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COMPUTATIONAL COMPLEXITY OF A STATISTICAL 
THEOREMHOOD TESTING PROCEDURE FOR 
PROPOSITIONAL CALCULUS WITH 
PSEUDO-RANDOM INPUTS 

IVAN KRAMOSIL 

In this paper we investigate a statistical verification procedure for propositional formulas 
under the condition that the corresponding random samples are simulated by deterministic 
chooses generated by a computer and by extremely long programs .The possibilities as well as 
.the limitations of such an approach are illustrated by several assertions which are proved and 
briefly discussed. Supposing that the notion of Turing machine is known to the reader, the paper 
is almost self-explanatory. 

1. A STATISTICAL THEOREMHOOD TESTING PROCEDURE 

FOR PROPOSITIONAL CALCULUS 

In this paper we shall study the computational complexity of a statistical verification 
procedure for propositinal calculus with pseudo-random inputs. The computational 
complexity of the corresponding pseudo-random number generator is taken as a part 
of the total complexity of the statistical verification procedure and this total complexity 
is compared with computational complexity of deterministic decision procedures 
for propositional calculus. 

Let us concern our attention to the classical propositional calculus formalized by 
the means of one of its usual formalizations. All the usual propositional connectives 
are supposed to be at our disposal, the propositional indeterminates are denoted 
by Pi, Pi, ••• 2Fn (&~n> resp.) denotes the set of all formulas (theorems, i.e. tautologies, 

resp). in which only the indeterminates p . . p2, ..., p„ may occur, & = [j 3Fn, ST = 

= 1J 3~n. Let Jf„ denote the set of all formulas of the form 

(1) A Va{J, a .yefp, , np»p2, -\p2, •••,jp», ~\p„} , 
i=u=i 
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~1 Pi is the negation of pt, indetermininates together with their negations are called 

literals. Set X = U &n> ^^n = $~ n -̂ "n- There is a well-known fact that for 
n = l 

each formula A e #"„ there exists B e X~n such that the equivalence A <-> B belongs 
to 9~„ (B is a conjunctive normal form for A). It is why we shall limit ourselves, in 
what follows, to X as the basic set of formulas. 

A pair {a„ «_,-} of literals is called complementary, if a ; is la_, or cij is l a ; . 
A finite sequence of literals is called closed, if it contains at least one complementary 
pair, in the opposite case it is called open. As can be easily seen, a formula of the 
form (l) from Jf„ is a theorem (i.e. a propositional tautology), iff all sequences 
<a ; i , ai2, ..., a,„>, i ^ 2", are closed. Hence, there is a simple deterministic verifica
tion procedure for formulas from X: to take rows in (1) considered as a matrix and 
to check, in each row, all pairs of literals until an open row is found. The maximal 
number of pairs which must be, eventually, tested for complementarity is 
n(n - 1) 2"" ' for formulas from r/fn, as can be easily seen. 

Because of the exponential complexity of this deterministic verification procedure 
we may try to apply the basic idea of the so called probabilistic algorithms - i.e. to 
reduce the computational complexity of the verification procedure by admitting the 
possibility of an error under the condition that the complexity savings are "significant"" 
and the probability of error is "acceptable", in a sense. Let (b\, b\, ...} be, for each 
k = 1, 2, ..., a sequence of mutually independent and equally distributed random 
variables defined on a probability space <0, Sf, P>, taking their values in the set of 
positive integers and such that 

(2) P({co : co E Q, b\(co) = /}) = 2~k, j = 1, 2, ..., 2k, i = 1 ,2 , . . . , 

k = 1 ,2 , . . . . 

For A e JT4 (A is supposed to be of the form (1)) and a given positive integer n0 

our statistical procedure runs as follows. 
We sample at random b\(co) and test the sequence (abik,a)1, a6ik(t0)2, •••, flf,,^),^ 

for closure. If it is open we proclaim A to be a non-theorem and finish the procedure. 
Clearly, this decision is always correct. In the opposite case we sample at random 
b2(co) and repeat the test and decision procedure for the bk

2(co)-ih disjunction in A 
and so on. If also the bk

no(co)-th disjunction is closed, we finish the procedure by 
proclaiming A to be a theorem. Of course, in this case the possibility of an error is 
not avoided. More precisely, denoting by S(A) the number of closed disjunctions in 
a formula A of the form (1) and setting, for A e X\, R(A) = S(A) . 2~k, we may 
easily show that with the probability (R(A))"° the formula A will be proclaimed for 
theorem. Hence, each theorem A will be always proclaimed to be theorem (as in 
this case S(A) = 2k and R(A) = 1), for non-theorems the expression (R(A))"° expres
ses the probability with which they may be wrongly proclaimed to be theorems. 
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2. PSEUDO-RANDOM SAMPLING 

Define, for A e X~„, a binary sequence w(A) = <w(j, A)>2"i such that w(j, A) = 1, 
if the 7-th disjunction in A is open, w(j, A) = 0 otherwise, set Ded (A) = 1 if A e &~ n 
n .>fn, Ded (A) = 0 otherwise and denote, for j = 0,1 by / r (j, w(A)) the relative 
frequency of / s in w(A) (hence, R(A) = fr (0, w(A)), 1 - R(A) = fr (1, w(A))). 
Clearly, 

(3) Ded (A) = 1 iff fr (1, w(A)) = 0 , 

Ded (A) = 0 iff fr (1, w(A)) > 0 . 

Hence, we have converted deducibility testing to the problem, whether the relative 
frequency of an event in a large set (sampling space) equals 0, or whether it is positive. 
This problem can be solved in the statistical sense and by statistical means and we 
have already suggested such a procedure. It is nothing else than the test of a simple 
hypothesis / r ( l , w(A)) = 0 again the composed alternative fr (1, w(A)) >. 2~". 
The well-known Neymann-Pearson theorem proves the decision rule introduced 
above to be rational in the sense that it minimizes the probability of error connected 
with this rule (only the trivial decision rules consisting in uniform acceptation or 
uniform refutation of the tested formulas without any more detailed investigation 
may compete with the introduced non-trivial rule). 

Let uk = (u(j, k))k
j=1 e {0, if, u(j, k) = 1 for j = ij g i2 £ ... g im, u(j, k) = 

= 0 otherwise. Define, for A e Jf„, k = 2", 

(4) w(A) * u2" = (,w(iu A), w(i2, A), ..., w(im, A)> , 

(5) g(A,u2") = X[0](fr(l,w(A)*u2")), 

where X{0) is the characteristic function of the singleton {0). Hence, g is a primitively 
recursive function of two arguments A (the Godelian number of A, more precisely), 
and u2" such that 

(6) g(A, u2") = 1 , iff fr (1, w(A) * u2") = m~1 f w(ip A) = 0 , 
/ = i 

g(A, u2") = 0 , iff fr (1, w(A) * u2") > 0 . 

If u2" is considered as a random number generator which samples statistically 
independently and with the same probability 2"" numbers from {l, 2, ..., 2"}, 
then the computation of w(A) * u2" can be taken as the verification of closedness 
for disjunctions with indices iu i2, • •., im and the function g can be seen as a for
malization of the statistical theoremhood testing procedure as explained above. 

Definition 1. A sequence u2" = (u(j, 2")>21 x e {0, l} 2 " is called adequate with 
respect to (the decision problem on the theoremhood of) a formula A e Jf„, if 

(7) ("I Ded (A)) =* (3; rg 2") (w(j, A) = u(j, 2") = 1). 
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Hence, for A e &~ n Xn, each M2" 6 {0, l} 2 " is adequate. Denote by s£(A) the set 
of all sequences from {0, l} 2 " adequate for a given A e Jf „. 

Theorem 1. For each A e Jf„ 

(8) (M2" £ ^(A)) => (g(A, u2") = Ded (A)) . 

Proof. If A e &~ n j f „ then each disjunction in A is closed and w(j, A) = 0, 
j ^ 2". So, for each M2" e {0, l} 2" , either w(A) * M2" = A (the empty sequence, when 
u2" e {0}2"), or w(A) * M2" contains only zeros, hence, fr (l, w(A) * u2") = 0 and 
g(A, u2") = 1 = Ded (A). If A e J f „ - ST, and if u2" e sd(A), then there is j 0 g 2" 
such that w(y'0, A) = M(/0, 2") = 1, so w(./0, A) occurs in w(A) * M2". However, then 
fr (1, w(A) * M2") > 2"" > 0, so g(A, u2") - 0 = Ded (A). • 

For an adequate M2", the number of pairs of literals which will be, eventually, 
2" 

tested for complementarity, can be majorized by \n(n — 1). (£ «(j, 2")). It is why 
J = I 

we would like to construct a two-input Turing machine with one input giving A in 
the form (l) and the other (oracle) giving an adequate M2" with a small number of 
units. Let us characterize, at least partially, the adequate sequences in terms of 
their algorithmic complexity. 

3. ALGORITHMIC COMPLEXITY OF PSEUDO-RANDOM INPUTS 

Definition 2. Let U be a universal Turing machine (UTM), let p, S, u be finite 

binary sequences, i.e. p, S, u e {0, 1}* = \J {0, 1}", {0, l}° = {A}. The size of a p e 
n = 0 

e {0, 1}* is defined by the length l(p), so l(p) = n iff p e {0, 1}". UTM U computes 
(or yields) u using (the program )p under the condition S when, having inscribed the 
ordered pair <p, s> on the input tape and having settled U into the initial state, U 
eventually finishes its work giving u as output, in symbols, U(p, s) = u. The con
ditional algorithmic complexity of u under the condition S and with respect to U, 
Kv(u | S), in symbols, is defined by 

(9) Kv(u | S) = min {/ : / e N, I = l(p), U(p, S) = u} . 

When S = A we write Kv(u) instead of Kv(u | A) and omit the adjective "con
ditional". 

In order to resume our notation: we use the term input size for tested formulas 
and define it by the length of disjunctions in (1), i.e. by the number of different 
indeterminates in the tested formula, so the size of formulas from X„ is n. The term 
program size denotes the lengths of binary sequences used as programs. Algorithmic 
complexity of a sequence is given by the program size of the shortest program 
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generating this sequence and computational complexity is given by the number of 
steps in a computation. 

Clearly, as u e {0, l }* can be generated by a program consisting of u and an in
struction of length cv, independent of M, which orders to rewrite u on the output tape 
without any changes, then for each u, S e {0, 1}* 

(10) Kv(u | S) £ l(u) + cv . 

Theorem 2. There exists a natural number c1 = Cj(U), independent of n and such 
that, for each formula A e jf„ and each M2" e {0, l}2", 

(11) (Kv(u
2" | w(A)) H S(A) + c,) => (u2" e tf(A)) 

(let us recall that S(A) denotes the number of closed disjunctions in A). 

Proof. For A e ST n Jf„ we have $$(A) = {0, l} 2 " and the assertion is trivial. 
If A e Jf „ - ST, then S(A) < 2", hence, there are 2" - S(A) > 0 units in w(A). 
Each non-adequate M2" must have zeros on the places of units in w(A), so each 
non-adequate M2" = (u(j, 2"))jl1 can be obtained from w(A) and some binary 
sequence vS{A) = (v(j, S(A)))S(A) in this way: u(j, 2") = 0 if w(j, A) = 1, u(j, 2") = 
= v(k, S(A)), if j is the k-ih integer, in the increasing order, for which w(j, A) = 0. 
Each vS{A) can be generated by a program shorter than S(A) + cv, let c2(U) denote 
the length of the program taking w(A) and vS{A) into u2" and described verbally above, 
c2(U) does not depend on A. Hence, for each non-adequate M2", KV(U2" | w(A)) < 
< S(A) + cv + c2(U), taking cl = cv + c2(U) we obtain that the reverse inequality 
Kv(u

2" | w(A)) ^ S(A) + cx assures the adequacy of M2". D 

We shall always suppose that cv, c., c2 and similar constants, originally con
nected with existential quantifiers, are fixed by the minimal values satisfying the 
corresponding existential assertions. Moreover, the lower bound S(A) + cx in ( l l ) 
can be shown to be the minimal possible in order to assure the adequacy of u2", at 
least for A e Jf „ - 3~. In fact, take a ^ S(A) + c2(U) - 1, then there is a non-
adequate sequence M2" with Kv(u

2" | w(A)) > a. Or, there are S(A) closed disjunctions 
in A, so there are just 2S(X) non-adequate sequences of the length 2", each of them cor
responding to just one sequence from {0, l)S{A). Programs generating these sequences 
are also finite binary sequences, hence, there is at. most one program of the length 0 
(i.e. A), at most two programs of the length 1, etc., and at most 2" programs of the 

length a. Summarizing, there are at most ]?2J = 2°+ 1 - 1 < 2S{A) + C2{U) programs 
J' = 0 

with the lengths not exceeding a, hence, there exists vf,{A) which cannot be generated 
by such a program. As c2(U) is the minimal length of a program converting vl{A) 

into a non-adequate sequence, the non-adequate sequence corresponding to vS{A) 

cannot be generated by a program shorter than a + 1. The constant cv can be, in 
particular cases, zero, e.g. when the input and output tapes of the IJTM U are identi-
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cal and so giving an input with no further instructions is nothing else than giving the 
output as well. 

Theoretically, Theorem 2 can be used in order to compute the function Ded, as 

(12) (Kv(u
2" | w(A)) _ S(A) + Cl) => (g(A, u2") = Ded (A)). 

However, from the practical point of view this way is useless, as it requires to know 
w(A) and to submit it to a transformation, on the other hand, the knowledge of w(A) 
already solves the deducibility (theoremhood) problem for A. It is why we shall try 
to define stf(A), at least partially, in the terms of unconditional algorithmic complexity 
Kv(u

2"). 

Definition 3. Let t, m, m > t be integers, m > 0, a sequence um e {0, l}m is called 
t-random, if Kv(u

m) > m — t. 
Clearly, no r-random sequence exists for ( _ —cv. Let us define, for A e Jf„, 

the adequacy coefficient Q(A, t): 

. , , f) _ card ({u:ue s/(A), Kv(u) > 2" - r}) 
V ' X ' ' card({u:ue {0, l}2", Kv(u) > 2" - (}) ' 

Theorem 3. For each A e X„ and each t > 1, 

(14) Q(A, t) > 1 - (2c '( t / ) + 1 . 2S<A>. 2-(2">) . 

Proof. Theorem 2 yields 

. > card ({u2" : Kv(u
2" \ w(Aj) Sg S(A) + c_ X,(«2") > 2" - .}) 

1 ' ; ~ c a r d ( { M
2 " : X ! ; ( U

2 " ) > 2 " - ( } ) 

> card ({"** : ^ ( " 2 " ) > 2" - f}) ~ Cflr<l (("2" : X^("2" I w(^0) < S(A) + c i } ) _ 
card ({u2" : Kv(u

2") > 2" - (}) 

- i _ Cflrd (("2": K^ 2" 1 w(^)) _ g_D + c»}) 
card ({M2" : ̂ (w 2 " ) > 2" - *}) 

There are at most 2S{A)+Ct - 1 sequences with Kv(u
2" | w(A)) < S(A) + c1 and there 

are at least 22" - 22"~ , + 1 - 1 sequences u2" with Kv(u
2") > 2" - t (cf. the argu

mentation preceeding this theorem). Hence, 
9 S U ) + ci _ i Vi ~,S(A) 

(15) Q(A, t)>l- - ^ — , — > 1 - , / , 
V ^ V ; ~ 2 2 " - 2 2 " - ' + 1 - 1 2 2 " ( l - 2 - ' - 1 ) 

so t > 1 implies e(A, t) > 1 - 2C' + 1+S(^ )" (2" ) . • 

The value of this adequacy coefficient depends on A through the number S(A) 
of closed disjunction in A, but "in average" Q(A, t) tends to 1 very quickly, in the 
super-exponential order. E.g., if S(A) = \ 2" — 2"~~1, i.e. if just one half of disjunc
tions in A are closed, then Q(A, t) > 1 - 2Cl + 1 . (i)2"~\ as can be derived from (14) 
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by an easy substitution and calculation. In order to consider the adequacy coef
ficients Q(A, t) in a more global sense, i.e. with respect to all the class c%'„ of formulas 
and not only with respect to particular formulas we may suppose that the tested 
formula A is sampled from JT„by a random mechanism (here we take into con
sideration the physical randomness, not the randomness defined by algorithmic 
complexity). Let <£2, SP, P> be a probability space, let <a",->, i = 1, . . . , 2", j = 
= 1, ..., n, n = 1, ... be a system of random variables defined on <£2, Sf, P> and 
taking their values in the set {pu Ip^Pz, "~lp2> •••>£»> ~^Pn} °f literals. Hence, 
denoting this system of random variables by a", we may take a" as a random variable 
defined on (Q, Sf, P> and taking its values in the set JT„ of formulas. For the sake of 
simplicity we shall suppose that 

(16) the random vectors <a*., ..., a"„>, (a"jx,..., a"„> are statistically independent 
for each n and each ;', j ^ 2", i 4= j . 

(17) P({a>:a>eQ, (ocn
n(a>), an

2(a>), ..., a"„(tu)> is closed}) = p£>(n) for each n and 
each i :§ 2". 

Theorem 4. Consider the random variable a defined above and suppose that a 
satisfies (16) and (17). Then the expected value E(e(a

n(-), t)) of the random variable 
e(an(-), t) satisfies, for t > 1, 

(18) E(e(a
n(-),t))>l-T' + 1((l + pb(n))l2r. 

Proof. The assumptions imposed on a" yield that the number S(an(a>)) of closed 
disjunctions in an(a>) can be seen to be a random variable which is governed by the 
binomic distributions with parameters pb(n) and 2", i.e. 

(19) P({a> :coeQ, %"(») ) = k}) = ( f ) (pb(n)f (1 - pb(n)f^ , 

and an easy calculation gives, using (14) 

E(e(a"(-), t)) Z2i ( J ) (pb(n)f (1 - pb(nT-J (l - 2« + 1 . V . 2~^) = 

= 1 - 2- + 1 . 2-<2">(Jo 0 " ) (pb(n)f . (1 - pb(n)r-i . 2>) = 

= 1 - 2" + 1 • 2 - ^ ( J 0" ) (2 pb(n)y (1 - pb(n)f"-^ = 

= 1 - 2 C 1 + 1 . 2-(2">(l + Pb(n)f = 1 - 2C, + 1((1 + pb(n)j2f". Q 

Theorem 5. For A e X„, the computational complexity of the function g(A, u2") 
(defined by (5) and (6)) connected with a pseudo-random generator of M-andom 
sequences (t > 0) of the length 2" is of the class at least &(n2 . 2"), i.e. the same as 
for the deterministic computation of the function Ded based on the sequence w(A). 
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Proof. The length of each program generating a (-random sequence um must be, 

by the definition, at least m — t + 1. All the program must be used and read (in the 

opposite case a shorther program would generate um as well, but this contradicts the 

(-randomness of «'"), so at least m — t + 1-times the operation of reading from the 

input tape must be applied. If one such application takes K units of computational 

complexity, then we need at least K(m — t + 1) = &(m) for all the program. More

over, there is no function f(m) of the class o(m) such that ~~ u(i, m) < f(m) for 
; = i 

/-random sequences um. If such an f(m) existed, it would be able to define (-random 
sequences by a program of the length f(m). (log2 m + l) + const, which is of the 
class o(m); such a hypothetic program would consist in a binary coding of all those 
at most f(m) values j g m, for which u(j, m) = 1 and each such code requests 
log2 m + 1 binary digits. Hence, for m = 2", the number of disjunctions in A e jf„ 
which must be, eventually, tested for closure using a (-random u2" is of the class 
0(2"). Checking a disjunction from A for closure, we have to compare, in the worst 
case, in(n - 1), i.e. &(n2) pairs of literals for complementarity. Summarizing, the 
computational complexity of the function g(A, u2") is of the class 0(n2 . 2"). • 

4. COMMENTS AND CONCLUSIVE REMARKS 

The statistical theoremhood testing procedure as explained in Chapter 1 is a proba
bilistic algorithm with random input (cf. the classification of probabilistic algorithms 
in [4]). Let us remark that an assertion similar to Theorem 5 will be valid even when 
we re-formulate our algorithm as an algorithm with random steps. In fact, let A e •#"„, 
let pA, 0 < pA < 1, be given and let us realize, for each j ^ 2", statistically in
dependently, an experiment whose probability of success is just pA. When the experi
ment is successful for a j £ n , we verify the y'-th disjuntion in A for closure. The 
algorithm terminates in three cases: when an open disjunction is found in A (in this 
case A is ultimately a non-theorem), when the experiment for j = 2" was not suc
cessful or when the 2"-th disjunction in A was closed (in both the last cases we proclaim 
A to be a theorem). The probability of error of this modified algorithm is majorized 
by (1 - pA)2"~S(A) as for at least all the open disjunctions in A the auxiliary experi
ment must fail in order to come to the error, and the mean value of the corresponding 
computational algorithm is of the class &(2". pA . n2). Hence, the same arguments 
as those used in the proof of Theorem 5 show that if we use (-random sequences u2" 
as simulations for the random sampling of steps in our modified algorithm, it is not 
possible to take pA = pA(n) of the class &(n), hence, &(2". pA . n2) is identical with 
0(2". n2) and the situation is similar to the case of algorithm with random input. 

Hence, if we take (-random sequences as the only acceptable source of randomness 
in our statistical theoremhood testing algorithm and if we try to generate these 
sequences by a computer, the result of Theorem 5 is rather pesimistic. Our decision 
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to consider just /-random sequences was motivated by the following fact. There 
exists a rather developed theory of pseudo-random numbers which suggest various 
tests for answering the question whether a binary sequence (generated by a computer, 
say) is random or not. As can be shown (cf., e.g. [ l ] , [2], [3]) all the existing as well 
as the hypothetical tests of randomness can be joined into a universal test of random
ness. And there exists a rather high coincidence between f-random sequences and 
those sequences (of the same length) which satisfy the universal test. More precisely, 
for each fixed t > 1 and m -» oo the relative frequency of 7-random u""s among those 
u""s which satisfy the universal test tends to 1 and vice versa. 

Using the same way of reasoning as in the proof of Theorem 5 we can see that 
random samples of a limited extend m from a sampling space of cardinality n §> m 
can be simulated by f-random sequences of the length m(Int (log2 n) + l) even if 
those sequences do not correspond to /-random sequences of the length n. This fact 
leads to the idea that the demand of "universal randomness" is too strong for the 
inputs simulating the random sample in our statistical theoremhood testing proce
dure or in other probabilistic algorithm. In other words, considering a random 
number generator satisfying not the universal, but only a weaker test of randomness 
we may obtain satisfactory results in the sense that the probability of error is kept 
below an appropriate treshold value and the computational complexity is qualitati
vely lower than for deterministic algorithms. The notion of a "relative randomness" 
seems to be an interesting subject for further studies. 

(Received March 25, 1981.) 

REFERENCES 

[1] G. J. Chaitin: Information-theoretic limitations of formal systems. J. Assoc. Comput. Mach. 
21 (1974), 3, 403-424. 

[2] T. L. Fine: Theories of Probability (An Examination of Foundations). Academic Press, 
New York—London 1973. 

[3] C. P. Schnorr: Zufálligkeit und Wahrscheinlichkeit (Lecture Notes in Math. 218). Springer-
Verlag, Berlin —New York 1971. 

[4] J. Wiedermann: Pravděpodobnostně algoritmy (Probabilistic algorithms — in Slovak). 
Informačně systémy 3 (198.0), 245-257. 

RNDr. Ivan Kramosil, CSc, Ústav teorie informace a automatizace ČSAV {Institute of Informa
tion Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou věží 4, 
182 08 Praha 8. Czechoslovakia. 

367 


