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The paper is devoted to the study of problems connected with the Group Coding Theorem and 

its Converse for channels decomposable into components with additive asymptotically mean 
stationary and ergodic noise for codes associated with finite factor groups of the (countable) group 
alphabet. 

1. INTRODUCTION 

Parthasarathy [8] first touched the question on the asymptotic behavior of the 
maximum length of the n-dimensional £-codes for separate values of the error 
probability s e (0, 1). He answered the question for channels with additive stationary 
noise. These channels were shown to be regularly decomposable by Winkelbauer 
[15]. Consequently, his Theorem on e-Capacities applies well and results in a con
nection between the behavior of the e-codes and the information quantiles, respec
tively. As known, the concepts of information quantiles and information quantile 
capacity (see [15 — 19, 21] and [5]) arose from the attempts to overcome the problems 
pointed out by Nedoma [6] who demonstrated an example of a stationary channel 
whose Shannon capacity [9] strictly majorized the operational capacity (defined as 
optimum over actual deterministic codes; cf. [22]). An excellent survey on channel 
coding may be found in [3]. 

In this paper we consider channels decomposable into components with additive 
asymptotically mean stationary (a.m.s.) and ergodic noise (cf. [2] for the basic facts 
about a.m.s. measures). Thus, the results of [8] and partly of [15] are extended to 
a class of non-stationary channels. The technique of handling with an infinite alpha
bet is an adaptation of the techniques introduced first in [10, 11] and extended further 
in [12] and [20]. 
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2. PRELIMINARIES AND RESULTS 

Let X designate, generically, a countable discrete topological space — the alphabet. 
The corresponding space of messages is 

X1 = {z = {zi}ieI:zieX for iel} 

(I = integers). The er-algebra J*'x generated by the countable class ir
 x of all elemen

tary cylinders in X1 is but the c-algebra of all Borel subsets of X1 with respect to 
its natural product topology. The shift transformation 

( T f z ) / = z / + 1 for zeX', iel 

is a Borel automorphism, that is, Tx is an invertible ^-measurable map. Let Px 

denote the set of all probability measures on (X1, S^x)- Following [2] a measure 
/i e Px is said to be a.m.s. (with respect to Tx) if the limits 

(2.1) fl(F) = lirn - " £ ^(Tx
jF) 

n n J = 0 

exist for all F e !FX; in this case p. is a T^-invariant probability measure on 2Px and 
is called the stationary mean of JJ.. We let SX(MX) designate the set of all a.m.s. 
(of all Tx-invariant) elements of Px. If \i e Sx then /» = jl on the er-algebra Jx of all 
Ty-invariant events so that it is natural to call n ergodic if p. is ergodic, i.e., if /((E) = 
= p(F) e {0, 1} for all E e Jx. For the sake of brevity we use the symbols Sx and M* 
to denote the sets of all Tx-ergodic elements in Sx and in Mx, respectively. 

A channel with the input alphabet B and the output alphabet A will be denoted 
by [B, v, A] or simply by the symbol v. By definition, v is a parametric class, v = 

= M ' I y)> y e B1} w i t n v ( ' \y)e ^ a n d s u c n t n a t t n e m a p s y i-> v(G | y) are 
J^B-measurable for all G e &'A. Given an input source \x e PB the joint input/output 
distribution of the channel \B, v, A] is a measure nv ePBxA defined by the properties 
that 

(2.2) fiv(E)=\v(Ey\y)n(dy); Ee&BxA, 

Ey = {xeA':(y,x)eE}. 

Note that TBXA is defined component-wise: 

(2.3) (TBXA(y,x))i = ((TBy)i,(TAx)i), iel. 

As well-known, a channel [J5, v, A] is said to be stationary if 

v(TAG | TBy) = v(G \y) for y e B1, Ge^A 

and stationary and ergodic if, moreover, 

(neM*B)^(nveM*BxA). 



Fontana, Gray and Kieffer [ l ] called a channel [B, v, A] asymptotically mean 
stationary (a.m.s.) if 

(neSB) => (ixve SBxA) 

and a.m.s. and ergodic if', moreover, 

(lieS*B)=>(^iveSfixA). 

The a.m.s. property of channels is defined with the aid of the input sources so that 
it is a little bit complicated to obtain an input independent definition of the stationary 
mean for the channels. In order not to overcomplicate the exposition we take the 
properties established in [ l , Theorem 3] as a definition. Accordingly, the stationary 
channel [B, v, A] is said to be the stationary mean of a channel [B, v, A] if 

(2.4) 7J7 = nv (cf. (2.1) and (2.2)); 

(2.5) lim - £ v(TA
JG | TB

Jy) = v(G | y) /(-a.e. ; 
n n j = 0 

(2.6) v(- | y) <v(-\ y) /(-a.e. 

for every n e MB. In the quoted theorem it is proved that the stationary mean exists 
for every a.m.s. channel. Moreover, if v is also ergodic then v is a.m.s. and ergodic 
(cf. [1, Lemma 4]). 

Following [15] a channel [B, v, A] is said to be decomposable if there are a mea
surable one-parameter family {[JB, v\ A]; l e A} of channels with the same alphabets 
with the parameters lying in the measurable space (A, £?) and a probability measure y 
on (A, i f) such that 

(2.7) v(G | y) = J v\G | y) y(dA) ; y e B', Ge^A. 

If A = {A} and y{X} = 1 then the channel v is said to be indecomposable. 

In what follows we suppose that B = A is a countable Abelian (additively written) 
group and A1 as well as the finite powers A" (n eN = {1,2, ...}) assume the natural 
direct sum structures. We prefer, however, to use distinct symbols to keep clear the 
distinction between the input and the output. A channel [B, v, A] is said to be 
a channel with additive noise if there is a measure x e PB such that 

(2.8) v(G | y) = x(G - y) ; y e B', Ge^A, 

where G — y designates the group theoretic difference in A' = B1. The class of 
channels of our interest consists of all channels decomposable into components with 
additive a.m.s. and ergodic noise. That is, channels are considered expressible in 
the form (2.7) such that each component v" is determined by (2.8) with the cor
responding measure xx e Sj . Our first results relate these channels to the a.m.s. ones: 



Proposition 1. Let v be a channel with additive a.m.s. noise determined by a measure 
x e SB. Then v is a.m.s. and its stationary mean v is defined by 

(2.9) v(G\y) = x(G- y) ; y e B1, Ge^A, 

where x e MB is the stationary mean of x. 

Corollary 1. Let v be a channel with additive a.m.s. and ergodic noise. Then v 
is an a.m.s. and ergodic channel. 

Proposition 2. Any channel decomposable into components with additive a.m.s. 
noise is an a.m.s. channel. 

Corollary 2. Let (2.7) be the decomposition of the channel v into components with 
additive a.m.s. noise. Then its stationary mean v is a channel decomposable into 
components with additive stationary noise via the formulae 

(2.10) v(G \y)= \ v\G | y) y(dl) ; yeB1, Ge^A, 

where {vA( • | y); y e Br} designates the stationary mean of the channel v\ X e A. 

In particular, if the components are channels with additive a.m.s. and ergodic 
noise then the stationary mean of the composed channel is decomposable into com
ponents with additive ergodic noise, i.e., a channel decomposable into ergodic com
ponents in the sense of [15]. 

As in [20] and [12] we shall deal with a restricted class of codes, namely the codes 
associated with finite factor groups of the group alphabet. Let X denote, generically, 
a free finitely generated Abelian group (it is assumed that B = A = X in what 
follows). We let Si = 2f(X) designate the class of all finite factor groups of X. 
There is a sequence {̂ „}„ejV <= 2£ such that, for any £e 2f, there is n0 with the 
property £ ^ ^„ whenever n Si n0 (i.e., {n„}„eN is cofinal in SE with respect to the par
tial ordering n d± £ defined by the property that £ is a divisor of?/; cf. [20] and [12]). 
Let \i e Px. As shown in [11], any £ e 2S induces a measure jit. e P(. Moreover, if 
neMx (if fieMx) then fi^eM4(^eM*) [11]. Similarly, / jeS x ( / ieS*) entails 
^ e S ^ e S * ) ; c f . [13]. 

In order we can employ the method of finite partitions for our channels we have 
to ensure that both the input and the output symbols of the codes possess the same 
alphabet. Thus we are led to the following concept of a code [20]: a disjoint para
meter family 1 = {QY; Ye®/} of classes QY of subsets in X" is said to be an n-
dimensional group code if there is a group £ e 2?(X) such that 

(2.11) ( y e ^ ) = > [ ( Y e c " ) e t (Qr <=?)]. 

Alternatively, we call such a code also a £-code. The length of the code 3 is defined as 

(2.12) /(:€) = card («t) 



(one can easily check that /(J>) is upperbounded by r(c,"), the order of the group £,"). 
Let v be a channel decomposable into components with additive a.m.s. and ergodic 
noise, the component vx being determined by xx e S*B via (2.8). Let, for £ e 3(X), 

[V] = {ze£':(z0,...,zn.1)eV}, neN . 

The maximum (n-dimensional) error probability of the code 2, with respect to the 
channel v is defined as 

(2.13) ea(JZ) = 1 - min f xJ[Qr - Y] y (dA), 
Ye» J A 

where QY — Y stands for the group theoretic difference (in c") and x\ e S* is the 
measure induced from xx e Sj by the factor group £ e 3(X). 

The operational meaning of capacity may be expressed by means of the Channel 
Coding Theorem and its Converse (cf. [22]). In other words, we are interested in the 
asymptotic behavior as n -> oo of the sequences 

(2.14) I - log2 S„(e, £); n e NÍ ; 0 < e < 1 , { e # , 

where S„(e, ^) denotes the maximum length of M-dimensional ^'-codes with the error 
probability e„ less than e. 

In Section 4 below we shall use a general construction (as explained in [12, Section 
4]) in order to prove the existence of an extended real-valued random variable C(x^) 
on (A, SC, y) and define the information quantile capacity C* as the limit 

(2.15) C* = limc(,9) 
9 - 0 

where 

(2.16) c(B) = inf {t : y{X e A : C(xx) £ t} ^ 3} 

for 0 < 3 < 1. Due to our interest in fixed error probabilities the quantiles c(,9) 
themselves naturally enter the coding theorems: 

Theorem 1. I f O < S < e < l , and if t < c(9) then there is a finite factor group c, 
of the alphabet such that 

(2.17) l i m i n f i l o g 2 S „ ( e , £ ) ^ t. 
n n 

Dually, we have 

Theorem 2. I f O < e < S < l , and if £, is any finite factor group of the alphabet 
then 

(2.18) lim sup - log2 S„(e, {) <. c(9). 



In particular, if we restrict ourselves to the continuity points of c(°), the above 
theorems together with the fact 

(2.19) {l£Z)->(Sj(e,T,)gSj(e,Z)) 

give the main result: 

Group Coding Theorem for Decomposable Channels. Let v be a channel de
composable into components with additive a.m.s. and ergodic noise. Let e be a con
tinuity point of the quantile function defined in (2.16). 

I. Coding Theorem 

V{c' < c(s)} 3{£0 e Z(X)} 3{n0 ^ 1} V{£ e 2£(X); £•£ Q 

V{n ^ «o} 3{/i-dimensional £-code 3] : (en(l) < e) et (/(J2) > 2"c'). 

II. Converse 

V{c" > c(e)} V{£ e %(X)} 3{n0 > 1} V{n ^ n0} 

V{n-dimensional £-code J} : (e„(j) < e) => (1(1) < 2nc"). 

Corollary 3. Let C* be the information quantile capacity of the channel v. Then 
the assertion of the Coding Theorem is valid for all real c' < C*. If, in addition, v is 
indecomposable, and if c" > C* (in case C* < oo) then 

V(£ e S(X)} 3{n0 ^ 1} V{n ^ n0} 

(e^)<«) ->( / ( i )<2« ' ) . 

Our next results concern the trasmission rate capacities. First of all, the following 
auxiliary result is necessary: 

Proposition 3. Let /i e MB and let v be an a.m.s. channel. Then the output distribu
tion fiv0 (i.e., the A' marginal of ^v) is a.m.s. 

Given a decomposable channel v of the type considered and given c e 2£(X) we 
define a family v. = {v?(- | y); y e £,'} by the properties 

(2.20) Vi(G [ y) = J x\(G - y) y(dA) ; y e ^ ' , G e / { . 

Proposition 4. Let v be a channel decomposable into components with additive 
a.m.s. and ergodic noise. Then the family v((£,e%(X) arbitrary) is a channel (i.e., 
a measurable family of probability measures) decomposable into components with 
additive a.m.s. and ergodic noise. 



In light of Propositions 2 and 3 we have two a.m.s. measures, (/xv^)0 and juv̂ , 
associated with any \i e M^ and £, e 3£(X). Since all these measures determine finite-
alphabet a.m.s. sources, their respective entropy rates, h(fi), h(^v^) and h(([i\\)°), 
are all well-defined [13]. Let 

(2.21) I(nv,) = h(n) + h(((iv,f) - %v,) 

denote the transmission rate. We define the stationary capacity Cs(£) of the channel v, 
by 

(2.22) CS(H) . sup { / (^) : /( e M4} 

and the ergodic capacity Ce(£) by replacing M^ in (2.22) by M*. For finite-alphabet 
channels there is no need of restriction to the group codes. In particular, we aim to 
prove the Theorem on e-Capacities [15] for such channels. This will be a consequence 
of the next theorem. 

Theorem 3. The channel v. derived from a channel decomposable into components 
with additive a.m.s. and ergodic noise is regularly decomposable in the sense of [15]. 

Finally, we have the following result connecting the stationary and ergodic 
capacities with the information quantile capacity: 

Theorem 4. Let v be a channel decomposable into components with additive a.m.s. 
and ergodic noise. Let 

(2.23) Cs = sup Cs(Cj, Ce = sup Ce(£). 
ZeSt SeZ 

Then 

(2.24) Cs = Ce, 

(2.25) (v indecomposable) => (Cs = Ce = C*). 

3. STRUCTURE OF CHANNELS 

In this section we prove the assertions related to the properties of the channels 
themselves. 

Proof of P r o p o s i t i o n 1. By [1, Corollary 1] we have to consider only stationary 
test sources when proving a channel a.m.s. So let \i e MB be arbitrary. We shall prove 
that the joint input/ouput measure jiv (cf. (2.2)) is a.m.s. by proving that the limits 

(3.1) Um-Y MTsL(F x G)) 
n n j = 0 

exist for all rectangles F x G; F e f B , G e f x (as to the symbol TBXA cf. (2.3)). 



Now 

Hv(TBiA(F x G)) = tiv(TB

JF x TA~
JG) = 

= f v(T2JG | j ) /.(dy) = \ x(T~A

JG - y) M(dy) = 
JTB-JF JTB-JF 

= \*(T;JG - T2Jy)ti(dy) = f x(T^J(G - y)) p(dy) , 

where we used the invariance of \i and the fact that TB = TA is one-to-one. Routine 
arguments including the Bounded Convergence Theorem give that the limit (3.1) 
coincides with 

I x(G - y) џ(dy) ; 

the numbers x(G — y) being well-defined because x is a.m.s. This shows that v is 
a.m.s. Now since % e MB, the relations 

v(G | y) = x(G - y) ; >> e B 7 , G e J ^ 

define a stationary channel. One can easily check that v(* | y) = v(- | y) fi-a.e. for 
every \x e MB, where v is the stationary mean of the a.m.s. channel v so that the 
proof is complete. • 

P r o o f of C o r o l l a r y 1. If xeSB then x e MB. By the preceding proposition, 
v is a channel with additive stationary and ergodic noise, hence v is stationary and 
ergodic (see [8] or [15]). By [1, Lemma 4], v is a.m.s. and ergodic. • 

Proof of P r o p o s i t i o n 2. Let the components vA be determined by a.m.s. 
measures xx, X e A. By [l, Corollary 3], in order to prove v a.m.s. it suffices to prove 
that the limits 

lim ~ ^ V(T2JG I TB

Jy) 
n n j = 0 

exist for all y e B' and G e ^A. But this assertion holds true for v replaced by vA 

(X e A). For fixed G,j, and y, the map X H-> xx(TA~
J(G — y)) is S£-measurable so that 

the Bounded Convergence Theorem applies to conclude the proof. • 

To the proof of Corollary 2 note the following. It is an easy exercise to show that 
(2.10) is valid for all y except some set of invariant measure zero, i.e., except some 
F e 3FB with the property that \x(F) — 0 for all \x e MB. The obtained v can be then 
modified on that exceptional set so that (2.10) becomes valid for all y e B1 (set [1] 
for the details about such a.e. modifications). The proof of Propositon 3 is immediate. 

Proof of P r o p o s i t i o n 4. By assumption, 

v(G | y) = j xx(G - y) y(dX), y e B1, GeZFA, 



where xx e S*, for all X e A. Let x\ e S* be the induced measure on SF ( (c s ^ ) . By 
definition, 

Ví(G|y) = \x\(G-y)y(áX), Ge&t 

This integral representation immediately results in the desired measurability of the 
maps y i-» vf(G \ y), G e &(. • 

Let us close this section with the following 

Lemma 2. Let v be a channel decomposable into components with additive a.m.s. 
and ergodic noise. Then v is a channel with additive a.m.s. noise determined by the 
measure x e SB defined by the property that 

(3.2) x(-) = jx\-)y(dX). 

Proof. By definition, X H> X\G) is .S'-measurable and uniformly bounded in X 
for any fixed G e 3FA. Hence, the integral in (3.2) is well defined and the a.m.s. proper
ty of the probability measure x follows easily by a direct verification. Finally, 

v(G | y) = f vA(G | y) y(dX) = f x\G - y) y(dX) = x(G - y) ; 

Ge^A, yeB1. • 

Let Rx denote the set of all regular points in X1 and let \iz e Mx be the measure 
uniquely determined by z e Rx [14]. As well-known, Rx e Jx, [iz is a Tx-invariant 
function of the variable z and n(Rx) = 1 for all /x e Mx. In particular, since any 
x e Sx coincides with its stationary mean x e Mx on Jx, x(Rx) = 1 for all x e Sx. 
In addition, 

(3.3) x{F)= \ nz(F)x(Az), FeJx, x 
jRx 

However, x and x may differ significantly on !FX \ Jx so that the converse of Lemma 
2 fails to hold. In other words, the relation (3.2) does not coincide with the ergodic 
decomposition as known in Krylov-Bogolyubov theory (cf. [14]). 

4. INFORMATION QUANTILES AND CAPACITY 

Let x e Sx. Then x 6 Mx and, as one can easily check, x~f = (x\ e M*. For brevity, 
we shall write xf for (x)f. Due to the invertibility of the shift Tf in £7, xf <̂  xf. In 
other words, we are in the setup investigated by Jacobs [4]. Let 

(4.1) [z 1 , . . . ) z„] = [{z1 , . . . ,zn}] = { 3 ' e ^ : ^ i = zI. + 1, i = 0, 1 , . . . . n - 1} . 

We let h(xf) denote the entropy rate of x(. By the McMillan's theorem of Jacobs 

9 

єS. 



we know that the sequence { —n"1 log2 x^[zj, ..., z„]; neJV} converges in V(X() 
to the limit /z(x/J. As in [13] we identify that limit with the entropy rate of the a.m-s-
measure x^ and we use the notation 

(4.2) h(^x) = h(x,) = /z(x,). 

As pointed out in [10] and [12] we can use 

(4.3) /i(x) = lim /z(c, x) 

as the definition of the entropy rate of x e Sx even if X is infinite so that Jacobs' 
arguments fail to work. This definition has been justified in [13, Section 3]. Let 

(4.4) C(& KX) = log2 r(S) - %", xA), XeA, 

Following [12, Section 4] or [20] we can prove the existence of an extended real-
valued random variable C on the probability space (A, J?, y) such that 

(4.5) C(KX) = sup C(L KX) = lim C(*/„, KX) 

for all XeA, where {«„; n e / V j c f is the above mentioned cofinal sequence. 
Consequently, the definitions (2.16) and (2.15) are justified. 

5. PROOFS OF THE CODING THEOREMS 

For x e Sx, c e S(X), and 0 < £ < 1 put 

(5.1) LX(E, £") = rain (card (A) : A c <f, x^A] > 1 - e} . 

As shown in [13], if x e S* then 

(5.2) lim - log2 Lx(e, f ) = h(i, x) 
n n 

for all £ e (0, 1). Further, recall from [20] the basic relations between the quantities 
S„(s, i) and Lx(e, «f): 

(5.3) (E-e')r(t;")<Sn(e,Z)Lx(E',i;"); 

(5.4) S„(e, c) Lx(e, {") < r(c"); ^eSC , 0 < e' < £ < 1 . 

To the proof note that all these quantities relate to finite probability vectors so that 
the relations are valid also without the stationary assumption. The proofs of the 
coding theorems (Theorems 1 and 2) are based on the ideas first developed in [14] 
and then frequently adapted (see e.g. [20] and [12]). Therefore, only rather sketchy 
proofs are given. 

Proof of Theorem 1. It follows from (2.16) that 

y{l e A : C(x;") > t) > 1 - 9 . 

10 



Hence, for some n >. 1, 

y{X e A : C(n„, x>:) > t} > 1 - 9 

(cf. (4.5)). Let d = log2 r(£) — t for t, = tj„ with the foregoing property. Then, 
according to (4.4), 

y{X e A : h(£, x>) < d] > 1 - 9 

so that y(DA) > 1 - 9 if D^ = {A s A : fe(£, xA) < d}. As /. [ fx = /I | «/Y for 
/( e Sx, we conclude that 

V{/ E D^} x\(D) = 1 , 

where D = {z e R^ : h(fiz) < d}. Therefore, if 

<(1)=У(DЛУ1[ ^ y ( d Я ) 

then x\i)(D) = 1. From now on the proof follows the one given in [14] until we get 

lim sup - log2 Lx(e, £") ^ d 
n n 

for all e > 9. Now let 9 < e' < e. Then, according to (5.3), we get 

liminf ilog2S„(£, f) ^ 

^ log2 r(g) - lim sup - log2 LX(E', <f) § 
n n 

^ log2 r(£) - d = t. • 

Proof of Theorem 2. Let f = c(S>) so that 

y{;. e A : C(£, x;-) ^ t) ^ 9 . 

Let DA = {2 e A : h(£, xA) ^ rf}, d = log2 r(£) - t. Then y(DA) ^ 9 > 0 so that 
we can define 

y2(L) = y(LnDA)jy(DA), Le J? . 

Let x(2) denote the corresponding composition of the measures x'\ Then 

42 ){z e R4 : h(fiz) £ d} == 1 

so that, using [13, Lemma 2], [14, Lemma 8] and (5.4), we get the conclusion. • 

The direct part of the Group Coding Theorem follows from Theorem 1 by taking 
into account the assertion (2A9). The Converse is just a restatement of Theorem 2. 
Corollary 3 is trivial. 

P roof of Theorem 3. Let v̂  be determined by (2.20), whence xx e S* for all 
XeA.By [15, Theorem 5] and Corollary 2, the stationary mean v4 of the channel v. 

11 



is regularly decomposable. Now we use the fact that the regularity condition relates 
merely to the distribution functions 

F(t) = y{X e A : C(£, xx) rg t} , 

G(t) = y{X e A : J(/<vJ) ^ t} , t real. 

(cf. [15, (1.25), (1.26)] or [16]). Now C(£, xx) g n f and only if h(x$) ^ log2 r(£) - t 
(see (4.4)), hence 

E(0 = y { A E A : h ( ^ ) ^ l o g 2 r ( ^ ) - r } = 

= Ht{z e Rt : h(nz) ^ log2 r(£) - t} = 

= 8{{z e K. : % . ) ^ log2 rtf) - f} = F(f) . 

Going backwards we get 

F(t) = y{X e A : C({, xx) S t} , t real. 

If [i e M* then both (fivt)° and /.v£ are stationary and ergodic finite-alphabet sources, 
for all X e A. In particular, there is a T^x..-invariant function 7(z), z e Rt*t such that 

^ { z e R , x , : / ( Z ) = / ( ^ ) } = l . 

But I(/ivt) = J(/»vj) so that 

Hvl{zeRt^:l(z)=l(nvt)} = \. 

Consequently, G(t) = G((), where G(t) has analogous meaning as F(t) above, and 
this proves the regularity condition. In fact, the distribution functions F and G 
correspond to the regularly decomposable stationary channel vt. • 

Corollary 5. Let the channel v be decomposable into components with additive 
a.m.s. and ergodic noise, and let c, e 2£(X). The limit 

(5.5) Cj£) = lim - log2 S„(s, § 

n n 

exists for all e e (0, l), except some countable set, and 

(5.6) Cj£) = inf {t : y{X : C(£, xx) rg t} ^ e} . 

This follows, on account of Theorem 3, from the main Theorem on e-Capacity in 
[15]. The corollary suggests an alternative definition of the information quantiles. 
Actually, let 

(5.7) c(3) = sup {C9(£) : c e 3£} (cf. (5.6)) 

and 

(5.8) C = !im c(9). 
»->o 
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Proposition 6. Let v be a channel decomposable into components with additive 
a.m.s. and ergodic noise. Then 

(5.9) c(9) = c(9), 0 < 9 < 1 , 

so that, in particular, C* = C. 

Proof. Throughout the proof the symbols lim f and lim j. will denote monotone 
limits. Let t k c(9). By the definition of c(9) and with the aid of (4.5) we get 

y{X e A : lim | C(n„, xx) < t} ^ 9 

so that 

lim | y{X e A : C(n„, xx) < t} § 9 . 

Therefore t ^ C»(n„) for all n ^ 1. As 

lim T C9(n„) = sup C3(c) = c(9) 
n &Z 

we get, due to the arbitrariness of t, the relation c(9) 2; c(9). The converse inequality 
can be obtained by a similar reasoning and the details are left to the reader. fj 

Corollary 6. The information quantile capacity C* of a channel decomposable 
into components with additive a.m.s. and ergodic noise is expressed by the formula 

(5.10) C* = lim sup lim - log2 S„(e, f ) . 
. - •o jsar n n 

Proof of Theo rem 4. It suffices to prove 

(5.11) Ctf) = CJ(Z), te%(X). 

Using the notations introduced above in the proof of Theorem 3 we get immediately 
from [4] that 

1^)= [ I(z)^(dz) 
j K ? x j 

for any n e M( and any £ e 2?(X), respectively. If z e R(x( then z = (y, x), where 
y e R4, x e R. and the marginal distributions of /(. coincide with fiy and pix, respec
tively (cf. [15]). Hence 

(5A2) IK)=[ I(»zv() n(dz), neM(. 
JR( 

But (5.12) implies (5.11) as shown in detail by Parthasarathy [7]. It remains to prove 
(2.25). But the proof is easy as the capacities Cs(£) and Ce(£) of the channel v̂  coincide 
with those of the stationary channel v{. • 

Thus we have proved all assertions formulated in the previous sections. On the 
other hand, there are several other definitions of capacity not yet mentioned. There-
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fore we conclude the paper by the following remarks. A measure p. e P( is said to be 

block-stationary if there is n e N such that \i is TT-invariant. Let M\ designate the 

set of all block-stationary measure on £'. Let 

(5.13) C = sup sup {l(fiv^) : \i e M\} . 
Set? 

At the same time, we can consider the quantiles of the transmission rate function l(z) 

instead of the quantiles of the capacity function so that we get 

(5.14) £ = suplim C s(£), 
&& »-»o 

where 

£J^) = sup sup {t : //v.{/(z) g t) < 9} . 
tieM(b 

Lemma 3. C 5; C . 

For the proof see [3, Lemma 1], The proof works also in the a.m.s. setting due to 

the invariance of I(z). 

Corollary 7. Let v be an indecomposable channel, i.e., a channel with additive 

a.m.s. and ergodic noise. Then 

(5.15) C* = Cs = C e = C = C = C = c(9) = c(9) 

for all 9 e (0, 1). 
(Received February 19, 1980.) 
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