
KYBERNETIKA —VOLUME 17 (1981), NUMBER 2

HEURISTIC DECODING OF CONVOLUTIONAL CODES

JOSEF KOLÁŘ

The decoding of convolutional codes is presented as a path-searching in corresponding "code
graph". Applying some heuristic search techniques new decoding algorithms were obtained,
which have improved the decoding process significantly.

1. INTRODUCTION

The Viterbi decoding algorithm for convolutional codes presented in 1967 ([1])
offers a good basis for the conception of a hard-wired decoder designed as a system
consisting of a great number of very simple processing units (capable of adding
and comparing) with a common memory of sufficient size. The software implementa
tion of this algorithm using a universal monoprocessor system seems to be slow
for any practical use even at low transmission rates.

It can be shown that the decoding corresponds to a path finding in a graph and,
consequently, the possible application of heuristic search strategies is worth investigat
ing. A systematic "blind" search would examine about K. 2L different paths in decod
ing a codeword of length L(K is a code-dependent constant). In the same case, the
Viterbi algorithm examines only about K . L paths but the magnitude of K makes this
reduction still not sufficient for practical purposes. Heuristic variants of the decod
ing algorithm given in this paper show a possible way how further reduction can be
obtained.

2. CONVOLUTIONAL CODES

A binary convolutional coder of rate 1/j. can be represented by a shift register
of length v coupled with n nonequivalence adders (see Fig. 1). When a given input
word u = uiu2 • • • uL is presented at the input of the shift register, the corresponding

158

codeword y = yty2 ...yL is received at the coder output as follows: for every

fe« 1,2, . . . , L the symbol yk is an n-digit binary block y^ik • • • y«k- Every bit

yik is received at the output of the i-th adder which computes the nonequivalence

sum of certain subset selected from the bits (uk, uk_x,..., uk-„ + 1) stored in the shift

ukk-iluA •••

^TYГГP
Fig. 1.

register. When the symbol yk is output, the contents of register is shifted one bit right

and the next input bit uk + 1 enters the register. Fig. 2 shows a convolutional coder

for n = 2 and v = 3.

yik= u k © u k - i ©uk-2

0 0 1 1 0 1 0 1 0 0 0 1 . . . -

133

У2k= Uk © Uk-2
Fig. 2.

Fig. 3.

The coder can be viewed as finite automaton. The states of this automaton are

defined by the contents of the (v — 1) leftmost bits in the shift register. The transi

tion diagram of the coder presented in Fig. 2 is shown in Fig. 3. Every edge of this

diagram is labeled by the corresponding pair uk\yk- For a given input word the

corresponding sequence of transitions describes the coding process. To make this

159

process even more evident we use a time expansion of the transition diagram called
the code graph (Fig. 4 shows the code graph corresponding to the coder of Fig. 2). We
label the edges of the code graph only by the symbols yk as every upper and lower edge
leaving the same node correspond to 0 and 1 input bits, resp. If we denote by xk

the node representing the state x at time k, it is clear that for every input word «
there exists a unique path in the code graph which starts in the initial node 0° and
ends in some node xL. The corresponding codeword y is received concatenating the
labels (output symbols) of individual edges forming this path.

Fig. 4.

In the decoding of a codeword z = ztz2 ... zL (received at the output of a trans
mission channel after some codeword y = y^y2 ... yL was presented at its input)
a possible noise must be taken into account. In other words, there may not exist any
path in the code graph the labeling of which is the codeword z. It can be shown that
for a symmetric binary channel the most probable a posteriori estimation of the origin-

Fig. 5.

al error-free codeword y is defined by such path in the code graph for which the
Hamming distance between the words z and y is minimal. To find this path we change
the labeling of the code graph so that it defines the Hamming distance between the
associated output symbol of each edge and the corresponding received symbol zk.
Fig. 5 shows the code graph labeling for the received codeword z = 01 10 01 01.

160

It follows that the decoding of any codeword z should be transformed to
the search of a path between the initial node 0° and some node xL the length of
which (in the sense introduced above) is minimal. To eliminate possible ambiguities,
every input word presented to the coder is complemented (at the end) by a sequence
of (v — 1) zero bits so that all paths converge to the state 0 in the final part of the
code graph. We shall include this sequence in the total word length L. Consequently,
the decoding problem should be transformed to the search of the shortest path
between two explicitly stated nodes of the code graph.

The original decoding algorithm proposed by Viterbi is, in fact, an adaptation
of the classical breadth-first search tailored to special properties of the code graph.
If we pass by the initial and final parts of the code graph for the simplicity, the central
part is created repeating periodically the transition base cell shown in Fig. 6. The

Fig. 6.

161

Viterbi algorithm iteratively computes the shortest paths (called survivors) to all
states at time steps k = 1, 2,..., L. Supposing we know all survivors at some time k,
the systematic processing of all base cells of the code graph in the following manner
will give us all survivors at time k + I:

For every final node Ox and Ix of the base cell (see Fig. 6) there exist just two
possible ways in which the survivors to the initial nodes xO and *1 could be pro
longed to reach that final node. After the shortest paths to both nodes Ox and lx
are selected and stored, the processing will pass to the next base cell.
In Fig. 7 we show some steps of the processing when the received codeword is

Z = 0110 01 01 00 01 0110. As every node in the code graph has at most two possible
predecessors, the survivors are represented by a binary matrix of 2"'1 . {L — v + l)
elements. To make this representation obvious the binary values stored in this matrix
and the survivor lengths are also shown in Fig. 7.

3. THE BREADTH-BOUND SEARCH

It can be easily shown that a pure straightforward application of heuristic search
strategies would not lead to any computational profit. In spite of an eventual re
duction in the number of processed states, it would make the decoding considerably
slower due to complicated advance and housekeeping operations. In order to receive
better results, we apply some heuristics conserving the most important features of the
original algorithm: its simplicity and continuous advance towards the goal.

For every variant of convolutional code and every word length L there exists an
upper bound LIM of errors that can be corrected by the decoding. We shall make use
of this bound to accelerate the decoding process as follows: we change our systematic
processing of survivors to non-systematic taking into account only such survivors
the length of which does not exceed LIM. In other words, we need not to prolong
all survivors in full breadth of the code graph but only some limited subset of them.
As this subset will vary during the search, it is necessary to create an explicit list
of corresponding states in every step and to use this list in the next step. The decoding
algorithm based on this idea will be called the breadth - bound search (or BBS) in this
paper.

Suppose the subset of perspective states is empty after some steps of the search
have been accomplished. Consequently, there is no path of length LIM or less in the
code graph and correct decoding cannot be assured. The common procedure used
in communication systems to overcome the problem is to request a re-transmission
of the codeword concerned.

The explicit maintaining and processing of limited state subsets complicates
slightly the access to the base cells and can be justified only by a significant reduction
in the number of processed states. The experiments show that this reduction depends

162

G™D
Compute a l l survivor
lengths in the i n i t i a l
par t of the code graph

Form a l i s t of s t a t e s
the survivors of which
do not exceed LIM

(REQUEST
\p-TRANSMISSIOj

Try to prolong the
survivors forming nev

l i s t of s t a t e s

Execute the f ina l
oonvergation par t

tec t rac t the r e s u l -
Lng input word

Fig. 8.

(STOP)

on the number and even more on the position of errors in the received codeword
but even in the worst case it overweighs many times the drawback due to the non-
systematic processing of base cells. The greater is the number of erroneous bits
processed so far, the narrower is the part of the code graph being processed. Conse
quently, the best total reduction is received when errors are located close to the
beginning of the codeword. In our experiments e.g. one bit located at the beginning
resulted in greater reduction than 9 errors located at the end.

The implementation of the proposed decoding algorithm represents, naturally,
a detailed realization of many parts not explicitly mentioned herein, as e.g. the

163

processing of the initial and final parts of the code graph, efficient Hamming distance
calculation, etc. One of the most important features of the algorithm is the splitting
of the state subsets into 2 separated parts: the first one receives the states named
OJC in Fig. 6 (i.e. the states of the interval <0, 2"~2 — 1>), the second one receives
the states named Ix (i.e. the states of the interval <2"~2, 2""1 — 1>). If the states
are processed in the increasing sequence of binary combinations x (otherwise it
could not be simply detected whether or not both of the initial states OJC and Ix of the
base cell being processed are included in the subset), the newly created subsets are
ordered automatically in the same sense.

Detailed explanation and description of every part of the BBS algorithm would
make the paper rather extensive so that only an abbreviated block diagram is pre
sented in Fig. 8.

4. THE BI-DIRECTIONAL HEURISTIC SEARCH

The theory of heuristic search has demonstrated that the search is accelerated in
some cases using the bi-directional search strategy. The use of this strategy is possible
supposing there is just one goal node explicitly stated and the graph being searched
addmits the backward processing. It is easy to show that the path searching in the
code graph satisfies both of these conditions.

Fig. 9.

In order to make use of the BBS strategy in the backward direction, we have to
recorder the states in the second part of the code graph. They will be ordered in the
increasing sequence of mirror images of their numbers. In this way, the staes Ox
and lx used as initial for base celles in the backward direction (see Fig. 6) are assigned
consecutive locations — the same is true for the pair xO and xl in the forward
direction. Given the values v = 3 and L = 8, Fig. 9 shows the code graph structure
after its second half has been reordered.

164

í STЛRT)

Compute a l l suгvivor lengths in
the i n i t i a l and f i n a l p a r t s of

the code graph

Foгm l i s t s of s t a t e s in the for-
waгđ and backwaгd d iгect ions

(RE-;
REQUSST
TRANSMISSE) N

Prolong survivors in the forward
and backward directions and form

new lists of states

Find the path of the minimal to
tal length

Extract the resulting input
word

í STOP ")

Fig. 10.

Evidently, the code graph obtained this way is perfectly symmetric so that the
initial and final expansions can be accomplished, applying the same procedure.
In the central part, the steps in the forward and backward directions are formally
identical, too. At the moment when both directions meet the path is to be found
which minimizes the sum of partial path lengths obtained in the forward and back
ward directions. It is easy to show that this path will be of the same minimal length
as in the uni-directional search.

The criterion used for the search breadth reduction in the uni-directional case
can be applied in both directions of the bi-directional search, as well. Even better

165

results will be obtained if we take into account not only the actual path lengths but
possible total path lengths. To be able proceed in this way we need some length
estimation for the parts that have not been constructed yet. But it is quite easy to
receive a simple estimation based on the lengths of paths constructed so far in the
opposite direction: the remaining part of every path will not be shorter than the

Fig. 11.

minimal partial path length in the opposite direction. If we call this minimal length
MIND then we shall include in the state subsets only those states which have survivors
of length not exceeding LIM — MIND.

The corresponding algorithm will be called the bi-directional heuristic search
(or BHS) and its abbreviated block diagram is shown in Fig. 10. The process of de
coding of the received codeword z = 01 10 01 01 00 01 01 10 is shown in Fig. 11.
As in the BBS case, our description is limited to a brief presentation of the main
ideas of the BHS algorithm and more details can be found in [2].

5. EXPERIMENTAL RESULTS

As both of the algorithms presented in this paper are heuristic, it is impossible
to express explicitly the number of states (or paths) they proceed during the search.
We tried to get some results applying these algorithms to an experimental set of code
words of a convolutional code having the following parameters:

166

n = 3 , v = 10 , L = 60 , L7M = 9

y l t = wt © uk+3 © Mfc + 6 © uk + 1 © Mt + 8 © Mt + 9

y2k = Uk © Mt + 2 © Uk + 3 © Wfc + 4 © Uk + 5 © Mt + 7 © Mfc+9

Vik = Uk® Uk+1 © Mfc + 2 © H,c+5 © Hfc + 6 © Uk + 8 © Uk + 9

The results of these experiments offer reliable information about the nature of both
algorithms. The BBS algorithm is very sensitive to the location of errors in the
codeword whereas the BHS algorithm gives almost identical results if errors are
located at the end instead of the beginning of the codeword. In case there are no
errors at all in the codeword or they are located at the worst position (i.e. at the end
for BBS and at the center for BHS), there is practically no significant difference
between the two algorithms. Summary results allowing statistical comparison of the
Viterbi, BBS and BHS algorithms are given in the following table.

Ni Nc Nf Total

Viterbi 511 21 504
(100%)

1 022 23 037
(100%)

BBS 511 1354
(6-3%)

1022 2 887
(12-5%)

BHS 511 957
(4.45%)

511 1 979
(8-59%)

(Numbers of nodes processed in the initial — Nt, central — Nc and final —
Nf part of the code graph represent mean values for the set of 40 examples.)

From these results we see that the BBS algorithm processed only about 12-5%of all
states processed by the Viterbi algorithm. The BHS algorithm is even better processing
about 8-6% of states. Both algorithms introduced here have a common feature
which seems rather paradoxical: the more errors are in the codeword (within the
acceptable limit) the more effective is the decoding. Consequently, the codewords
received without any error at all are decoded the slowest of all. Further effort is to
be devoted to possible elimination of this paradox.

ACKNOWLEDGMENTS

The research reported in this paper was partially carried out when the author was at CLE.A.
del I.P.N. (National Politechnical Institute), Mexico City, Mexico. The author would like to
acknowledge the support supplied by the CONACYT and CLE.A. during his stay.

(Received May 7, 1980.)

167

R E F E R E N C E S

[1] A. J. Viterbi: Error Bounds for convolutional codes and an asymptotically optimal de
coding algorithm. IEEE Trans, on Inform. Theory IT-13 (1967), 260—269.

[2] J. Kolář: Heuristický přístup k dekódování konvolučních kódů. Habilitation thesis (in Czech),
FEL ČVUT, Prague 1979.

RNDr. Josef Kolář, CSc, katedra počítačů, fakulta elektrotechnická ČVUT (Department
of Computers, Faculty of Electrical Engineering — Czech Technical University), Karlovo nám.
13, 131 35 Praha 2. Czechoslovakia.

168

