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SOME GENERAL PROPERTIES OF ELLIPTICALLY 
SYMMETRIC AND SOME RELATED 
RANDOM PROCESSES 

OLDRICH KROPAC 

Elliptically symmetric random processes form a special class of generally non-Gaussian random 
processes the analytical properties of which are very similar to or in some important characteristics 
even identical with the corresponding properties of normal processes. Elliptically symmetric 
distributions may be generated by means of a joint normal distribution assuming for the standard 
deviation to be random variable with given distribution function. 

1. INTRODUCTION 

The first knowledge about random processes has been derived using some very 
limiting assumptions, viz that the processes are stationary and normal (Gaussian). 
Advanced problems of applied practice require, however, for processes which do 
not possess the above mentioned advantageous (from the analytical point of view) 
properties, to be accessible to analytical treatment in a similar way as it is with 
stationary and normal processes. In this paper, we shall be interested in processes 
which are non-Gaussian. 

Among the generally non-Gaussian random processes there is a special class of 
so-called elliptically symmetric processes the analytical properties of which are 
very similar to the properties of normal processes. Their denotation stems from the 
fact that the geometric loci of constant probability densities of the joint distribution 
describing such a process are concentrated ellipses [5]. It may be shown [1], [2] 
that an elliptically symmetric distribution may be generated by means of a joint 
normal distribution with the standard deviation being random variable with given 
distribution function. 
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2. GENERATION OF ELLIPTICALLY SYMMETRIC 
RANDOM VARIABLES 

First, we shall derive some properties of two jointly distributed random variables 
XUX2. Without detriment of generality we may assume for the primary normal 
distribution to have zero expected values of both components, i.e. Ex, = Ex2 = 0. 
Thus, we write 

(1) f12(xux2) ^. (Ina.a.Y1 (\ - Q2)-"2 . 

• exp [ -1 (1 - g2)-1 (x\\a\ - 2ex1x2/(<r1<x2) + x2
2ja

2
2)] 

where au a2 will be considered to be particular realizations of continuous, mutually 
independent random variables Iu S2 having probability densities g^a^, g2(a2), 
respectively. When Su I2 take particular values au a2, then f12(xu x2 | au a2) is 
to be considered to be conditional with respect to au a2. Assuming random changes 
of Su I2 according to gx(at), g2(a2) we are interested in the unconditioned probability 
density f12(xu x2) given by the relation for the total probability density 

(2) ji*2 (xu x2) = J \ f12(xu x2 | tr., a2) g^a,) g2(a2) da, da2 . 

The joint probability density f12(xu x2) provided the primary conditional distribu
tion is normal according to equation (1) may thus be expressed as follows: 

(3) ftz(*» x2) = J " £ (Ina^Y1 (1 - Q2)~ -!- . 

. exp [ - i ( l - Q2)'1 (x\ja\ - 2ex1x2j(a1a2) + x2
2ja

2
2)~\ g^a,) g2(a2) dat da2 . 

First, we shall prove the general properties of the marginal distributions of com
ponents XXX2. According to the definition 

f*(xi) = J°° fUxu x2) dx2. 

After inserting for f12(xu x2) from (3) and interchanging the order of integration 

ji*(*i) = | I ji2(*i, x2 | au a2) dx21 g,(at) g2(a2) da1 da2 = 

= J V ) _ 1 / 2 "I"1 exP l-Hxil^i)2] 9i(°i) dffi J / - K ) d^2 

where of the marginal probability density f*(xt) of the component X* may be 
deduced to be 

(4) ft(x1)=\yi(x1\cJ1)g1(a1)da1 

and a similar expression holds forj*(x2). 
The same result may be obtained when assuming for Iu I2 to be correlated. 
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3. MOMENTS OF ELLIPTICALLY SYMMETRIC VARIABLES 
AND PROCESSES 

Now, we shall derive the moments of the marginal distribution j*(xi) and for the 
sake of brevity the indices 1 will be omitted. According to the assumption Ex = 0 
the centred moments are by definition 

'"-£/ f*(x)dx 

and after inserting for j*(x) from (4) and interchanging the order of integration we 
have 

' í p (2*)- l '2 a" V exp [ - 2 ( * M 2 ] dx j g(a) da . 

The expression in braces is the r-th central moment of the normal distribution. Its 
odd moments are zero and even moments are equal to (2k — 1)!! a2k where 2k = r 
and (2/c — 1)!! = 1 . 3 (2k - l). Thus, we obtain for the marginal moments 
of an elliptically symmetric distribution 

NR"> 

(5) n$(U+i)=0, 

fi*x
(2k> = (2k - 1)!! P V ' g(a) da = (2k - 1)!! m<2,[>. 

Consider again the joint probability density according to (3) but with e = 0. 
Then 

(6) / u ( * i . Xl) = / l2(X l ' X2 I ffi, ff2) 0i(ffi) 52(ff2) d<Ti d(T2 = 

/ i (^ i I ffi) J7i(ffi) dffj / t (x 2 | (Fj) fi(2(cr2) dcr2 = ft(xi)f*(x2) 

i.e. the components X*, X* are statistically independent. 

We shall further consider the joint probability density f*2(xu x2) of a stationary 
random process X*(t). Then in equation (3) we put ax = a2 = a with the probability 
density g(a). The mixed moment ^* (1 ,1) will then be expressed following the definition 

"*a, i )=r rxi*a/?a(xi'x2) dxi dx2 
yielding gradually 

(7) ^*0,° = J r j J " f ^2j12(xi^2|'r)dx1dx2Ja(<T)dcr = em^ = eD:. 

It follows from (7) that the correlation coefficient g of the conditional normal process 
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has the same meaning for any arbitrary elliptically symmetric random process derived 
from the primary conditional normal process. 

It may be shown in a similar way that the remaining mixed moments ^*<r,s> are 
zero for r + s odd, and for r + s even they may be expressed in the form 

£<'.-) = i,^\o) P V + ' S g(a) da = W\Q) m<r+S) 

where \J/X
r,s)(g) is written for a particular function of Q depending on (r, s). 

4. PROPERTIES OF THE ENVELOPE AND THE PHASE 

For some engineering applications it is advantageous to express the normal 
stationary process X(t) in the form 

X(t) = A(t) cos [co0t + 0(t)] 

where A(t) and 0(f) are mutually independent stationary random processes having 
the meaning of the envelope and the phase, respectively, of the process X(t). Further 
properties of A(f) and 0(f) will be derived as follows: In order to be able to express 
A(f) and 0(f) uniquely it is necessary to define another appropriate function using 
them. It is useful to introduce a process Y(f) = A(f) sin [a>0t + 0(f)] uncorrected 
for a fixed f with Z(f). In this way, a transformation of the [X(t), Y(t)] vector process 
given in Cartesian coordinates should be realized into the vector process [A(f), 0(f)] 
given in polar coordinates. The equivalence of probability elements expressed in 
both systems, i.e. 

fxy(x, y) dx dy = fa!>(a, 3) da dS 

may be expressed, for X(t), Y(t) normal, with the same correlation coefficients and 
uncorrelated in the same time instant, in the form [8] 

(8) (27c)-1 a~2 exp [-\a~2(x2 + y2)] dx dy = 

= aa'2 exp [-^(aja)2] da(2n)-1 dS . 

This relation expresses the known fact that the envelope and the phase of a normal 
stationary random process are mutually independent, the distribution of the envelope 
follows the Rayleigh law and the distribution of the phase is uniform over <0, 2TC). 
Multiplying both sides of (8) by g(a) and integrating over a we obtain 

(9) ["(-n)"'1 a~2 exp [-^a~2(x2 + y2)] g(a) da dx dy = 

aa~2 exp [- i(a/ff)2] g(a) da da^rc ) - 1 d9 
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which may be considered to express the equivalence for the probability elements for 
the elliptically symmetric process X*(t); i.e. 

(10) j*(x, y) dx dy = / „ » da j*(9) d9 . 

Comparing (9) and (10) we may state that for an elliptically symmetric random 
process generated by means of g(a), it holds that the envelope and the phase are 
mutually independent, the distribution of the phase is uniform over <0, 2n) and the 
distribution of the envelope is given as follows 

(11) j» = j'ac' 2 exp [-\(ala)2] g(a) da . 

5. CHARACTERISTICS OF LEVEL CROSSINGS 

For solving strength and reliability problems where loading or environmental 
processes are of random nature the characteristics connected with the level crossing 
problem are of fundamental importance. For solving such problems it is necessary 
to know the joint distribution of the random process X(t) and of its first derivative 
X(t) defined on the basis of mean-square convergence. In may be easy verified [7] 
that processes X(t), X(t) are uncorrelated at the same time instant. For a normal 
process we thus express the joint probability density of (X, X) in the form 

fjpc, x) = (2n)~^2 a ; 1 exp [-\(xjaxf] (2n)-^2 crj1 exp [-*{*M.Y] . 

The standard deviation ax is assumed to be known. In order to express ax the correla
tion coefficient QX(T) of X(t) must be known, or better, the Fourier transform of it, 
i.e. the spectral density of unit power Sx(co) with the property J^ Sx(co) dco = 1. 
Then a2 may be expressed as 

(12) a2 = a2
x T c o 2 S°x(co) dco = a2co2

2 

where co\ = j " co2 Sx(co) dco must be finite which is the necessary and sufficient 
condition for the existence of X(t). 

The joint probability density of normally distributed (X, X) may thus be expressed 
as follows 

(13) fxx(x, x) = ( 2 K C T > 2 ) - 1 exp [-i<r;2(x2 + ( * K ) 2 ) ] • 

Consider now for ax to be random with probability density g(ax). Then multiplying 
(13) by g(ax) and integrating over ax we get the joint probability distribution function 
of an elliptically symmetric process X*(t) and of its first derivative X*(t) in the form 

j£(x, x) = r(2na2
xco2)-

1 exp \_-^a;2(x2 + (x/co2)
2)] g(ax)dax . 
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Integrating over x we obtain the probability density function of X*(t) 

(14) j*(x) = j o ° W 1 / 2 M a ) ' 1 exp [ - i ( x / K » 2 ) ) 2 ] g(ax) dax 

which is of the same type as has X*(t), see equation (4), from which it may be deduced 
by a simple substitution x -* xjm2, i.e. when j*(x) is known, then f*(x) = 
= coj1 f*(x\(D2). 

The number of crossings in a unit time interval of the level C (with positive slope) 
by the process X(t) is given by the relation [7] 

Nc=\ xfxx(C,x)àx. 

For a normal process it may be easy derived [7], [9] that the number of zero cros
sings (C = 0) of a centred process is 

N0 = p i t ) " l ajax = a>a/(2)t).. 

For an eliptically symmetric process generated by means of g(ax) we obtain after 
a detailed specification 

(15) N0 = f°(27i)-1/2 ax' px(27r)-1 / 2 foc^)"1 exp [-$x2(ax(o2y
2] dx . 

= (2n)~"2 ax(o2 

. g(ax) dax = (oJ(2%) 

i.e. the number of zero crossings is not dependent on the probability density g(ax) 
generating the elliptically symmetric random process and is the same as for the normal 
process. In a similar way the number of maxima of the process X(t) in a unit time 
interval may be expressed as the number of zero crossings (with negative slope) of 
the process X(t), thus 

(16) NE = mJ(2n(o2) 

where a>l = J^ a>4 S°((o) da> < 00. 

It is useful to introduce the ratio 

(17) v = N0JNE = m
2J(o4 = < />[S»] 

having the meaning of a numerical characteristics of the structural complexity of the 
process deduced from its power spectral density S(o>). The parameter v is of great 
importance for expressing distribution functions of extremes, amplitudes and 
instantaneous mean values which are necessary for strength and reliability calculations 
of structural and machine components loaded by random environmental processes. 
It follows from the presented deduction that the parameter v does not depend on the 
form of g(ax) and is identical with that for the primary normal process. 
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For the characterization of random loading processes a further parameter has 
been introduced as a result of a rather empirical approach, viz the correlation co
efficient rMm between the maximum and the next minimum of the random process 
X(t). It may be easy shown [3] that for a normal process this parameter may be 
expressed as 

(18) rMm = QX(T = (2N,)-1) = e„(7ta>2K) 

where QX(T) is again the correlation coefficient of the process X(t). However, we have 
shown that the correlation coefficient QX(T) of the normal process X(t) remains 
unchanged to be also correlation coefficient for all elliptically symmetric processes 
X*(t) derived from X(t). The same holds for NE. Thus the relation (18) holds also for 
all types of elliptically symmetric random processes. 

Summing up, the parameters v and rMm of an elliptically symmetric random process 
are independent on the particular form of the distribution function. The relations 
between v and rMm deduced in detail for a normal process in [3] may thus be used 
for all elliptically symmetric random processes, as well. 

6. DISTRIBUTIONS OF EXTREMES AND SOME 
ADJOINT VARIABLES 

For the strength and reliability calculations the characteristics of local extremes of 
the random process are very important. For the probability density of maxima XM 

of a normal stationary process the following expression has been deduced [7], [9] 

(19) fM(xM) = (1 - v2)1 '2 (2n)~^ a;1 exp [ - . ( 1 - v2)""1 (xMjaxf] + 

+ vxMa;2 exp [~\(xMjaxf] <P[v(\ - v 2 ) ^ 2 (xMjax)] 

with the parameter v according to (17) where $(z) is the error integral 4>(z) = 
= ^x(2nf1'2cxp(-it2)dt. 

For an elliptically symmetric random process generated by means of g(ox) 

(20) fM(xM) = [JM(XM I <r„) g(cx) dax . 

The evaluation of this expression leads to complex transcendental functions even for 
simple forms of g(ax). Thus, we shall consider only the both limit cases, viz for v = 0 
and v = 1. 

The case v = 1 occurs very frequently describing the so-called narrow-band random 
vibrating processes which have their power expressed by the dispersion D. con
centrated into a small frequency band around OJ0. Then in the expression (19) the 
first term vanishes so that 

(21) f*(xM, v = 1) = \\Ma;2 exp [-\(xMjaxf] g(ax) dax , x M _ 0 . 
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This means that the distribution of maxima of a narrow-band random process (being 
by its nature a point process) is identical with the distribution of the continuous 
envelope process (compare with equation (11)). 

In the second limit case, v = 0, the second term in (19) vanishes and 

(22) f*u(xM, v - 0) = fon)-1'2 a;1 expl-$(xMl<Tx)
2]g(ox)dox 

i.e. the distribution of maxima as a point process is identical with that of the con
tinuous process X*(t). Let us state on this occasion that a process with v = 0 may 
be imagined as a low-frequency random process modulated with a high-frequency 
low-power random process. It must be explicitly mentioned that the value v = 0 
does not characterize the so-called broad-band processes with the power spectral 
density being nearly constant over a given frequency interval (frequency limited 
white noise). 

For calculations for fatigue life two further quantities derived from the extremes 
of the random process X(t) has been proved to be important, viz the instantaneous 
mean value Xs, as the arithmetic mean of the maximum and next minimum, i.e. 

(23) Xs = \(XM + Xm) 

and the amplitude XR being the half of the difference between the maximum and next 
minimum 

(24) XR = l(XM - Xm). 

For the calculation of the joint probability density fSR(xs, xR) it is formally possible 
to write the transformation using the joint probability density fMm(xM, xm) but even 
when considering normal distribution of X(t) very complicated hypergeometric 
functions appear in the course of evaluation which could be hardly usable in current 
technical practice. Therefore, some approximate relations have been proposed for 
js(xs) and fR(xR) from the requirement that for the limit values v = 0 and v = 1 
the approximate expressions should coincide with the analytically precise forms and 
in the intermediate region of v the relation between v and rMm which has been deduced 
analytically should be approximately maintained [3]. 

For Xs the approximation using the normal distribution 

(25) js(xs) = [ > ( 1 - V2)]"1 '2 a;1 exp [ - i ( l - v2)~ > (x s /<) 2 ] 

has proved to be suitable and for XR the approximation using the Weibull distribution 
has been found adequate 

(26) fR(xR) = (v2 + 1) (7(2) v < T - (xRIU(2) vax)f . 

.e^[-(xRIU(2)vax)r^] 
which for v = 1 turns into the Rayleigh one in correspondence with the other charac
teristics of this process. 
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For an analytical description of mentioned quantities for elliptically symmetric 
random processes the relations expressioning the unconditioned probability densities 
with considering the random character of the standard deviation ax may be written, 
i.e. particularly 

(27) 

(28) 

fsfo) =Гfs(xs\тx)g(ax)dax, 

fî(xR) = fR(xR Ox) в(<*x) d ( T * 

The evaluation of f*(xs) is identical with the evaluation of f*(x) or of f*2(xu x2) 
of the process X*(t) but the evaluation of fR(xR) is much more complicated but for 
some simple forms of g(ax) it is also realizable in an analytically closed form. 

A survey of some elliptically symmetric random processes the probability density 
functions of which may be easy described using rather elementary analytical tools is 
given in [2]. A concise review of this survey is reproduced in Table 1. The function 

Pearson VII 

Pearson 

b2krM/2), 2..,•.„..-
liriki ( x t b ) 

b>0,k>0,Xe(-oo,oo) 

Г(kł1) ,,2 2,k-1/2 
WЬЧ{MI2УÜ'X' 

b>0,k>0,xe<-b,b> 

^ ( R ^ b 2 ) ^ - 1 

RžO 

íь*7(b2-R 

Re<0,b> 

гkЃW+b2)^1 

a ä O 

2k „,i,2 „2ţk-1 
ţ^a(b-a) 

ae<0,b> 

Table 1. Some families of elliptically symmetric random processes X(t) 

f±(x) — marginal probability density of the process X(t) 

f12(R, (?) — joint probability density of the process X(t) 

R=(x\ + x\- 2QXVX2)
U2 (1 - e 2 r U Z 

fa(a) — marginal probability density of the adjoint envelope process 

A(t)= [X2(t)+(X(t)/co0)
2]112 

Kk(x) — modified Bessel function of the second kind (MacDonald function) of the k-th order 

Kk(x) entering in the generalized Laplace distribution is the modified Bessel function 
of the second kind (also called MacDonald function) [4]. 
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7. SOME RELATED PROCESSES 

In practical applications, random processes often occur the distribution functions 
of which are distinctly non-symmetric. One posible way, how to introduce such a dis
tribution consists in using a suitable nonlinear transformation applied to normal 
distribution. Nevertheless, we must have in mind that some of the advantageous 
properties of the elliptically symmetric distributions will be lost. 

Consider one of the most simple transformation, viz U(t) = \X(t)\ where X(t) is 
JV(0, a2). Thus the process U(t) will be described within the frame of the correlation 
theory by means of probability density functions 

(29) / . («) = (2jn)-'2 a'' exp [ - i («K> 2 ] , « S. 0 , 

(30) fl2(ul,u2) = (2jn)a-2(\-Q
2)-^. 

• exp [ - i ( l - Q2)"1 o-2(u\ - 2QUXU2 + u2
2)] , «i . «2 = 0 , 

where a has the meaning of the scale parameter, 

Q has the meaning of the parameter of correlation coupling. 

General moments derived fromj^w) are as follows: 

m(D = E„ = (2/7t)1/2 a , 
m(2) = a2 , 
m„3) = (8/TC)1/2 a3 , 

m,<4) = 3<r2 . 

Thus, the variance D„ = er2(l — 2/JI) and the standard deviation au -= <r(l - 2jn)1/2, 
i.e. the scale parameter and the standard deviation do not coincide. 

The covariance function may be easy deduced using the Price's theorem [6] 
yielding 

(31) mu
ul) = Bu = (2a2/7t) [o arcsin Q + (1 - s?2)I/2] 

where of the correlation coefficient has the form 

(32) r = [2/(1. - 2)] [g arcsin e + (l - e
2 ) 1 / 2 - 1] . 

In a similar way as with the normal process, we shall consider for the scale para
meter to be random variable I with the probability density g(a). Then, for the proba
bility densities of the unconditioned process U*(t), similar expressions may be 
written as for those derived from the normal process X(t). 

For general moments, the following expressions are valid: 

(33) m„*(r) = ij/u
r) f °V g(a) da = ^(r)m<r) 

where t//„r) stands for some constants independent on a. From the general moments, 
using commonly known relations, centred moments or normalized invariants may 
be easy deduced. 
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The correlation coefficient of the unconditioned process U*(t) is the same as for 
the process U(;) and is independent on the form of the probability density g(a). 

In this way some non-symmetrical random processes which are closely related to 
the elliptically symmetric processes may be easy generated. For their analytical 
description Table 1 may be used considering the changed definition interval for u ^ 0 
and some minor changes of the normalizing constants in/1(w) and fl2(ut, u2) as it 
has been done for the one-sided Gaussian distribution in (29) and (30). It follows 
from the definition of the envelope (Chapter 3) that its distribution for the process 
U*(t) is the same as for the corresponding process X*(t). 

It holds generally that for any memoryless transformation the correlation coef
ficient of the resulting process depends only on the marginal distribution and the 
correlation coefficient of the primary process and the transformation considered. 
When introducing the randomly time-dependent scale parameter of thus transformed 
primary random process, arbitrary forms of marginal distributions may be generated 
without affecting the correlation coefficient of the conditional distribution. The 
expressions for the joint distributions will be generally possible only using functional 
series. The remaining characteristics considered in this paper will also have more 
involved properties than it has been deduced for elliptically symmetric distributions. 

8. CONCLUSIONS 

When concluding the knowledge derived in this paper we may state that elliptically 
symmetric random processes form a special but fairly comprehensive class of non-
Gaussian random processes the properties of which are very close to or in some 
characteristics important for engineering applications even identical with the cor
responding properties of normal random processes. When considering elliptically 
symmetric random processes as being generated by means of a conditional normal 
process the standard deviation of which is a random variable with given probability 
density, a very suitable analytical tool is defined for introducing not only marginal 
and joint distribution functions of an elliptically symmetric process but also some 
further characteristics important for engineering applications. 

The correlation coefficient for all types of elliptically symmetric random processes 
is identical with the correlation coeficient of the primary conditional normal process. 
An elliptically symmetric random process may be described by means of its envelope 
and its phase which are mutually statistically independent, the distribution of the 
phase being uniform over < 0, 2n) and the distribution of the envelope being defined 
by means of the conditional Rayleigh distribution and the same probability density 
function g(a) of the scale parameter as it is defined for the distribution of the state 
variable itself. 

For elliptically symmetric random processes of the narrow-band type the para
meter v of which approaches one, the distribution function of the envelope and the 
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distribution function of maxima coincide. Important characteristics of random proc
esses necessary for strength and reliability calculations as are the correlation coef
ficient of maximum and next minimum and the parameter of the structural complexity 
are defined only by means of the power spectral density of the process and are in
dependent on the distribution of the state variable. For expression of extreme values, 
instantaneous mean values and amplitudes, the same analytical procedure may be 
used as for the expression of the state variable distribution. 

In concluding this short presentation we may express the conviction that elliptical-
ly symmetric random processes form a special but considerably large class of non-
Gaussian processes which for their closeness to normal processes and their accessi
bility to required analytical operations are very suitable for a broad area of engineer
ing applications. 

(Received February 18, 1981.) 
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