
KYBERNETIKA - VOLUME 17 (1981), NUMBER 3

CHARACTERIZATIONS OF STACK UNIFORM
STRICT DETERMINISTIC LANGUAGES*

Three new characterizations for the class of languages accepted with empty store by a stack
uniform deterministic pushdown automaton are presented. This class is shown to coincide with
the classes of languages generated by length uniform grammars and length uniform strict deter
ministic grammars respectively. The result is then used for proving the interesting fact that the
power of nondeterministic stack uniform automata is the same, i.e. all the four devices mentioned
above possess the same capability of defining languages.

1. INTRODUCTION

Among many other problems related to the theory of deterministic context-free
languages there appeared two of particular significance, namely, the problems of
deciding whether two given languages are equal and whether a language forms
a subset of another one. They are often referred to as the equivalence and the inclusion
problem, respectively. Recent investigations in this field have focused their attention
on the family of languages accepted in real time with empty store by a deterministic
pushdown automaton.

The equivalence problem for this class, having represented one of the well known
open problems for a long time, has been recently solved by Oyamaguchi et al. [9].
As far as the inclusion problem is concerned, two subsets of the real time family have
been found, each of them possessing quite different properties. Friedman [2] has
shown that this problem is undecidable for simple deterministic languages (cf.
Korenjak and Hopcroft [6]). On the other hand, the inclusion problem is decidable
for the class of stack uniform strict deterministic languages (U0 languages, see
Linna [7]).

* A preliminary report on this research was presented at the 7th International Symposium
on Mathematical Foundations of Computer Science, Zakopane, Poland, September 1978,
cf. [10].

209

Most results mentioned above deal only with automata. In practice, languages are
often defined by means of other generating devices, particularly by grammars. The
use of grammars is of considerable interest. Jn many cases, the existence of a con
venient grammatical characterization provides a deeper insight into the structure
of the languages generated (compare [4, 5, 6]).

The purpose of this paper is to present and utilize a new grammatical concept,
namely the concept of a length uniform grammar. These are context-free grammars
in Greibach Normal Form satisfying the condition that the right hand sides of
productions starting with the same terminal symbol agree in length. We first in
vestigate a deterministic version of this grammar family, more precisely, length
uniform grammars being in addition strict deterministic (cf. Harrison and Havel
[4]). We show that such grammars generate exactly U0 languages i.e. that the concept
of a length uniform strict deterministic grammar provides a grammatical characteri
zation of the class U0 (none has been known till now).

The notion of stack uniformity, as introduced by Linna [7], can be generalized
in a straightforward manner to deal with nondeterministic pushdown automata
working in real time. It is a well known fact that for pushdown automata the as
sumption of determinism leads to a considerable restriction on the family of languages
accepted. We show that for stack uniform machines it is not the case, i.e. that non-
deterministic stack uniform pushdown automata accept merely U0 languages. Thus
we prove the existence of a nontrivial class of nondeterministic machines for which
the inclusion problem is decidable.

It is necessary to have the terminology to deal consistently with pushdown automata
and context-free grammars. We use a variant of the notation in Valiant [11], Harrison
and Havel [4]. We adopt familiar conventions of Aho and Ullman [I] concerning
strings and languages.

A pushdown automaton (abbreviated PDA) is a 7-tuple M = (Q, I, F, 5, q0, Z0, F)
where Q is a finite nonempty set of states, I and E are two alphabets called the
input alphabet and the pushdown store alphabet respectively, q0 e Q is the initial
state, Z0 e T is the initial pushdown symbol, F £ Q is the set of final states, and 8
is a function, mapping the set Q x IA x r into finite subsets of Q x F* where A
denotes the empty word, EA = E u {A}.

We now describe how PDA's move. A configuration of the PDA M is a pair
(q, y) where q e Q, y e F*. For any p, q e Q, a E ZA, a, fi e F*, Z e F w e write

(q,aZ)ra
M(p,aP) iff (p, 0) 6 5(q, a, Z)

read "M makes a move from configuration (q, aZ) to configuration (p, af5) while
reading a". The symbol M will be omitted whenever there is no danger of misunder
standing. We extend this notation to computations (= finite sequences of moves)
by writing

c1 \-w,W2 c3 if cx h"'1 c2 and c2 H>V2 c3

for wls w2 e I* and configurations cu c2, c3.

210

Our machines will accept by final state and empty store. The language strictly
accepted by the PDA M is the set

L(M) = [w e X* | (q0, Z0) h^ (q, A) for some q e F) .

The PDA M is said to be a deterministic PDA (DPDA for short) if for any q e Q,
Z e T, a e l w e have

| % A, Z)\ + \5(q, a, Z)\ S 1

where \x\ denotes the cardinality of the set X. The PDA M is called a real-time PDA
if S(q, A,Z) = 0 for all g e g, Z e P.

A context-free grammar is a quadruple G = (V, I, P, S) where V and I are two
alphabets, I £ V (letters in r and in JV = V— £ are called terminals and no/i-
terminals respectively), SeJV and P is a finite subset of JV x V* (the set of produc
tions). As usual, we write A -* a instead of (A, a) for elements of P.

We define a relation => £ V* x V* as follows. For any a, /? e V*, a => /? if a =
= a tAa2 , jS = a tya2 and A -* y is in P for some A e N, a., a2, y 6 V*. The reflexive
transitive closure of => is denoted by ==>*. The language generated by G is the set

L(G) = {w e S* | S =>* w} .

The grammar G is said to be in Greibach Normal Form1) if P £ JV x Z7V* i.e.
any production in P is of the form A -* aa where A e N, a e I, a e JV*.

2. PRELIMINARIES ON STRICT DETERMINISTIC GRAMMARS

The family of strict deterministic grammars was introduced by Harrison and
Havel [4]. We now review some fundamental definitions and several useful facts
concerning these grammars that will be utilized later on.

Definition 2.1. Let X be a set. A set n of nonempty pairwise disjoint subsets of X
is called a partition of X iff for any a e X there is some Ye n such that a e Y. The
elements of n are called blocks of the partition n. For a, b e X we write

a = b (mod n) iff a e Y and be Y for some Ye n .

Strict deterministic grammars are context-free grammars possessing special
properties with respect to some partition of the total alphabet.

Definition 2.2. Let G = (V, I , P, S) be a context-free grammar, n a partition of V.
Such a partition is called strict iff Z forms a block of 7r and for any A, A' e N,
a, p, fi' e V*, if A -> a/?, A' -> a/?' are in P, and A = A' (mod n) then either

') Some authors allow GNF grammars to have P £ N X ZK*. Our definition is then referred
to as Greibach Standard Form.

211

(i) both 0, fT * A and <->/, = (->/r (mod n), or
(ii) /? = /?' = A and A = A',

where (1>y denotes the first symbol of a word yeV+.

Definition 2.3. A context-free grammar G = (V,I,P,S) is called strict deter
ministic iff there exists some strict partition % of V.

There are two constructions related to the theory of strict deterministic grammars
that are of fundamental importance for the development of our results. The former
enables us to reduce the number of final states of some PDA to one without disturbing
the properties of the automaton under consideration.

Definition 2.4. Let M = (Q, I, E, <5, q0, Z0, F) be a PDA. We define the PDA M
as follows. M = (Q,£, E u f, 8, q0, Z0, {qf}) where qfeF is chosen arbitrarily,
F = {Z | Z e F} and the function <5 is defined below. For any p, q e Q, a e IA,
Y,ZeF,yeF*

(i) 5(q, a, Z) = 8(q, a, Z),
(ii) (p, Yy) 6 l(q, a, Z) if (p, Yy) e §(q, a, Z),
(iii) (qf, A) e d(q, a, Z) if (p, A) e 6(q, a, Z) and p e F.

Otherwise 8(q, a, Z) = 0.
The proof of the following proposition, together with the proofs of all other pro

positions involved in this section, can be found in Harrison and Havel [4].

Proposition 2,1. Let M be a PDA, let M be the PDA constructed in Definition 2.4.
Then L(M) = L(M).

The last principal construction we need transforms PDA's with a single final
state into grammars. It represents the conventional "triple construction" commonly
used in the proofs of the equivalence of pushdown automata and context-free
grammars.

Definition 2.5. Let M = (Q, I, r, 8, q0, Z0, {qf}) be a PDA. We define the ca
nonical grammar GM for M as follows2). GM = (V, I, P, S) where V = (Q x r x
x Q) U I, S = q0Zoqf and P is described below. For any a e IA, Z, Z1, ..., Zke T,

p, q, qx,..., qk 6 Q and k S: 1

qZqk->apZiq1qiZ2q2...qk-1Zkqk is in P if (p, Zk ... Z2Z,) e 8(q, a, Z)

qZp -> a is in P if (p, A) e 8(q, a, Z)

No other productions are in P.

Proposition 2.2. Let M be a PDA with a single final state, let GM be the canonical
grammar for M. Then L(GM) = L(M).

2) For the sake of simplicity we write ordered triples as sequences of symbols instead of the
usual parenthetical notation.

212

In addition, it turns out that for deterministic machines the following result
holds true.

Proposition 2.3. Let M beaDPDA with a single final state, let GM be the canonical
grammar for M. Then GM is strict deterministic.

3. THE CONCEPT OF UNIFORMITY

Stack uniform deterministic pushdown automata have been introduced by Linna
[7]. This class of machines forms a subclass of real-time DPDA's satisfying the
condition that for any input symbol a all the moves of the automaton reading a
have the same effect on the length of the pushdown store. The concept in question
can be defined for nondeterministic devices as well.

Definition 3.1. Let M = (Q, I, T, 8, q0, Z0, F) be a PDA. For any word y e T*
let us denote by Ig (y) the length of y. The PDA M is said to be stack uniform iff M
is a real-time PDA such that for any p, p', q, q' e Q, Z,Z'eT, ae I, y, y' e F*,

(p, y) e 8(q, a, Z) and (p', y') e 8(q', a, Z') implies lg (y) = lg (/) .

Languages strictly accepted by stack uniform DPDA's are of particular importance
since the inclusion problem for them has been shown to be decidable (cf. Linna [7]
for the proof).

Definition 3.2. A language L <= I* is called a stack uniform strict deterministic
language (U0 language) iff L = L(M) for some stack uniform DPDA M.

Till now, no grammatical characterization has been known either for the class U0

or for its nondeterministic variant. We next present the fundamental concept of this
paper that will be shown to represent such a characterization3).

Definition 3.3. Let G = (V, I, P, S) be a context-free grammar in Greibach Normal
Form. The grammar G is called length uniform iff for any A, A' e N, a e I, a, a' e N*,
if A -> aa, A' —• aa' are in P then lg (a) = lg (a').

In other words, a length uniform grammar is a context-free grammar in GNF such
that there is a function h, mapping the terminal alphabet into integers, and satisfying
the condition that for any terminal a occurring in the productions of the grammar,
the length of the right hand side of any production starting with a is h(a). To illustrate
the above definition we now present an example4). It will also indicate the complexity
of languages generated by length uniform grammars.

3) In this definition, we have abandoned the original notation of [10] in favour of a more
convenient wording.

4) Our example is a grammatical counterpart of the example presented in the proof of Theorem
1(c) of Linna [7].

213

For any n _• 1 consider languages

L„ = {ambkcmbk~'xc \ m ^ 1 and 1 ^ B «} .

The language L„ is generated by the grammar G„ = (V„, {a, b, c], P„, S) where V„ =
= {S, Ay, ..., A„, Bu ..., B„, a, b, c} and P„ is formed by productions

S -» aAfii , l g i | n ,

• flAi^! , 1 ^ i | II ,

6JÍ,.!, 2 g i £ « ,

Setting /i(a) = 3, /i(i») = 2, and /;(c) = 1 we see that G„ is length uniform. In addition,
using the same technique as in Lemma 4.3 of Harrison and Havel [4], it is possible
to prove that any DPDA M such that L„ = L(M) has at least n states.

Let us try to compare the power of stack uniform PDA's and length uniform gram
mars. First let us investigate the properties of canonical grammars corresponding to
the class of automata in question.

Lemma 3.1. Let M = (Q, _, F, S, q0, Z0, {qf}) be a stack uniform PDA, let
CM — (K - , P, S) be the canonical grammar for M. Then GM is length uniform.

Proof. Since M is real-time, it follows immediately that GM is in GNF. Let us
define a homomorphism stack: N* -» F* as follows. For any p, q e Q, Z e L let
stack (qZp) = Z. Clearly for any a e N* it holds that Ig (stack (a)) = lg (a).

Now assume that for some A, A'.eJV, a el, a, a' eN* we have A -» aa, A' -* aa'
in P. Then there are p, p', q, q', r, r' e Q, Z, Z' e F and y, y' e E* such that A =
= qZp, A' = q'Z'p', (r, y) e d(q, a, Z), (/•', y') e 8(q', a, Z'), stack (a) = y and
stack (a') = y'. Since M is stack uniform, we obtain Ig (y) = lg (y'). Therefore we
have

lg (a) = lg (stack (a)) = lg (y) = lg (y') = lg (stack (a')) = lg (a'). •

The preceding lemma has indicated that length uniform grammars are powerfull
enough to generate all languages strictly accepted by stack uniform PDA's.

Theorem 3.1. Let L _ I* be a language. Then
(a) If L = L(M) for some stack uniform PDA M then L = L(G) for some length

uniform grammar G,
(b) If L = L(M) for some stack uniform DPDA M then L = L(G) for some length

uniform strict deterministic grammar G.

Proof. The proof directly parallels the technique developed in H arrison and
Havel [4]. Assume L = L(M) for some stack uniform PDA M, let M b e the PDA

214

constructed in Definition 2.4. Since M is stack uniform, the same is true for M
because the construction preserves both the real-time property and the length of
the words placed on the pushdown store. Let GM be the canonical grammar for M.
Then by Propositions 2.1 and 2.2 L = L(M) = L(GM), and Lemma 3A implies
that GM is length uniform. Finally, to prove (b) it suffices to realize that M is deter
ministic if M is and to use Proposition 2.3. •

At this point we should be able to prove also the reverse implication to Theorem
3.1(a) by the help of the conventional construction relating GNF grammars to single
state real-time nondeterministic pushdown automata. We shall obtain this result
in-Section 5 using a less straightforward but rather surprising argument.

We first study the deterministic version of that assertion. As we shall see the task
is a little bit more difficult in this case.

4. THE CANONICAL AUTOMATON

We now wish to show that the notion of a length uniform strict deterministic
grammar yields the required characterization of U0 languages. Thus we need, for
any such grammar, to construct a stack uniform DPDA strictly accepting the
language generated by the grammar under consideration. Our approach follows
a more general construction valid for so called "uniform" grammars (cf. [10]).

Definition 4.1. Let G = (V I, P, S) be a length uniform grammar, n a strict parti
tion of V. Let G' = (V', I, P', S') be a context-free grammar such that S' is a new
symbol not included in V V = Vu {S'}, F = P u {S' -• S}. We define K' = n u
u{{S'}}.

The set of canonical states for G is the set5)

QG = [\x, a] en' x V* | A -> a[i e P' for some A e X and jS e V*} .

For any canonical state q we define a partial function fq : QG -* QG as follows.
Let [X, a], [Y ft] e QG. Then

j[x,a]G>, /?]) = [X, aA] if A-±f5eP and [X, aA] e QG for some AeY.

Otherwise j[A-j5t] is undefined6).
Now we define the canonical stack uniform DPDA MG for G as follows. M c =

= (QG, I, rG, 8, q0, Z0, {qf}) where FG is the smallest set of partial functions closed
under composition and containing the identity function on QG and functions f7

5) Square brackets are used instead of parentheses to clearly distinguish canonical states from
other ordered pairs.

6) Cf. the proof of Theorem 2.2 in Harrison and Havel [5] for the motives leading to the
introduction of these functions.

215

for all qe QG (we denote by o composition of functions and by id the identity
function), q0 = [{S '}, A], Z0 = id, qf = [{S '}, S] and the function 5 is defined
below.

Let q e QG, ae I, fe T G. Suppose that q = [X, a] and there are AeN, fie N*
such that [X, aA] e QG and A -^ afi is in P. Denote k = lg (fi), A = {B | B =
= A (mod n)}. Then

(/o / f P,a]) ,A)6%,a , /) if fc = 0,

([A ,a] , /0 / f id
i-1)6%a , /) if fcSl

where id ' ' - 1 denotes the string of symbols for the identity function of length k — 1.
Otherwise (5(q, a,/) = 0.

First we have to verify that our definition is correct.

Lemma 4.1. For any length uniform strict deterministic grammar G = (V, I, P, S)
the object MG described in the previous definition is a well defined stack uniform
DPDA.

Proof. Let n be a strict partition of V. Since P and % are finite sets, QG and r G

are finite, too7) (|rG| S (\QG\ + l)IQcl)- However, it is necessary to check that the
functions fq are well defined. Clearly %' is a strict partition of V. If two productions
within the same block of a strict partition agree on the right hand side, their left hand
sides are equal. Therefore the values of fq are uniquely determined.

Now we show that MG is deterministic. By the definition, MG is real-time. Hence it
suffices to verify that for any q e QG, a el, feFG the set 8(q, a,f) contains at
most one element. Let q = [X, a], and assume that there are A, A' eN, fi, fi' eN*
such that [X, aA], [X, aA'] e 2 t f a n d A -> afi, A' -> afi' are in P. Then for some
B, B' eX, 7, y' eN* we have B -> aA7, B' -> aA'y' in P'. From the strictness of %'
it follows that A = A' (mod JT'). Since A, A' eJV, by the definition of n' we have
A = A' (mod 7i), i.e. A = A'. Finally, using the length uniformness of G we obtain
lg (fi) = lg (fi'). Thus the moves of MG based on A -> a/? and A' -» a/?' are identical.

It remains to show that MG is stack uniform. Let p, q e QG, a el, fe FG, y e FG,
and suppose that (p, y)ed(q, a,f). Then there are AeN, fieN* such that A -> afi
is in P and we have

7 = A if lg (P) = 0 ,

7= /o / f i d
l g W) - 1 if lgO?)£ 1.

We conclude that lg (7) = lg (/?). Now consider another move of MG reading a and
placing a word 7' on the pushdown store. From the above consideration it follows
that there are A' eN, fi' eN* such that A' -• a/5' is in P and lg (7') = lg(/?')• s i n c e

G is length uniform, we get lg (fi) = lg (/?') i.e. lg (7) = lg (7'). •

7) Recall our convention that the cardinality of a set Xis denoted by \X\.

216

The next part of this section is devoted to the proof of the fact that the canonical
automaton strictly accepts the language generated by the underlying grammar.
Although this assertion might seem to be intuitively obvious, its formal proof is
somewhat complicated. For this reason we divide it into several steps.

Lemma 4.2. Let G = (V, I, P, S) be a length uniform strict deterministic grammar,
A e N, w e I*, fe Ec, y e EG, [X, a], [X, a A], f([X, aA]) e QG. Then

A^*w implies ([X, a],yf)YMa(f([X, aA]),y) .

Proof. Let A =>* w. Then A => a/? =>"~1 w for some n > 1, a el, /3eN*. The
argument is an induction on n.

Basis, n = 1. Then w = a, P = A i.e. Ig (/?) = 0, and by the definition of MG

we have
([X,a],yf)r(fafiXAi[A,a]),y).

Since A -> a is in P, we get /A-,_]([A, <?]) = [- ,̂ «A] which completes the proof of
the basis.

Induction Step, n > 1. Assume that the assertion of the lemma is true for all
derivations shorter than n. Let k =]g (/}). Since n > 1, we have /. S: 1, and there are
Bj eN, 1 _g j __. /c, such that /} = Bt ... Bk. Thus we have w = „w_ . . . wt and
.B,. =>"J W; for some w} e I*, nv- < n, \ >. j <, k. Define q} = [A, a!?! . . . Bf] for
0 < j < fc, and consider the configurations

Cj = (<?., 7 f o/tx,«] id"" »--0 , 0 rg ; rg /c - 1 .

As an immediate consequence of the definitions we obtain

(1) ([X,a],yf)V"c0

Now let 1 <. j <. k — I. Since idf^-n) e g c and B} =>"J wy where n ; < n, from our
induction hypothesis it follows that

(2) Cj^V'cj, \<_j<k-\.

Finally, consider the configuration ck_l. Since A -> aBt ... Bk is in P, we have

/° f[_,«]([^ «-»_ - Bt]) = / o / [X , a] (^) = /([__, aA]) e 2 C .

Due to £>,. =>"" wt, n,. < n, the induction hypothesis implies

(3) ck_t = (<?*__, y fofiXJ r* (faf[X,xiqk), y) = (f([X, aA]), y)

Combining (1), (2), and (3) we obtain the required computation. •

The preceding lemma has related derivations in a grammar to certain computations
of the canonical machine. Next we investigate a relationship in the reverse direction.

217

Lemma 4.3. Let G = (V, I, P, S) be a length uniform strict deterministic grammar,
q, [X, a] e QG, w e I*,fe PG. Then

([X, a],f)\-Mc(q, A) implies A =>* w and q = f([X, aA])

for some nonterminal A e N.

Proof. We use an induction on Ig (w).

Basis. lg(w) = 1. Then w = a for some a el. By the definition, MG pops the
symbol / in one move iff there is A e iV such that A -> a is in P, [X aA] e QG and
ej=/0/tX;a]p,fl])-/([X,«A]).

Induction Step. Ig (w) > 1. Then w = aw' for some a el, w' e l + . Assume that
the lemma is true for all computations on words shorter than w. Since w' e I+ the
first move of MG must not pop the symbol/from the pushdown store. Consequently
there are B e N, p e N+ such that B -> aft is in P, [X, aB] e QG and

([X, a] , /) V([B, fl],/o/CXia, id""1) r " (a, A)

where /c = Ig (/?) ^ 1. For 0 <. / <£ /c — 1 let c,- = (n^, ys) be the configurations
of MG during the computation on the word w' such that lg (y,) becomes for the first
time equal to k — j . Then

Cj = (qP. f° Ax,«] id*1""1 - 7) , O ^ j ^ - 1 .

Let Wy e T*, 1 < j < fc such that w = fli*! ... wk,

O-i ^ 0 >] = j = k - l > a n d c*-i r " («' ^) •

By our choice of configurations Cj we have

q0 = [B, a] , (qj. „ id) ^ (qp A), l ^ j ^ k - l .

Since lg (wj) < lg (w), from the induction hypothesis it follows that there are Bj e N,

1 £ j Ik k - 1 such that

a,- = [£, aBj ... By] and £,• =>* w ; , l < / g f e - l .

Now let us consider the computation

ck_, = p , aB,... i V . l / o / r ^ ,) rw* (a, A).

Using the induction hypothesis again, we get

q = / o / r x ,] P , flBi • • • **]) and B t =** w/£

for some BkeN. By the definition of/[A>cl] there is a nonterminal AeB such that
A -> aB, ... Bk is in P and q = j'([X, aA]). Thus we conclude that

A => aBx ... Bk =>* aw, ...wk = w. •

Combining Lemmas 4.2 and 4.3, we are able to prove the desired assertion about the
language strictly accepted by the canonical DPDA.

218

Theorem 4.L Let G = (V, I, P, S) be a length uniform strict deterministic grammar,
let MG be the canonical stack uniform DPDA for G. Then L(MG) = L(G).

Proof. Let we I*. First recall our definitions q0 = [{S'}, A], qf = [{S'}, S],
Z0 = id. Now assume S =>* w. Since <j0, qf, id (g7) are in QG, Lemma 4.2 implies
(q0, id) Fw (id (Oy), A) which proves the inclusion L(G) £ L(MG). On the other hand
suppose that (q0, id) hw (^/5 A). By Lemma 4.3 there is a nonterminal AeN such
that A^-*w and [{S'}, S] = id ([{S'}, A]). Hence A = S, and consequently
L(MG) £ L(G). D

Thus we obtain the following characterization theorem for U0 languages.

Theorem 4.2. Let L £ z*. Lis a stack uniform strict deterministic language iff
L = L(G) for some length uniform strict deterministic grammar G.

Proof. Cf. Theorems 3.1(b) and 4.1. D

5. DETERMINISM VERSUS NONDETERMIN1SM

This final section of the paper is devoted to the relationship between the families
of languages strictly accepted by deterministic and nondeterministic stack uniform
PDA's respectively. As far as general PDA's are concerned, we know that the power
of DPDA's is substantially weaker. Next we show that for stack uniform machines
an opposite situation arises, i.e. that the corresponding families of languages coincide.

As we have mentioned in the introduction, the existence of a convenient grammatical
characterization may help us to obtain results provable for automata themselves only
with considerable difficulties. Indeed, we can use much simpler tools of the grammar
theory to derive them. This is exactly the idea we will now follow.

First we need an additional definition.

Definition 5.1. Let G = (V, I, P, S) be a context-free grammar, % a partition of V.
Such a partition is called invertible iff for any A, A' EA' , a e V*, if A -» a, A' -» a
are in P, and A = A'(mod n) then A = A'.

Clearly any strict partition is invertible. The reverse implication does not hold
in general. The key idea of our considerations is based on the following simple ar
gument proving certain invertible partitions to be strict.

Lemma 5.1. Let G = (V, I, P, S) be a length uniform grammar such that S does
not occur in the right hand side of any production in P, let n = {{S}, N — {S}, 1}
be an invertible partition of V. Then n is strict.

Proof. We shall show that the partition n satisfies the conditions of Definition 2.2.
Let A, A' e N, a, P, $' e V*, A -+ a/?, A' -> a/?' 6 P, and A = A' (mod n).

219

If a = A then both /?, /?' are in IN* by the GNF property of G. Hence (1,/i =
= (1) /? ' (mod 71).

Thus we assume a 4= A in the remainder of the proof. Again, the GNF property
implies that there are a e I, y e N* such that a = ay and A -* ay/?, A' -* ay/J' are
in P. Since G is length uniform, we get Ig (yfi) = lg (y[3') i.e. lg (/?) = lg (/?'). Next we
distinguish two cases.

Case 1. lg (J?) > 0. Then both /?, /?' are in N + . By our assumption, the symbol S
can occur neither in ft nor in /?'. Therefore we have (1)/?, (1)/T eiV — {S}, i.e. u ' /? =
= (1>/?'(mod7r).

Case 2. lg (fi) = 0. Then p = /?' = A. In other words, both A ~* a, A' -* a are in P.
Since A = A' (mod 7i) and n is invertible, we conclude that A = A'. D

It remains to find a method of converting length uniform grammars to those
satisfying the assumptions of Lemma 5.1 without affecting the language generated.
Problems related to the notion of invertibility8) were first studied by McNaughton
[8]. Gray and Harrison [3] further generalized his results to arbitrary context-free
grammars. Our proof will utilize a modified version of the method presented in [3].

Theorem 5.1. Let G = (V, I, P, S) be a length uniform grammar. Then there
exists a length uniform strict deterministic grammar G' such that L(G) = L(G').

Proof. Let G' = (2* u {S'} u I, I, P', S') where 2N is the set of all subsets of N, S'
is a new symbol. The set P' will be constructed below.

For any n ^ 0, A, At,..., A„ e N, a e E, if A -* aAv ... A„ is in P then P' contains
all productions B => aB^ ... B„ such that Bt e 2N, A; e Bh 1 g i | n, and

(4) P = {C eiV | C -* aC, ... C„ e P and Ct e Bh 1 g i £ n} .

In addition, if S e B then P' also contains the production S' -* aBt ... B„. No other
productions are in P'.

Clearly no right hand side of a production in P' includes S'. The grammar G' is
length uniform because the construction of P ' preserves the positions of terminals and
nonterminals in the right hand sides of productions. Due to (4), the partition n =
= {{S'},2N,I} is invertible. Hence by Lemma 5.1 the grammar G' is strict deter
ministic. The fact L(G) = L(G') follows from the two claims given below.

Claim 1. Let Be2N,we I*, B =>S- w. Then for all A e B we have A =>* w.

Claim 2. Let AeN, we I*, A =>% w. Then there is some Be2N such that A e B
and B =$•%, w.

The proofs of both the claims can be found in Gray and Harrison [3]. •

8) A context-free grammar G = {V,S,P, S) is called invertible (or backwards deterministic)
iff {N, E} is an invertible partition of V.

220

Now we can summarize our results as follows.

Theorem 5.2. Let L £ 27*. Then the following four statements are equivalent.

(a) L = L(M) for some stack uniform DPDA M,

(b) L = L(M) for some stack uniform PDA M,

(c) L = L(G) for some length uniform grammar G,

(d) L = L(G) for some length uniform strict deterministic grammar G.

Proof, (a) -* (b) trivial, (b) ~> (c) Theorem 3.1(a), (c) -> (d) Theorem 5.1, (d) ~> (a)

Theorem 4.2. •

Note. The theorem proves the existence of a class of nondeterministic pushdown

automata accepting nonregular languages for which the inclusion problem is decidable.

ACKNOWLEDGEMENT

The author wishes to thank Ing. I. M. Havel, CSc. for numerous valuable comments on the
paper. Last but not the least, the author appreciates the support of the Research Institute for
Mathematical Machines that enabled him to finish this research.

(Received September 24, 1980.)

R E F E R E N C E S

[1] A. V. Aho, J. D. Ullman: The Theory of Parsing, Translation, and Compiling, Vols. I, II.
Prentice Hall, Englewood Cliffs, N. J. 1972, 1973.

[2] E. P. Friedman: The inclusion problem for simple languages. Theoretical Computer Science
7(1976), 297-316.

[3] J. N. Gray, M. A. Harrison: On the covering and reduction problems for context-free
grammars. J. ACM 19 (1972), 675-698.

[4] M. A. Harrison, I. M. Havel: Strict deterministic grammars. Journal of Computer and
System Sciences 7 (1973), 237-277.

[5] M. A. Harrison, I. M. Havel: Real-time strict deterministic languages. SIAM Journal on
Computing 1 (1972), 333-349.

[6] A. J. Korenjak, J. E. Hopcroft: Simple deterministic languages. IEEE Conference Record
of the 7th Annual Symposium on Switching and Automata Theory (1966), 36 — 46.

[7] M. Linna: Two decidability results for deterministic pushdown automata. Journal of
Computer and System Sciences 18 (1979), 92—107.

[8] R. McNaughton: Parenthesis grammars. J. ACM 14 (1967), 490—500.
[9] M. Oyamaguchi, N. Honda, Y. Inagaki: The equivalence problem for real-time strict deter

ministic languages. Information and Control 45 (1980), 90—115.
[10] J. Pittl: On two subclasses of real-time grammars. Mathematical Foundations of Computer

Science 1978 (J. Winkowski, ed.). Lecture Notes in Computer Science 64, Springer-Verlag,
Berlin 1978,426-435.

[11] L. G. Valiant: Decision Problems for Families of Deterministic Pushdown Automata. Univer
sity of Warwick, Computer Centre, Report No. 7, 1973.

RNDr. Jan Pittl, Vyzkumny iistav matematickych stroju (Research Institute for Mathematical
Machines), Loretdnske nam. 3, 118 55 Praha 1. Czechoslovakia.

221

