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HEURISTIC DECODING OF CONVOLUTIONAL CODES 

JOSEF KOLÁŘ 

The decoding of convolutional codes is presented as a path-searching in corresponding "code 
graph". Applying some heuristic search techniques new decoding algorithms were obtained, 
which have improved the decoding process significantly. 

1. INTRODUCTION 

The Viterbi decoding algorithm for convolutional codes presented in 1967 ([1]) 
offers a good basis for the conception of a hard-wired decoder designed as a system 
consisting of a great number of very simple processing units (capable of adding 
and comparing) with a common memory of sufficient size. The software implementa
tion of this algorithm using a universal monoprocessor system seems to be slow 
for any practical use even at low transmission rates. 

It can be shown that the decoding corresponds to a path finding in a graph and, 
consequently, the possible application of heuristic search strategies is worth investigat
ing. A systematic "blind" search would examine about K. 2L different paths in decod
ing a codeword of length L(K is a code-dependent constant). In the same case, the 
Viterbi algorithm examines only about K . L paths but the magnitude of K makes this 
reduction still not sufficient for practical purposes. Heuristic variants of the decod
ing algorithm given in this paper show a possible way how further reduction can be 
obtained. 

2. CONVOLUTIONAL CODES 

A binary convolutional coder of rate 1/j. can be represented by a shift register 
of length v coupled with n nonequivalence adders (see Fig. 1). When a given input 
word u = uiu2 • • • uL is presented at the input of the shift register, the corresponding 
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codeword y = yty2 ...yL is received at the coder output as follows: for every 

fe« 1,2, . . . , L the symbol yk is an n-digit binary block y^ik • • • y«k- Every bit 

yik is received at the output of the i-th adder which computes the nonequivalence 

sum of certain subset selected from the bits (uk, uk_x,..., uk-„ + 1) stored in the shift 

ukk-iluA ••• 

^TYГГP 
Fig. 1. 

register. When the symbol yk is output, the contents of register is shifted one bit right 

and the next input bit uk + 1 enters the register. Fig. 2 shows a convolutional coder 

for n = 2 and v = 3. 

yik= u k © u k - i ©uk-2 

0 0 1 1 0 1 0 1 0 0 0 1 . . . -

133 

У2k= Uk © Uk-2 
Fig. 2. 

Fig. 3. 

The coder can be viewed as finite automaton. The states of this automaton are 

defined by the contents of the (v — 1) leftmost bits in the shift register. The transi

tion diagram of the coder presented in Fig. 2 is shown in Fig. 3. Every edge of this 

diagram is labeled by the corresponding pair uk\yk- For a given input word the 

corresponding sequence of transitions describes the coding process. To make this 
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process even more evident we use a time expansion of the transition diagram called 
the code graph (Fig. 4 shows the code graph corresponding to the coder of Fig. 2). We 
label the edges of the code graph only by the symbols yk as every upper and lower edge 
leaving the same node correspond to 0 and 1 input bits, resp. If we denote by xk 

the node representing the state x at time k, it is clear that for every input word « 
there exists a unique path in the code graph which starts in the initial node 0° and 
ends in some node xL. The corresponding codeword y is received concatenating the 
labels (output symbols) of individual edges forming this path. 

Fig. 4. 

In the decoding of a codeword z = ztz2 ... zL (received at the output of a trans
mission channel after some codeword y = y^y2 ... yL was presented at its input) 
a possible noise must be taken into account. In other words, there may not exist any 
path in the code graph the labeling of which is the codeword z. It can be shown that 
for a symmetric binary channel the most probable a posteriori estimation of the origin-

Fig. 5. 

al error-free codeword y is defined by such path in the code graph for which the 
Hamming distance between the words z and y is minimal. To find this path we change 
the labeling of the code graph so that it defines the Hamming distance between the 
associated output symbol of each edge and the corresponding received symbol zk. 
Fig. 5 shows the code graph labeling for the received codeword z = 01 10 01 01. 
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It follows that the decoding of any codeword z should be transformed to 
the search of a path between the initial node 0° and some node xL the length of 
which (in the sense introduced above) is minimal. To eliminate possible ambiguities, 
every input word presented to the coder is complemented (at the end) by a sequence 
of (v — 1) zero bits so that all paths converge to the state 0 in the final part of the 
code graph. We shall include this sequence in the total word length L. Consequently, 
the decoding problem should be transformed to the search of the shortest path 
between two explicitly stated nodes of the code graph. 

The original decoding algorithm proposed by Viterbi is, in fact, an adaptation 
of the classical breadth-first search tailored to special properties of the code graph. 
If we pass by the initial and final parts of the code graph for the simplicity, the central 
part is created repeating periodically the transition base cell shown in Fig. 6. The 

Fig. 6. 
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Viterbi algorithm iteratively computes the shortest paths (called survivors) to all 
states at time steps k = 1, 2,..., L. Supposing we know all survivors at some time k, 
the systematic processing of all base cells of the code graph in the following manner 
will give us all survivors at time k + I: 

For every final node Ox and Ix of the base cell (see Fig. 6) there exist just two 
possible ways in which the survivors to the initial nodes xO and *1 could be pro
longed to reach that final node. After the shortest paths to both nodes Ox and lx 
are selected and stored, the processing will pass to the next base cell. 
In Fig. 7 we show some steps of the processing when the received codeword is 

Z = 0110 01 01 00 01 0110. As every node in the code graph has at most two possible 
predecessors, the survivors are represented by a binary matrix of 2"'1 . {L — v + l) 
elements. To make this representation obvious the binary values stored in this matrix 
and the survivor lengths are also shown in Fig. 7. 

3. THE BREADTH-BOUND SEARCH 

It can be easily shown that a pure straightforward application of heuristic search 
strategies would not lead to any computational profit. In spite of an eventual re
duction in the number of processed states, it would make the decoding considerably 
slower due to complicated advance and housekeeping operations. In order to receive 
better results, we apply some heuristics conserving the most important features of the 
original algorithm: its simplicity and continuous advance towards the goal. 

For every variant of convolutional code and every word length L there exists an 
upper bound LIM of errors that can be corrected by the decoding. We shall make use 
of this bound to accelerate the decoding process as follows: we change our systematic 
processing of survivors to non-systematic taking into account only such survivors 
the length of which does not exceed LIM. In other words, we need not to prolong 
all survivors in full breadth of the code graph but only some limited subset of them. 
As this subset will vary during the search, it is necessary to create an explicit list 
of corresponding states in every step and to use this list in the next step. The decoding 
algorithm based on this idea will be called the breadth - bound search (or BBS) in this 
paper. 

Suppose the subset of perspective states is empty after some steps of the search 
have been accomplished. Consequently, there is no path of length LIM or less in the 
code graph and correct decoding cannot be assured. The common procedure used 
in communication systems to overcome the problem is to request a re-transmission 
of the codeword concerned. 

The explicit maintaining and processing of limited state subsets complicates 
slightly the access to the base cells and can be justified only by a significant reduction 
in the number of processed states. The experiments show that this reduction depends 
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on the number and even more on the position of errors in the received codeword 
but even in the worst case it overweighs many times the drawback due to the non-
systematic processing of base cells. The greater is the number of erroneous bits 
processed so far, the narrower is the part of the code graph being processed. Conse
quently, the best total reduction is received when errors are located close to the 
beginning of the codeword. In our experiments e.g. one bit located at the beginning 
resulted in greater reduction than 9 errors located at the end. 

The implementation of the proposed decoding algorithm represents, naturally, 
a detailed realization of many parts not explicitly mentioned herein, as e.g. the 
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processing of the initial and final parts of the code graph, efficient Hamming distance 
calculation, etc. One of the most important features of the algorithm is the splitting 
of the state subsets into 2 separated parts: the first one receives the states named 
OJC in Fig. 6 (i.e. the states of the interval <0, 2"~2 — 1>), the second one receives 
the states named Ix (i.e. the states of the interval <2"~2, 2""1 — 1>). If the states 
are processed in the increasing sequence of binary combinations x (otherwise it 
could not be simply detected whether or not both of the initial states OJC and Ix of the 
base cell being processed are included in the subset), the newly created subsets are 
ordered automatically in the same sense. 

Detailed explanation and description of every part of the BBS algorithm would 
make the paper rather extensive so that only an abbreviated block diagram is pre
sented in Fig. 8. 

4. THE BI-DIRECTIONAL HEURISTIC SEARCH 

The theory of heuristic search has demonstrated that the search is accelerated in 
some cases using the bi-directional search strategy. The use of this strategy is possible 
supposing there is just one goal node explicitly stated and the graph being searched 
addmits the backward processing. It is easy to show that the path searching in the 
code graph satisfies both of these conditions. 

Fig. 9. 

In order to make use of the BBS strategy in the backward direction, we have to 
recorder the states in the second part of the code graph. They will be ordered in the 
increasing sequence of mirror images of their numbers. In this way, the staes Ox 
and lx used as initial for base celles in the backward direction (see Fig. 6) are assigned 
consecutive locations — the same is true for the pair xO and xl in the forward 
direction. Given the values v = 3 and L = 8, Fig. 9 shows the code graph structure 
after its second half has been reordered. 
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Fig. 10. 

Evidently, the code graph obtained this way is perfectly symmetric so that the 
initial and final expansions can be accomplished, applying the same procedure. 
In the central part, the steps in the forward and backward directions are formally 
identical, too. At the moment when both directions meet the path is to be found 
which minimizes the sum of partial path lengths obtained in the forward and back
ward directions. It is easy to show that this path will be of the same minimal length 
as in the uni-directional search. 

The criterion used for the search breadth reduction in the uni-directional case 
can be applied in both directions of the bi-directional search, as well. Even better 
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results will be obtained if we take into account not only the actual path lengths but 
possible total path lengths. To be able proceed in this way we need some length 
estimation for the parts that have not been constructed yet. But it is quite easy to 
receive a simple estimation based on the lengths of paths constructed so far in the 
opposite direction: the remaining part of every path will not be shorter than the 

Fig. 11. 

minimal partial path length in the opposite direction. If we call this minimal length 
MIND then we shall include in the state subsets only those states which have survivors 
of length not exceeding LIM — MIND. 

The corresponding algorithm will be called the bi-directional heuristic search 
(or BHS) and its abbreviated block diagram is shown in Fig. 10. The process of de
coding of the received codeword z = 01 10 01 01 00 01 01 10 is shown in Fig. 11. 
As in the BBS case, our description is limited to a brief presentation of the main 
ideas of the BHS algorithm and more details can be found in [2]. 

5. EXPERIMENTAL RESULTS 

As both of the algorithms presented in this paper are heuristic, it is impossible 
to express explicitly the number of states (or paths) they proceed during the search. 
We tried to get some results applying these algorithms to an experimental set of code
words of a convolutional code having the following parameters: 
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n = 3 , v = 10 , L = 60 , L7M = 9 

y l t = wt © uk+3 © Mfc + 6 © uk + 1 © Mt + 8 © Mt + 9 

y2k = Uk © Mt + 2 © Uk + 3 © Wfc + 4 © Uk + 5 © Mt + 7 © Mfc+9 

Vik = Uk® Uk+1 © Mfc + 2 © H,c+5 © Hfc + 6 © Uk + 8 © Uk + 9 

The results of these experiments offer reliable information about the nature of both 
algorithms. The BBS algorithm is very sensitive to the location of errors in the 
codeword whereas the BHS algorithm gives almost identical results if errors are 
located at the end instead of the beginning of the codeword. In case there are no 
errors at all in the codeword or they are located at the worst position (i.e. at the end 
for BBS and at the center for BHS), there is practically no significant difference 
between the two algorithms. Summary results allowing statistical comparison of the 
Viterbi, BBS and BHS algorithms are given in the following table. 

Ni Nc Nf Total 

Viterbi 511 21 504 
(100%) 

1 022 23 037 
(100%) 

BBS 511 1354 
(6-3%) 

1022 2 887 
(12-5%) 

BHS 511 957 
(4.45%) 

511 1 979 
(8-59%) 

(Numbers of nodes processed in the initial — Nt, central — Nc and final — 
Nf part of the code graph represent mean values for the set of 40 examples.) 

From these results we see that the BBS algorithm processed only about 12-5%of all 
states processed by the Viterbi algorithm. The BHS algorithm is even better processing 
about 8-6% of states. Both algorithms introduced here have a common feature 
which seems rather paradoxical: the more errors are in the codeword (within the 
acceptable limit) the more effective is the decoding. Consequently, the codewords 
received without any error at all are decoded the slowest of all. Further effort is to 
be devoted to possible elimination of this paradox. 
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