R}$ of the type ${ }^{(1)} R_{k}^{(j)}$ holds: *)

$$
{ }^{(1)} R_{k}^{(j)} \subset U^{\langle j\rangle} \times \Delta t
$$

e) for every object from $\mathscr{R}$ of the type ${ }^{\left(s_{k}\right)} R_{k}^{(i)}$ holds:

$$
\begin{aligned}
& { }^{\left(s_{k}\right)} R_{k}^{(j)} \subset\left\{{ }^{\left(s_{1}\right)} R_{k_{1}}^{\left(\delta_{1}\right)}\right\} \times\left\{{ }^{\left(s_{2}\right)} R_{k_{2}}^{\left(\delta_{2}\right)}\right\} \times \ldots \times\left\{\left\{^{\left(s_{k}-1\right)} R_{k j}^{\left(\delta_{j}\right)}\right\} \times \Delta t\right. \\
& { }^{\left(s_{1}\right)} R_{k_{1}}^{\left(\delta_{1}\right)}, \ldots,{ }^{\left(s_{j_{k}}-1\right)} R_{k_{j}}^{\left(\delta_{j}\right)} \in \mathscr{R} ; \\
& 1 \leqq j, \quad \delta_{1}, \ldots, \delta_{j} \leqq n ; \quad 1 \leqq k, \quad k_{1}, k_{2}, \ldots, k_{j} \leqq i_{j}, \\
& 0 \leqq s_{1}, s_{2}, \ldots, s_{j_{k}-1}<s_{j_{k}} \text { for } s_{i}=0 \Rightarrow{ }^{\left(s_{i}\right)} R_{k_{i}}^{\left(\delta_{i}\right)} \subseteq \boldsymbol{U} \text {, }
\end{aligned}
$$

f) $\Delta t \subset T$ is ordered set of real numbers.

This definition well satisfies requirement regarding type purity of classes. Left upper symbol is type denomination. From the viewpoint of the class theory:
symbol of the type ${ }^{(1)} R^{(1)}$ is a name of a class of elements from the universe of this system,
symbol of the type ${ }^{(1)} R^{(j)}$ a name of $j$-argument relation among elements from the universe of this system,
symbol of the type ${ }^{(2)} R^{(1)}$ a name of class of class (properties of properties) of elements from the system universe,
symbol of the type ${ }^{(2)} R^{(j)}$ a name of $j$-argument relation among classes or relations of elements from the system universe,
symbol of the type ${ }^{\left(s_{k}\right)} R^{(j)}$ a name of $j$-argument relation among classes or relations utmost $\left(s_{j_{k}-1}\right)$ order, when at least one argument of this relation is of $\left(s_{j_{k}-1}\right)$-th order.
When introducing further notions I shall not talk in particular about systems with classes and relations of distinct orders, for symbols simplicity reasons, but I do my best to achieve specifications holding true for any system.
*) $\boldsymbol{U}^{\langle j\rangle}$ denotes cartesian product of $j$-factors.

A certain system is connected to a certain period of time. I assume that a set of elements with their properties and relations, which is system in a specific time, in some other time interval may not be a system. So I admit time variability of systems.

Let us introduce notion of "element of system":
D 2. Object $\mathbf{x}$ is at a moment $t_{i}$ an element of system $\mathscr{S}$ (symbolically: $\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in$ $\in \mathscr{E} \ell)$, iff:
a) there is a time interval $\Delta t$ so that $\langle\mathscr{P}, \Delta t\rangle \in \mathscr{S}_{z \mathcal{F}}$, there are sets $\boldsymbol{U}, \mathscr{R}$ so that $\mathscr{S}=\langle\boldsymbol{U}, \mathscr{R}\rangle$,
b) $\mathbf{x}$ belongs to an ordered $j$-tuple from set of the type ${ }^{(1)} R_{k}^{(j)} \in \mathscr{R}$ where this $j$-tuple, when extended to $(j+1)$-tuple by an adjoined element $t_{i}$, belongs to the set ${ }^{(1)} R_{k}^{(j)} \times \Delta t$.
In this proposed interpretation a given object at a given moment is element of a system existing in a time period, if it is an element from the universe of the system at that particular moment and belongs to some relation or has a property from the system and this moment is from "existentional period" of the system.

Consider further notion of "internal element of system":
D 3. Object $\mathbf{x}$ is at a moment $t_{i}$ an internal element of system (symbolically: $\left.\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I}_{n c t}\right)$, iff:
a) $\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{E} \ell$,
b) there are sets $\boldsymbol{U}, \mathscr{R}$ so that $\mathscr{S}=\langle\boldsymbol{U}, \mathscr{R}\rangle$, there exists an interval $\Delta t$ so that $\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{y}$
c) for every element $\mathbf{y}$ forming together with $\mathbf{x}$ any ordered $(j+1)$-tuple the last member of which is $t_{i}$ and belonging to cartesian product of a set of the type ${ }^{(1)} R_{k}^{(j)} \in \mathscr{R}$ and interval $\Delta t$ holds $\left\langle\mathbf{y}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{E} \ell$.

Remark. As to this definition, a certain object at a given moment is internal element of a system, if it is at this moment in relations belonging to this system with only elements from this system.

The term of "boundary element of system" let us define in this way:
D 4. Object $\mathbf{x}$ is at a moment $t_{i}$ a boundary element of system $\mathscr{S}$ (symbolically: $\left.\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{B} n e \ell\right)$ iff:
a) $\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{E} \ell$,
b) there exist sets $\boldsymbol{U}, \mathscr{R}$ so that $\mathscr{S}=\langle\boldsymbol{U}, \mathscr{R}\rangle$, there is interval $\Delta t$ so that $\langle\mathscr{S}, \Delta t\rangle \in$ $\in \mathscr{S}_{z f a t}$,
c) there is at least one element $\mathbf{y}$ which forms together with $\mathbf{x}$ some ordered $(m+1)$-tuple, the last member of which is $t_{i}$ and holds $\left\langle\mathbf{y}, \mathscr{S}, t_{i}\right\rangle \notin \mathscr{E} \ell$.

In proposed interpretation: given object is at a given moment boundary element of a system, if it is at this moment in a relation with such an object which does not belong to this system in this moment.

D 5. Object $\mathbf{x}$ is called input element of a system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left.\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I} n p e \ell\right)$ iff:
a) $\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{B} n e \ell$,
b) there are time intervals $\Delta t, \Delta t^{\prime}$ so that $\langle\mathscr{P}, \Delta t\rangle \in \mathscr{S}_{y y t}$ and time interval $\Delta t^{\prime}$ is shorter than $\Delta t$ (symb.: $\left|\Delta t^{\prime}\right|<|\Delta t|$ ),
c) there is at least one object $\mathbf{u}$ such that $\left\langle\mathbf{u}, \mathscr{S}, t_{i}-\right| \Delta t^{\prime} \mid>\notin \mathscr{E} \ell$ where $\left|\Delta t^{\prime}\right|$ is the length of $\Delta t^{\prime}$,
d) there are properties $U, V$ so that for every moment $t_{j} \in \Delta t$ where $\left(t_{j}-\left|\Delta t^{\prime}\right|\right) \in$ $\in \Delta t$ holds:
if $\mathbf{u}$ has a property $U$ at moment $t_{j}-\left|\Delta t^{\prime}\right|$ then $\mathbf{x}$ has property $V$ in moment $t_{j}$.
In suggested specification: a given boundary element of a system is at a given moment its input element, if there is an object, which was an element of this system before some time period (of the system existence), where further there are properties $U, V$ which can be taken on by $\mathbf{x}$ and $\mathbf{u}$ resp. so that possession of $U$ by object $\mathbf{u}$ leads after considered time interval to that of $V$ by $\mathbf{x}$ - input element of the system.
Simply said: input element of system changes some of its properties being effected by some property transformation of an object standing out of the system.
We need now "output element of system".
D 6. Object $\mathbf{y}$ is output element of system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left.\left\langle\mathbf{y}, \mathscr{S}, t_{i}\right\rangle \in \mathcal{O} u t / \mu e \ell\right)$, iff:
a) $\left\langle\mathbf{y}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{B} n e \ell$,
b) there are time intervals $\Delta t, \Delta t^{\prime}$ so that $\langle\mathscr{P}, \Delta t\rangle \in \mathscr{S}_{y} s t$ and time interval $\Delta t^{\prime}$ is shorter than $\Delta t$,
c) there is at least one object $\mathbf{u}^{\prime}$ so that $\left.\left\langle\mathbf{u}^{\prime}, \mathscr{S}, t_{i}+\mid \Delta t^{\prime}\right\rangle\right\rangle \notin \mathscr{E} \mathscr{C}$ where $\left|\Delta t^{\prime}\right|$ is the length of $\Delta t^{\prime}$,
d) there exist properties $W, U^{\prime}$ so that for every moment $t_{j} \in \Delta t$ where $\left(t_{j}+\left|\Delta t^{\prime}\right|\right) \in$ $\in \Delta t$ holds:
if $\mathbf{y}$ has at moment $t_{i}$ property $W$, then $\mathbf{u}^{\prime}$ has property $U^{\prime}$ at moment $t_{j}+\left|\Delta t^{\prime}\right|$.
In proposed definition: given boundary element of a system is at given moment its output element, if there is an object, which did not belong to the system during some existentional period of the system and there are properties $W, U^{\prime}$ offered to $\mathbf{y}, \mathbf{u}^{\prime}$ resp. in that mode, that if $\mathbf{y}$ takes on $W$ then necessarily $\mathbf{u}^{\prime}$ gets $U^{\prime}$.
Shortly: output element changes some of its properties and creates thus a property transformation of an object out of the system.

D 7. A set $\mathbf{X}$ is called input of a system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left.\left\langle\mathbf{X}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I}_{n \not{\prime}}\right)$, iff for every element $\mathbf{x}$ holds: $\mathbf{x}$ is at a moment $t_{i}$ an element of $\mathbf{X}$, if there is an interval $\Delta t$ so that

$$
\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{z} \neq s t \quad \text { and } \quad\left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I}_{n p e t}, \quad t_{i} \in \Delta t
$$

symbolically:

$$
\left\langle\mathbf{x}, t_{i}\right\rangle \in \mathbf{X} \times \Delta t
$$

In plain English: input of a given system at a given moment is set of all its input elements at that moment.

D 8. A set $\mathbf{Y}$ is said to be output of a system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left\langle\mathbf{Y}, \mathscr{S}, t_{i}\right\rangle \in \mathcal{O} \boldsymbol{u} t \neq$, if for each object $\mathbf{y}$ holds: If there exists interval $\Delta t$ so that

$$
\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{y s t}
$$

and

$$
\left\langle\mathbf{y}, \mathscr{P}, t_{i}\right\rangle \in \text { Out } k e \ell, \quad t_{i} \in \Delta t
$$

only just then $\mathbf{y}$ is at moment $t_{i}$ an element of $\mathbf{Y}$, symbolically:

$$
\left\langle\mathbf{y}, t_{i}\right\rangle \in \mathbf{Y} \times \Delta t
$$

Shortly: output of a given system at a given moment is set of all its output elements at that moment.

All just above mentioned definitions are formulated in accordance with common usage of these terms in automata theory.

From the technical viewpoint we can understand by "automata input" a set of all data entry associated with the automata. These entries are in certain relations to automata environment.

For instance, let a given automata have an input $\mathbf{X}$ which is a set of $n$-input elements of the system. These elements $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ can take on some respective "input" properties $V_{1}, V_{2}, \ldots, V_{n}$. In such a case we can directly characterize all possible values of total input $\mathbf{X}$ by means of $2^{n} n$-argument variations consisting of elements of the type $\left\{V_{i}, \bar{V}_{i}\right\}, 1 \leqq i \leqq n$

| $\bar{V}_{1}, \bar{V}_{2}, \ldots, \bar{V}_{n-1}, \bar{V}_{n}$ |
| :---: |
| $\bar{V}_{1}, \bar{V}_{2}, \ldots, \bar{V}_{n-1}, V_{n}$ |
| $\bar{V}_{1}, \bar{V}_{2}, \ldots, V_{n-1}, \bar{V}_{n}$ |
| $\bar{V}_{1}, \bar{V}_{2}, \ldots, V_{n-1}, V_{n}$ |
| $\vdots$ |
| $\vdots$ |
| $V_{1}, V_{2}, \ldots$, |
| $V_{n-1}$, |

Individual input elements of the automata in this case have mentioned properties as
their binary values: for every input element $\mathbf{x}_{i}$ holds that "its" property $V_{i}$ at moment $t_{i}$ either has or does not. Symbolically:

$$
\left\langle\mathbf{x}_{i}, t_{i}\right\rangle \in V_{i} \times T \quad \text { or } \quad\left\langle\mathbf{x}_{i}, t_{i}\right\rangle \in \bar{V}_{i} \times T
$$

Analogue remark obviously holds also for output and output elements. Particularly, for system-automata we can consider that for individual effectors-output elements, by means of which the automata effects directly its enviroment.

For example, let such an automata have ouput $\mathbf{Y}$ which is a set of $m$ output elements $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{m}$ taking on some respective "output" properties. Then we can characterize possible values of total output $\mathbf{Y}$ by $2^{m} m$-argument relations-variations consisting of elements from a set of the type $\left\{W_{i}, \bar{W}_{i}\right\}, 1 \leqq i \leqq m$

$$
\begin{array}{ccc}
\bar{W}_{1}, \bar{W}_{2}, \ldots, \bar{W}_{m-1}, \bar{W}_{m} \\
\bar{W}_{1}, \bar{W}_{2}, \ldots, \bar{W}_{m-1}, W_{m} \\
\bar{W}_{1}, \bar{W}_{2}, \ldots, W_{m-1}, & W_{m} \\
\vdots & \vdots & \vdots \\
W_{1}, W_{2}, \ldots, W_{m-1}, & \bar{W}_{m} \\
W_{1}, W_{2}, \ldots, W_{m-1}, W_{m}
\end{array}
$$

Particular output elements of the automata take on described properties as their binary values: each output element $\mathbf{y}_{i}$ at a given moment $t_{i}$ either has "its" output property or does not.
Symbolically:

$$
\left\langle\mathbf{y}_{i}, t_{i}\right\rangle \in W_{i} \times T \text { or }\left\langle\mathbf{y}_{i}, t_{i}\right\rangle \in \bar{Y}_{i} \times T
$$

I consider generally defined system as "developing in time". In respective formulations of individual notions there occurs factor $\Delta t$ representing existence duration of a system. That is why I require respective connection between properties of input element $\mathbf{x}$ and those of output element $\mathbf{y}$ as well as relation of input element $\mathbf{x}$ and an adequate distance inside the existentional period $\Delta t$ of the system. I do not say that this relation may not exist also out of this existentional period of the system.

Let us further introduce "environment of system".

D 9. A set $\mathbf{M}$ is called environment of system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left.\left\langle\mathbf{M}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{E} m v\right)$, iff any pair of objects $\mathbf{x}, \mathbf{u}$ satisfies following conditions:
a)
b)

$$
\begin{aligned}
& \left\langle\mathbf{x}, \mathscr{F}, t_{i}\right\rangle \in \mathscr{E} \ell \\
& \left\langle\mathbf{u}, \mathscr{S}, t_{i}\right\rangle \notin \mathscr{E} \ell
\end{aligned}
$$

where there is such a time interval $\Delta t$ that $t_{i} \in \Delta t$ and $\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{y} s t$,
c) $\mathbf{x}, \mathbf{u}$ are in an ordered $(m+1)$-tuple, the last element of which is element $t_{i}$, then only holds:

$$
\left\langle u, t_{i}\right\rangle \in M \times \Delta t
$$

Shortly: environment of a system at a given moment is a set of all objects located in that time of of the system and each of these objects has in that time a certain relation with an element of the system.

D 10. A set S is said to be impuls of system $\mathscr{S}$ at a moment $t_{i}$, (symbolically: $\left\langle\mathbf{S}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I} m / 2$ ), iff for every element $\mathbf{x}$ and each property $V$ holds: whether

$$
\begin{aligned}
& \left\langle\mathbf{x}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{I} \text { mifit } \\
& \left\langle\mathbf{x}, t_{i}\right\rangle \quad \in V \times T
\end{aligned}
$$

when there is time interval $\Delta t$ so that $t_{i} \in \Delta t,\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{y j}$ then

$$
\left\langle V, t_{i}\right\rangle \in \mathscr{S} \times \Delta t
$$

Briefly: impuls of a system at a considered moment is set of all properties of input elements of this system at that moment.

Let us define now notion of "response of system":
D 11. A set $\mathbf{S}^{\prime}$ is defined to be response of system $\mathscr{S}$ at a moment $t_{i}$ (symbolically: $\left\langle\mathbf{S}^{\prime}, \mathscr{S}, \boldsymbol{t}_{i}\right\rangle \in \mathscr{R e s} \not 2$ ), iff for every object $\mathbf{y}$ and each property $W$ holds: whether

$$
\begin{aligned}
& \left\langle\mathbf{y}, \mathscr{P}, t_{i}\right\rangle \in \mathcal{O}_{\text {ut fuet }} \\
& \left\langle\mathbf{y}, t_{i}\right\rangle \quad \in W \times T
\end{aligned}
$$

where there exists time interval $\Delta t$ so that $t_{i} \in \Delta t,\langle\mathscr{P}, \Delta t\rangle \in \mathscr{S} z y s t$ then

$$
\left\langle W, t_{i}\right\rangle \in \mathbf{S}^{\prime} \times \Delta t .
$$

In proposed definition: response of a given system at a particular moment is set of all its output elements properties of the system at that moment.

## THE CONCEPT OF SUBSYSTEM WITH A FEW ILLUSTRATIONS

D 12. System $\mathscr{S}^{\prime}$ is said to be subsystem of system $\mathscr{S}$ at a moment $t_{i}$, (symbolically: $\left\langle\mathscr{S}^{\prime}, \mathscr{S}, t_{i}\right\rangle \in \mathscr{S} u b_{\text {bze }} t$ ), iff the following conditions are met:
a) there are time intervals $\Delta t, \Delta t^{\prime}, \Delta t^{\prime} \subseteq \Delta t,\left\langle\mathscr{S}^{\prime}, \Delta t^{\prime}\right\rangle \in \mathscr{S}_{z f s t}$

$$
\langle\mathscr{S}, \Delta t\rangle \in \mathscr{S}_{3 f s t}, \quad t_{i} \in \Delta t^{\prime}
$$

b) there exist sets $\boldsymbol{U}, \boldsymbol{U}^{\prime}, \mathscr{R}, \mathscr{R}^{\prime}$ so that $\mathscr{S}^{\prime}=\left\langle\boldsymbol{U}^{\prime}, \mathscr{R}^{\prime}\right\rangle, \mathscr{S}=\langle\boldsymbol{U}, \mathscr{R}\rangle$ and $\boldsymbol{U}^{\prime} \subseteq \boldsymbol{U}$,
c) there exist pairs of transformations (mappings) where: $\left\langle Z_{0}, Z_{1}\right\rangle Z_{0}$ transforms set of all members of respective sets of the type $R_{k}^{(j)} \in \mathscr{R}$ onto empty set and if it is not so for some of them, then they are transformed by $Z_{1}$.
$Z_{1}$ uniquely assigns individual elements of these members (i.e. particular elements
of the system) their $Z_{1}$-transformations, which are again elements of the system. To each set $R_{k}^{(j)} \in \mathscr{R}$ with terms of the type $\left\langle a_{1}, a_{2}, \ldots, a_{j}, t_{i}\right\rangle$ is thus uniquely associated a set $R_{l}^{\prime(j)} \in \mathscr{R}^{\prime}$ with terms of the type

$$
\left\langle Z_{1}\left(a_{1}\right), Z_{1}\left(a_{2}\right), \ldots Z_{1}\left(a_{j}\right), t_{i}\right\rangle
$$

d) $\mathscr{R}^{\prime}$ is a set of all sets $R_{l}^{(j)}$ which are the result of the mapping $\left\langle Z_{0}, Z_{1}\right\rangle$ of all sets $R_{k}^{(j)} \in \mathscr{R}$ of the system $\mathscr{S}$.
e) $\boldsymbol{U}^{\prime}$ is a set of elements of the type $Z_{1}(a)$ which are the result of $Z_{1}$-transformation of all elements of the system $\mathscr{S}$.

In proposed definition: $\mathscr{S}^{\prime}$ is called "subsystem of system $\mathscr{S}$ at a moment $t_{i}$ ". if $\mathscr{S}^{\prime}$ exists as a system within existentional time limits of system $\mathscr{S}$, if its universe $\boldsymbol{U}^{\prime}$ is subset of universe $\boldsymbol{U}$, set of properties or relations $\mathscr{R}^{\prime}$ is obtained either by omitting some sets from $\mathscr{R}$ of system $\mathscr{S}$ and sets from $\mathscr{R}^{\prime}$ are properties or relations of $Z_{1}$ --images of elements of corresponding properties or relations from $\mathscr{R}$ respectively.
Let me stress that proposed notion of subsystem is defined more generally than usually. The set $\mathscr{R}^{\prime}$ does not have to be namely a subset as, as a rule, required. I have formed this generalization because of further coordination between concept of mapping with notion of "transformation creating homomorphy of systems".
If $Z_{1}$ is identical mapping then the concept of subsystem comes to traditional one with common demand $\mathscr{R}^{\prime} \subseteq \mathscr{R}$.
Mapping $\left\langle Z_{0}, Z_{1}\right\rangle$ can be chosen from various standpoints. Accordingly we can later divide given system into a sequence of respective subsystems. Mapping in practice is selected due to significance of properties and relations of system which is being divided.
Choice of mapping can be for instance directed by selected relation "to be less substantial than" which is ordering class of properties and relations. We choose a property or a relation as a lower ("lowest") one. Such a subsystem defined in this way encloses only those properties and relations from $\mathscr{R}$ which are beyond this lower limit (boundary) of "to be substantial".
For example let there be a very simple system (time factor not considered)

$$
\begin{aligned}
& \mathscr{S}_{1}=\left\langle\boldsymbol{U}_{1}, \mathscr{R}_{1}\right\rangle \\
& \boldsymbol{U}_{1}=\left\{a_{1}, a_{2}, a_{3}\right\} \\
& R_{1}=\left\{F, G, R_{1}, R_{2}\right\} \\
& F=\left\{a_{1}, a_{3}\right\} ; G=\left\{a_{2}, a_{3}\right\} \\
& R_{1}=\left\{\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{3}\right\rangle,\left\langle a_{3}, a_{2}\right\rangle\right\} \\
& R_{2}=\left\{\left\langle a_{1}, a_{2} a_{3}\right\rangle,\left\langle a_{2}, a_{3}, a_{2}\right\rangle\right\}
\end{aligned}
$$

Let a chosen mapping assign:

$$
\begin{array}{lll}
\text { to set } & F=\left\{a_{1}, a_{3}\right\} & \text { as its image } \\
\text { to set } & F^{\prime}=\left\{a_{3}\right\} \\
\text { to set } & R_{1} & \text { as its image } \\
\text { to set } & R_{1}^{\prime}=\left\{a_{2}, a_{3}\right\} & \text { as its image } \\
G^{\prime}=\left\{a_{2}, a_{3}\right\} \\
\text { to } & \text { as its image } & R_{2}^{\prime}=\left\{\left\langle a_{2}, a_{3}, a_{2}\right\rangle\right\}
\end{array}
$$

then $\boldsymbol{U}_{1}^{\prime}=\left\{a_{2}, a_{3}\right\}, \mathscr{R}_{1}^{\prime}=\left\{F^{\prime}, G^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}\right\}$ is subsystem $\mathscr{S}_{1}^{\prime}=\left\langle\boldsymbol{U}_{1}^{\prime}, \mathscr{R}_{1}^{\prime}\right\rangle$.
Another simple example can be system $\mathscr{S}_{2}$ existing in a certain time period:

$$
\mathscr{S}_{2}=\left\langle\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}, \quad\left\{R_{1}^{(1)}, R_{2}^{(1)}, R_{3}^{(1)}, R_{1}^{(2)}, R_{2}^{(2)}, R_{1}^{(3)}, R_{2}^{(3)}\right\}\right\rangle
$$

where

$$
\begin{aligned}
& R_{1}^{(1)}=\left\{a_{1}, a_{3}, a_{5}\right\}, \quad R_{2}^{(1)}=\left\{a_{2}, a_{4}\right\}, \quad R_{3}^{(1)}=\left\{a_{1}, a_{4}\right\} \\
& R_{1}^{(2)}=\left\{\left\langle a_{1}, a_{4}\right\rangle,\left\langle a_{1}, a_{3}\right\rangle\right\}, \quad R_{2}^{(2)}=\left\{\left\langle a_{3}, a_{5}\right\rangle,\left\langle a_{2}, a_{1}\right\rangle\right\} \\
& R_{1}^{(3)}=\left\{\left\langle a_{2}, a_{1}, a_{5}\right\rangle,\left\langle a_{1}, a_{3}, a_{5}\right\rangle,\left\langle a_{3}, a_{4}, a_{5}\right\rangle\right\} \\
& R_{2}^{(3)}=\left\{\left\langle a_{4}, a_{5}, a_{1}\right\rangle,\left\langle a_{2}, a_{2}, a_{1}\right\rangle\right\}
\end{aligned}
$$

Let us choose a mapping on the base of relation "to be less substantial than" ordering set of relations and properties of system $\mathscr{S}_{2}$ as follows:

$$
\left\langle R_{2}^{(2)}, R_{2}^{(1)}, R_{1}^{(1)}, R_{2}^{(3)}, R_{3}^{(1)}, R_{1}^{(2)}, R_{1}^{(3)}\right\rangle
$$

Let property $R_{1}^{(1)}$ be a limit (boundary) for a selection from this set. In this way there is defined subsystem $\mathscr{S}_{2}^{\prime}$ existing within existentional limits of system $\mathscr{S}_{2}$ :

$$
\mathscr{L}_{2}^{\prime}=\left\langle\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\},\left\{R_{3}^{(1)}, R_{1}^{(2)}, R_{1}^{(3)}, R_{2}^{(3)}\right\}\right\rangle
$$

For the same relation "to be less substantial than", but different boundary choice there will be defined a different subsystem. If property $R_{3}^{(1)}$ is considered as another boundary, then subsystem $\mathscr{S}_{2}^{\prime \prime}$ will be defined and existing within existentional limits of system $\mathscr{S}_{2}$ as follows:

$$
\mathscr{S}_{2}^{\prime \prime}=\left\langle\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\},\left\{R_{1}^{(2)}, R_{1}^{(3)}\right\}\right\rangle
$$

It is obvious that when using various types of ordering and choice of lower boundary of substantionality, we can obtain distinct subsystems as to their relative significance.

As another illustration let me introduce "production" system $\mathscr{S}_{v}$ whose universe $\boldsymbol{U}_{v}$ is a set of machine tools and transport devices (time factor still omitted).

The universe $\boldsymbol{U}_{v}$ will be:

$$
\boldsymbol{U}_{v}=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{40}\right\}
$$

the respective elements:

| $s_{1}, s_{2}, \ldots, s_{10}$ | are travelling cranes | $\left(s_{1}, s_{2}, \ldots, s_{10}\right) \in C$ |
| :--- | :--- | :--- |
| $s_{11}, s_{12}, \ldots, s_{20}$ | are lathes | $\left(s_{11}, s_{12}, \ldots, s_{20}\right) \in L$ |
| $s_{21}, s_{22}, \ldots, s_{30}$ | are milling machines | $\left(s_{21}, s_{22}, \ldots, s_{30}\right) \in M$ |
| $s_{31}, s_{32}, \ldots, s_{35}$ | are grinding machines | $\left(s_{31}, s_{32}, \ldots, s_{35}\right) \in G$ |
| $s_{36}, s_{37}, \ldots, s_{40}$ | are moving belts | $\left(s_{36}, s_{37}, \ldots, s_{40}\right) \in B$ |

Corresponding pairs of machines or devices are in a relation "follow each other in production operation" as follows:

$$
\begin{aligned}
\mathscr{R}_{p}= & \left\{\left\langle s_{1}, s_{2}\right\rangle,\left\langle s_{2}, s_{3}\right\rangle,\left\langle s_{3}, s_{4}\right\rangle,\left\langle s_{5}, s_{6}\right\rangle,\left\langle s_{7}, s_{8}\right\rangle,\left\langle s_{9}, s_{11}\right\rangle,\left\langle s_{11}, s_{12}\right\rangle,\right. \\
& \left\langle s_{12}, s_{13}\right\rangle,\left\langle s_{13}, s_{14}\right\rangle,\left\langle s_{6}, s_{15}\right\rangle,\left\langle s_{15}, s_{16}\right\rangle,\left\langle s_{16}, s_{17}\right\rangle,\left\langle s_{14}, s_{21}\right\rangle, \\
& \left\langle s_{21}, s_{22}\right\rangle,\left\langle s_{17}, s_{23}\right\rangle,\left\langle s_{19}, s_{24}\right\rangle,\left\langle s_{24}, s_{25}\right\rangle,\left\langle s_{26}, s_{27}\right\rangle,\left\langle s_{27}, s_{28}\right\rangle, \\
& \left\langle s_{19}, s_{30}\right\rangle,\left\langle s_{8}, s_{31}\right\rangle,\left\langle s_{22}, s_{32}\right\rangle,\left\langle s_{32}, s_{33}\right\rangle,\left\langle s_{23}, s_{34}\right\rangle,\left\langle s_{9}, s_{35}\right\rangle, \\
& \left\langle s_{20}, s_{35}\right\rangle,\left\langle s_{25}, s_{35}\right\rangle,\left\langle s_{27}, s_{35}\right\rangle,\left\langle s_{30}, s_{35}\right\rangle,\left\langle s_{31}, s_{35}\right\rangle,\left\langle s_{34}, s_{36}\right\rangle, \\
& \left\langle s_{35}, s_{36}\right\rangle,\left\langle s_{36}, s_{37}\right\rangle,\left\langle s_{28}, s_{37}\right\rangle,\left\langle s_{29}, s_{37}\right\rangle,\left\langle s_{33}, s_{37}\right\rangle,\left\langle s_{10}, s_{37}\right\rangle, \\
& \left.\left\langle s_{37}, s_{38}\right\rangle,\left\langle s_{38}, s_{39}\right\rangle,\left\langle s_{39}, s_{40}\right\rangle\right\} .
\end{aligned}
$$

The whole production system we can plot in this way:


Input elements are assumed to be: $s_{1}, s_{5}, s_{7}, s_{9}, s_{10}, s_{18}, s_{19}, s_{20}, s_{26}, s_{29}$. The system $\mathscr{S}_{v}$ can be characterized within its function period as a pair:

$$
\mathscr{S}_{v}=\left\langle\left\{s_{1}, s_{2}, \ldots, s_{40}\right\},\left\{C, L, M, G, B, \mathscr{R}_{p}\right\}\right\rangle
$$

The system $\mathscr{S}_{v}$ can be divided into subsystems from various viewpoints. For instance, let a mapping be given by distribution of relation $\mathscr{R}_{p}$ into those members-
-pairs of the class $\mathscr{R}_{p}$, whose elements differ as to their properties from the class $\{C, L, M, G, B\}$. The elements from this class with the same properties let be identified. Thus we get subsystem:

$$
\begin{aligned}
\mathscr{P}_{v}^{\prime}= & \left\langle\left\{ s_{4}, s_{6}, s_{8}, s_{9}, s_{10}, s_{11}, s_{14}, s_{15}, s_{18}, s_{19}, s_{20}, s_{21}, s_{22}, s_{23}, s_{24}, s_{28}, s_{29}, s_{30},\right.\right. \\
& \left.\left.s_{31}, s_{32}, s_{33}, s_{34}, s_{35}, s_{36}, s_{37}\right\},\left\{C, L, M, G, B, R_{p}^{\prime}\right\}\right\rangle, \\
\mathscr{R}_{\boldsymbol{p}}^{\prime}= & \left\{\left\langle s_{4}, s_{11}\right\rangle,\left\langle s_{6}, s_{15}\right\rangle,\left\langle s_{8}, s_{31}\right\rangle,\left\langle s_{9}, s_{35}\right\rangle,\left\langle s_{20}, s_{37}\right\rangle,\left\langle s_{14}, s_{21}\right\rangle,\right. \\
& \left\langle s_{18}, s_{24}\right\rangle,\left\langle s_{19}, s_{30}\right\rangle,\left\langle s_{20}, s_{35}\right\rangle,\left\langle s_{23}, s_{34}\right\rangle,\left\langle s_{22}, s_{32}\right\rangle,\left\langle s_{28}, s_{37}\right\rangle, \\
& \left.\left\langle s_{29}, s_{37}\right\rangle,\left\langle s_{30}, s_{35}\right\rangle,\left\langle s_{33}, s_{37}\right\rangle,\left\langle s_{34}, s_{36}\right\rangle,\left\langle s_{35}, s_{36}\right\rangle\right\},
\end{aligned}
$$



At this distribution we are interested in only those proceeding sequences of work operations, which take place between different kinds of machines or devices.
When approaching the problem from another standpoint, we can form partition of the class $\{C, L, M, G, B\}$ by partly ordering relation which forme there subclasses:

$$
\{C\},\{L, M, G\},\{B\}
$$

Let us divide the relation $\mathscr{R}_{p}$ so that we take out from it merely those pairs of elements as substantial once, which belong to distinct subclasses under consideration.

Thus we obtain subsystem:

$$
\begin{aligned}
\mathscr{S}_{0}^{\prime \prime}= & \left\langle\left\{s_{4}, s_{6}, s_{8}, s_{9}, s_{10}, s_{11}, s_{15}, s_{28}, s_{29}, s_{31}, s_{33}, s_{34}, s_{35}, s_{36}, s_{37}\right\},\right. \\
& \left.\left\{C, L, M, G, B, \mathscr{R}_{p}^{\prime \prime}\right\}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
\mathscr{R}_{p}^{\prime \prime}=\{ & \left\langle s_{4}, s_{11}\right\rangle,\left\langle s_{6}, s_{15}\right\rangle,\left\langle s_{8}, s_{31}\right\rangle,\left\langle s_{9}, s_{35}\right\rangle,\left\langle s_{10}, s_{37}\right\rangle,\left\langle s_{28}, s_{37}\right\rangle, \\
& \left.\left\langle s_{29}, s_{37}\right\rangle,\left\langle s_{33}, s_{37}\right\rangle,\left\langle s_{34}, s_{36}\right\rangle,\left\langle s_{35}, s_{36}\right\rangle\right\} .
\end{aligned}
$$



At this distribution and partition of $\mathscr{S}_{v}$ only those sequences of work operations following each other are interesting for us, which occur among groups of travelling cranes, machine tools and moving belts, but regardless of the situation inside these groups.

Let us choose finally such a mapping which transforms the class

$$
\left\{C, L, M, G, B, \mathscr{R}_{p}\right\} \quad \text { onto } \quad\left\{C, L, M, G, B, \mathscr{R}_{p}^{\prime \prime \prime}\right\}
$$

where $\mathscr{R}_{p}^{\prime \prime \prime}$ is subclass of $\mathscr{R}_{p}$ enclosing only those ordered pairs of elements $s_{1}, s_{2}, \ldots$ $\ldots, s_{40}$ which remain after following identification of elements inside the sets $C, L, M$, $G, B$,

$$
\begin{aligned}
& s_{1}=s_{2}=\ldots=s_{10}=c, \\
& \vdots \\
& s_{11}=s_{12}=\ldots=s_{20}=l, \\
& s_{21}=s_{22}=\ldots=s_{30}=m, \\
& s_{31}=s_{32}=\ldots=s_{35}=g, \\
& s_{36}=s_{37}=\ldots=s_{40}=b,
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{R}_{v}^{\prime \prime \prime}=\{ & \langle\langle c, c\rangle,\langle c, l\rangle,\langle c, g\rangle,\langle c, b\rangle,\langle l, l\rangle,\langle l, m\rangle,\langle l, g\rangle,\langle m, m\rangle,\langle m, g\rangle, \\
& \langle m, b\rangle,\langle g, g\rangle,\langle g, b\rangle,\langle b, b\rangle\} .
\end{aligned}
$$

obtained subsystem denote by $\mathscr{S}_{v}^{\prime \prime \prime}$ :


At this distribution we are interested in only relations among respective kinds of machines or devices (included relation with itself). Hence it is in fact a sequence of direct work relation among individual workshops.

When further simplifying the relation $\mathscr{R}_{p}$ :

$$
\mathscr{R}_{p}^{\prime \prime \prime}=\{\langle c, l\rangle,\langle c, g\rangle,\langle c, b\rangle,\langle l, m\rangle,\langle l, g\rangle,\langle m, g\rangle,\langle m, b\rangle,\langle g, b\rangle\}
$$

we get subsystem $\mathscr{S}_{v}^{\prime \prime \prime \prime}$, graphically:

enclosing only work relations among workshops, but not those inside particular workshops.

Time variable systems can be divided into subsystems also from time viewpoint. This distribution plays often an important role.

Simple example: Let there be defined a system $\mathscr{S}_{T}$ in time interval $\Delta t \subset T$ as follows:

$$
\mathscr{S}_{\boldsymbol{T}}=\left\langle\boldsymbol{U}_{T}, \mathscr{R}_{T}\right\rangle, \quad \boldsymbol{U}_{T}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \quad \mathscr{R}_{T}=\left\{F, G, H, R_{1}, R_{2}\right\}
$$

and let there exist following subintervals of interval $\Delta t$ :

$$
\begin{array}{lll}
\left\langle a_{1}, t_{i_{1}}\right\rangle \in F \times \Delta t & \text { for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{1}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{1}, t_{i_{3}}\right\rangle \in H \times \Delta t & \text { for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{2}, t_{i_{1}}\right\rangle \in G \times \Delta t & \text { for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{2}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{2}, t_{i_{3}}\right\rangle \in H \times \Delta t & \text { for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{3}, t_{i_{1}}\right\rangle \in G \times \Delta t & \text { for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{3}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{3}, t_{i_{3}}\right\rangle \in F \times \Delta t & \text { for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{4}, t_{i}\right\rangle \in H \times \Delta t & \text { for every } & t_{i} \in \Delta t
\end{array}
$$

Time changes of objects properties on the interval $\Delta t$ can be illustrated by graph:


$$
\begin{array}{lll}
\left\langle a_{1}, a_{2}, a_{3}, t_{i_{1}}\right\rangle \in R_{1} \times \Delta t & \text { for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{1}, a_{2}, a_{3}, t_{i_{2}}\right\rangle \in R_{2} \times \Delta t & \text { for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{2}, a_{3}, a_{4}, t_{i_{1}}\right\rangle \in R_{1} \times \Delta t & \text { for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{2}, a_{3}, a_{4}, t_{i_{2}}\right\rangle \in R_{1} \times \Delta t & \text { for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{2}, a_{3}, a_{1}, t_{i_{3}}\right\rangle \in R_{1} \times \Delta t & \text { for every } & t_{i_{3}} \in \Delta t_{3}
\end{array}
$$

Chosen transformation let assign to an element $F$ of set $\mathscr{R}_{T}$ its image such that

$$
\left\langle a_{1}, t_{i_{1}}\right\rangle \in F \times \Delta t \quad \text { just only for every } \quad t_{i_{1}} \in \Delta t_{1}
$$

and let further this mapping associate with an element $G$ of set $\mathscr{R}_{T}$ its image such that

$$
\begin{array}{lll}
\left\langle a_{2}, t_{i_{1}}\right\rangle \in G \times \Delta t & \text { just only for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{3}, t_{i_{1}}\right\rangle \in G \times \Delta t & \text { just only for every } & t_{i_{1}} \in \Delta t_{1}
\end{array}
$$

to every element $H$ of set $\mathscr{R}_{T}$ its image so that

$$
\left\langle a_{4}, t_{i_{1}}\right\rangle \in H \times \Delta t \quad \text { just only for every } t_{i_{1}} \in \Delta t_{1}
$$

and to each element $R_{1}$ of set $R_{T}$ its image so that

$$
\begin{array}{lll}
\left\langle a_{1}, a_{2}, a_{3}, t_{i_{1}}\right\rangle \in R_{1} \times \Delta t \quad \text { just only for every } & t_{i_{1}} \in \Delta t_{1} \\
\left\langle a_{2}, a_{3}, a_{4}, t_{i_{1}}\right\rangle \in R_{1} \times \Delta t & \text { just only for every } & t_{i_{1}} \in \Delta t_{1}
\end{array}
$$

and finally to element $R_{2}$ of set $\mathscr{R}_{T}$ as its image empty set. The subsystem defined in this way is

$$
\mathscr{S}_{T}^{\prime}=\left\langle\boldsymbol{U}_{T}^{\prime}, \mathscr{R}_{T}^{\prime}\right\rangle, \quad \boldsymbol{U}_{T}^{\prime}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \quad \mathscr{R}_{T}^{\prime}=\left\{F, G, H, R_{1}\right\}
$$

where
$F$ involves at every moment $t_{i_{1}} \in \Delta t_{1}$ as its elements an object $a_{1}$ and no other element from $\boldsymbol{U}_{T}^{\prime}$,
$G$ involves at every moment $t_{i_{1}} \in \Delta t_{1}$ as its elements objects $a_{2}, a_{3}$ and no others from $\boldsymbol{U}_{\boldsymbol{T}}^{\prime}$,
$H$ involves at every moment $t_{i_{1}} \in \Delta t_{1}$ as its element an object $a_{4}$ and no other element from $\boldsymbol{U}_{T}^{\prime}$,
$R_{1}$ involves at every moment $t_{i_{1}} \in \Delta t_{1}$ as its elements triples $\left\langle a_{1}, a_{2}, a_{3}\right\rangle,\left\langle a_{2}, a_{3}, a_{4}\right\rangle$ and no other triples from $\boldsymbol{U}_{T}^{\prime}$.

Let us choose another transformation associating respective elements $F, G, H, R_{1}$, $R_{2} \in \mathscr{R}_{T}$ their images so that $F$ is associated with empty set

$$
\begin{array}{rll}
\left\langle a_{1}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { just only for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{2}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { just only for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{3}, t_{i_{2}}\right\rangle \in G \times \Delta t & \text { just only for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{4}, t_{i_{2}}\right\rangle \in H \times \Delta t & \text { just only for every } & t_{i_{2}} \in \Delta t_{2} \\
\left\langle a_{2}, a_{3}, a_{4}, t_{i_{2}}\right\rangle \in R_{1} \times \Delta t & \text { just only for every } & t_{i_{2} \in \Delta t_{2}} \\
\left\langle a_{1}, a_{2}, a_{3}, t_{i_{2}}\right\rangle \in R_{2} \times \Delta t & \text { just only for every } & t_{i_{2}} \in \Delta t_{2}
\end{array}
$$

So there is defined subsystem

$$
\mathscr{S}_{T}^{\prime \prime}=\left\langle\boldsymbol{U}_{T}^{\prime \prime}, \mathscr{R}_{T}^{\prime \prime}\right\rangle, \quad \boldsymbol{U}_{T}^{\prime \prime}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \quad \mathscr{R}_{T}^{\prime \prime}=\left\{G, H, R_{1}, R_{2}\right\}
$$

$G$ encloses at every moment $t_{i_{2}} \in \Delta t_{2}$ as its element objects $a_{1}, a_{2}$ and no other elements from $\boldsymbol{U}_{T}^{\prime \prime}$,
$H$ encloses at every moment $t_{i}, \in \Delta t_{2}$ as its element object $a_{1}$ and no other elements from $\boldsymbol{U}_{T}^{\prime \prime}$,
$R_{1}$ encloses at every moment $t_{i_{2}} \in \Delta t_{2}$ as its element triple $\left\langle a_{2}, a_{3}, a_{4}\right\rangle$ and no other triples from $\boldsymbol{U}_{T}^{\prime \prime}$,
$R_{2}$ encloses at every moment $t_{i_{2}} \in \Delta t_{2}$ as its element triple $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and no other triples from $\boldsymbol{U}_{T}^{\prime \prime}$.

Let us finally choose a mapping assigning to elements $F, G, H, R_{1}, R_{2} \in \mathscr{R}_{T}$ their respective images so that

$$
\begin{array}{lll}
\left\langle a_{3}, t_{i_{3}}\right\rangle \in F \times \Delta t & \text { just only for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{1}, t_{i_{3}}\right\rangle \in H \times \Delta t & \text { just only for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{2}, t_{i_{3}}\right\rangle \in H \times \Delta t & \text { just only for every } & t_{i_{3}} \in \Delta t_{3} \\
\left\langle a_{4}, t_{i_{3}}\right\rangle \in H \times \Delta t & \text { just only for every } & t_{i_{3}} \in \Delta t_{3}
\end{array}
$$

the image of $G$ is empty set,

$$
\left\langle a_{2}, a_{3}, a_{1}, t_{i_{3}}\right\rangle \in R_{1} \times \Delta t \quad \text { just only for every } t_{i_{3}} \in \Delta t_{3}
$$

the image of $R_{2}$ is empty set.

In this way there is defined subsystem:

$$
\mathscr{S}_{T}^{\prime \prime \prime}=\left\langle\boldsymbol{U}_{T}^{\prime \prime \prime}, \mathscr{R}_{T}^{\prime \prime \prime}\right\rangle, \quad \boldsymbol{U}_{T}^{\prime \prime \prime}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, \quad \mathscr{R}_{T}^{\prime \prime \prime}=\left\{F, H, R_{1}\right\}
$$

$F$ has at every moment $t_{i_{3}} \in \Delta t_{3}$ as its element object $a_{3}$ and no other element from $U_{r}^{\prime \prime \prime}$,
$H$ has at every moment $t_{i_{3}} \in \Delta t_{3}$ as its elements objects $a_{1}, a_{2}, a_{4}$ and no other elements from $\boldsymbol{U}_{T}^{\prime \prime \prime}$,
$R_{1}$ has at every moment $t_{i_{3}} \in \Delta t_{3}$ as its element triple $\left\langle a_{2}, a_{3}, a_{1}\right\rangle$ and no other triple of elements from $\boldsymbol{U}_{T}^{\prime \prime \prime}$.
It is obvious that just mentioned triple of mappings has enabled partition of system $\mathscr{S}_{T}$ into three subsystems $\mathscr{S}_{T}^{\prime}, \mathscr{S}_{T}^{\prime \prime}, \mathscr{S}_{T}^{\prime \prime \prime}$, which can be classified as "development stages" of system $\mathscr{S}_{T}$. Original system has thus its "history", which we can describe precisely in time. Interval $\Delta t$ can be divided, generally speaking, into $n$ ordered subintervals and with increasing $n$ even "ontology" of $\mathscr{S}_{T}$ development becomes greater.

Mentioned mapping can be chosen so that even time changes of "integral" system $\mathscr{S}_{T}$ as to its origin or termination substantial properties and relations would be envolved in particular time periods.

Given specifications D1-D12 may enable exact description of large, in time developing, systems. These systems are called (perhaps not quite precisely) "dynamic systems".
(Received February 25, 1981.)

## REFERENCES

[1] J. Beneš: Teorie systémů. Academia, Praha 1974.
[2] R. Bek: Logika pro kurs automatizovaných systémů. ČVUT, Praha 1976.
[3] J. Ježek: Univerzální algebra a teorie modelů. SNTL, Praha 1976.
[4] J. B. Novik: O modelirovanii složnych sistem. Moskva 1972.
[5] H. Starke: Abstrakte Automaten. Akademie-Verlag, Berlin 1965.

Dr. Milan Rủžička, CSc., katedra matematiky strojní fakulty ČVUT (Department of Mathematics, Faculty of Mechanical Engineering - Czech Technical University), Karlovo nám. 13, 12135 Praha 2. Czechoslovakia.

