COMMENT ON "CONVERGENCE PROPERTIES OF ADAPTIVE THRESHOLD ELEMENTS..."

SVATOPLUK BLÁHA

Results published by authors W. Schoenborn and G. Stanke in [1] can be simplified if normalized pattern weigh vectors are used.

First of all the following convention for denoting relations will be introduced: the relations taken over from [1] have their origin numbers or numbers with apostrophe, if relations have been modified. The new relations are signed by numbers with leading zero.

Let us consider the two-class pattern recognition problem, which is in [1] described in Fig. 1. In that case there exists the solution vector \mathbf{w}_{24} which determine the hyperplane separating two max -2Δ-separable classes $\mathscr{K} 1$ and $\mathscr{K} 2$ according to definition (2) in [1]. The maximum distance between two parallel hyperplanes separating both classes is 2Δ. The decision rule is

$$
\frac{\boldsymbol{w}_{2 \Delta}^{+}}{\left|\boldsymbol{w}_{2 \Delta}^{+}\right|} \mathbf{x}-a \quad\left\{\begin{array}{l}
\geqq \Delta \Rightarrow \boldsymbol{x} \in \mathscr{K} 1 \\
\leqq \Delta \Rightarrow \boldsymbol{x} \in \mathscr{K} 2
\end{array}\right.
$$

Definition (2) can be rearranged at first by changing the scales of individual components x_{i} of pattern vectors, so that their values will belong to the interval $\langle 0,1\rangle$:

$$
\begin{gather*}
\bar{x}_{i}=\frac{x_{i}-x_{i \min }}{x_{i \max }-x_{i \min }}, \quad i=1, \ldots, n \tag{01}\\
0 \leqq \bar{x}_{i} \leqq 1
\end{gather*}
$$

Augmented pattern vector \boldsymbol{y} and weight vector \boldsymbol{w} will be

$$
\begin{align*}
& \mathbf{w}=\left(\mathbf{w}^{+}, w_{n+1}\right) \frac{1}{|\mathbf{w}|} \\
& \mathbf{y}=\left(\overline{\mathbf{x}}, \quad x_{n+1}\right) \text { for } \quad \mathbf{x} \in \mathscr{K} 1 \\
& \mathbf{y}=\left(-\overline{\mathbf{x}},-x_{n+1}\right) \text { for } \quad \mathbf{x} \in \mathscr{K} 2
\end{align*}
$$

The decision rule can be then written in the very simple form
(3)

$$
\mathbf{w} \mathbf{y} \geqq \delta
$$

Let the value of additional component be $x_{n+1}=1$ and as $|\boldsymbol{w}|=1$, then

$$
w_{n+1}=-a\left|\mathbf{w}^{+}\right|, \quad \delta=\mathbb{L}| | \mathbf{w}^{+} \mid
$$

The training algorithm, concerning only patterns \boldsymbol{y} misclassified by vector \boldsymbol{w}_{t}, leads to the following correction of vector $\boldsymbol{w}_{\boldsymbol{t}}$:

$$
\begin{aligned}
& \mathbf{w}_{1} \text { arbitrary, but }\left|\mathbf{w}_{1}\right|=1 \\
& \mathbf{w}_{t+1}=\bar{w}_{t}+\gamma \boldsymbol{y}_{t} \\
& \overline{\mathbf{w}}_{t+1}=\mathbf{w}_{t+1}| | \mathbf{w}_{t+1}\left|, \bar{\gamma}=\gamma /\left|\mathbf{w}_{t+1}\right|\right.
\end{aligned}
$$

In (6) the solution vector \boldsymbol{w}_{24} instead of $\alpha \boldsymbol{w}_{\delta}$ will be used:
(6) $\left|\overline{\boldsymbol{w}}_{t+1}-\overline{\boldsymbol{w}}_{2 \Delta}\right|^{2}=\left|\overline{\boldsymbol{w}}_{t} /\left|\boldsymbol{w}_{t+1}\right|-\overline{\boldsymbol{w}}_{2 \Delta}\right|^{2}+2 \bar{\gamma} \overline{\boldsymbol{w}}_{t} \boldsymbol{y}_{t} /\left|\mathbf{w}_{t+1}\right|-2 \bar{\gamma} \overline{\boldsymbol{w}}_{2 \Delta} \boldsymbol{y}_{t}+\bar{\gamma}^{2}\left|\boldsymbol{y}_{t}\right|^{2}$
and after t corrections starting with \boldsymbol{w}_{1} and considering that maximum length of pattern vector is $\left|\boldsymbol{y}_{\max }\right|^{2}=n$, as it is hypercube diagonal, we obtain using $\bar{\gamma} \doteq \gamma$

$$
\left|\bar{w}_{t+1}-\overline{\mathbf{w}}_{24}\right|^{2} \leqq\left|\bar{w}_{1}-\overline{\mathbf{w}}_{24}\right|^{2}-t\left(2 \gamma \delta-\gamma^{2} n\right) .
$$

The most unconvenient starting vector \bar{w}_{1} is perpendicular to the solution vector $\overline{\boldsymbol{w}}_{24}$, and as $|\overline{\boldsymbol{w}}|=1$ the difference

$$
\begin{equation*}
\left|\bar{w}_{1}-\bar{w}_{2 \Delta}\right|^{2} \leqq 2, \tag{02}
\end{equation*}
$$

where equality is valid for the most unconvenient case. When the solution is attained, the difference $\left|\overline{\boldsymbol{w}}_{t+1}-\overline{\mathbf{w}}_{24}\right|=0$ and using (02) we obtain from (8)

$$
\begin{gather*}
0 \leqq 2-t\left(2 \gamma \delta-\gamma^{2} n\right) \tag{03}\\
t \geqq \frac{2}{2 \gamma \delta-\gamma^{2} n}
\end{gather*}
$$

As $t>0$ then necessarily $2 \gamma \delta-\gamma^{2} n>0$ and, consequently, γ must be chosen so that the relation

$$
\begin{equation*}
\gamma<\frac{2 \delta}{n} \tag{04}
\end{equation*}
$$

holds. Let us minimize t considering equality in (03)

$$
\frac{\mathrm{d}}{\mathrm{~d} \gamma}\left(2 \gamma \delta-\gamma^{2} n\right)=2 \delta-2 \gamma n=0
$$

We obtain

$$
\begin{equation*}
\gamma=\frac{\delta}{n} \tag{05}
\end{equation*}
$$

and the minimum of t, as upper bound for the number of correction steps, is evidently given by

$$
\begin{equation*}
t_{g}=\frac{2 n}{\delta^{2}}=\frac{2}{\gamma^{2} n} \tag{06}
\end{equation*}
$$

The minimum value of δ can depend on a technical equipment and in that case it is limited by accuracy of measurement. If the accuracy is for example 1% of the range of possible values, then $\delta=0.005 \sqrt{ } n$ and the upper limit of the correction steps is $t_{g}=80000$ and the optimum value of γ is $\gamma=0.005 / \sqrt{ } n$.
(Received July 1, 1980.)

REFERENCES

[1] W. Schoenborn, G. Stanke: Convergence of adaptive threshold elements in respect to application and implementation. Kybernetika 16 (1980), 2, 159-171.

Ing. Svatopluk Bláha, CSc., Ústav teorie informace a automatizace ČSAV (Institute of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou věži 4, 18208 Praha 8. Czechoslovakia.

