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An Application of Conjugate Duality 
for Numerical Solution of Continuous 
Convex Optimal Control Problems 

M i V. OUTRATA, OTAKAR F. KRIZ 

In the papsr two numerical approaches for solving a class of convex continuous optimal 
control problems with state-space constraints are presented. Both approaches are based on the 
conjugate duality so that the solution of the original problem is substituted by the solution 
of another problem or a sequence of anothsr problems that can bs easier and hence more easily 
solvable. 

INTRODUCTION 

Duality theory became an important part of the theory of extremal problems 
including the mathematical programming, the optimal control theory, the combina-
torical problems and other areas. For the finite-dimensional problems the usage 
of dual methods has reached a satisfactory stage of development. For infinite-dimen
sional problems, however, the conjugate duality was exploited up to now preferably 
for theoretical purposes such as the existence of solutions, constraint qualifications, 
optimality conditions etc. (cf. [5], [13]). Concerning numerical methods for infinite-
-dimensional optimal control problems, Rupp ([17], [18]) has applied the original 
method of Hestenes and Powell to a class of terminally constrained problems in 
such a way that the dynamic system equation is eliminated by means of a generalized 
penalty functional. More complex problems including mixed state-control inequality 
constraints have been studied by Glad [4], who treates all problem-constraints via 
generalized penalty. 

According to our opinion the source of principal difficulties in solving optimal 
control problems numerically is the presence of state-space constraints. Therefore, 
in the first (more applicable) approach of this paper it is proposed to eliminate by 
means of a quadratic generalized penalty functional merely the state-space con
straints. Provided the control constraints are of a simple form (e.g. linear), we obtain 



478 a sequence of much simpler extremal problems still possessing the original optimal 
control structure. 

The Fenchel dualisation scheme was many times used in the literature in situations 
where infinite-dimensional problems could be converted into finite-dimensional 
ones (cf. [8]). We propose, with respect to the works of Lemarechal [6], [7], to apply 
this scheme even for problems, where the space of dual variables is Hilbert. Clearly, 
the class of problems to which this approach is applicable is rather restricted, but 
the numerical results are encouraging. 

We shall extensively use the theory developed in [2], [14], [15], [16] and employ 
the following notation throughout the sequel; Rn is the Eucleidean rc-spaee, R is the 
extended real line, L2[0, T, iv"] is the space of (equivalence classes of) square integ-
rable vector-valued functions on [0, T] with values in Rn, IV2[0, T, Rn~] is the space 
of absolutely continuous vector-valued functions on [0, T] with values in Rn and 
derivatives in L2[0, T, IT], C[0, T, Rn] is the Tschebyshev space, JSf [X, Y] is the space 
of all continuous linear operators mapping X into Y, xJ is the j-th coordinate of 
a vector x, J7* is the conjugate operator to a linear operator 27, AT is the transpose 
of a matrix A, proxx z denotes the proximal mapping of z with respect to a function / 
(cf. [9]), C(x* | Q) denotes the contact set of Q cz X with respect to the direction 
x* eX*, i.e. 

C(x* | Q) = {x e Q | <x, x*)x = sup (y, x*)x} , 
yeD 

X* is the space of all continuous linear functionals over a space X, 5( • | Q) is the 
indicatory functional of a set Q, (x)D is the projection of an element x onto a set D, 
df(x) is the subdifferential of a functional fat x, and © is the zero vector. 

1. PROBLEM FORMULATION 

In the whole paper the following convex optimal control problem will 
be investigated. 

Basic problem (BP): 

subj. to 

ę{x(T)) + ф(x,(t)) , u(t)) dř -• inf 

x = A x(t) + B u(t) a.e. on [0, T] , 

x(0) = x0 , 

u(t) є (« c L2[0, T, Rl] , 

q(x) (t) = on [0, T] , 

a(x(T)) =  



where A, B are constant [n x n], [n x /] matrices, respectively, u e L 2 [ 0 , T Rl\, 
xeWl[Q>, T R"], <p[R"-»R], iA[#" x R' -> R], q[RH ^ Rm\, a[R*-+Rk\, and 
the inequality sign is valid for all coordinates. We assume that 

(i) cp is a proper convex, lower semi-continuous (l.s.c.) function, 
(ii) \j/ is a proper convex, l.s.c. function, 
(iii) a> is convex and closed, 
(iv) functions q', i = 1, 2, ..., m are convex and continuous, 
(v) functions a', i = 1, 2 , . . . , fc are convex and continuous, 
(vi) there exists a control u0 e co such that the absolutely continuous trajectory 

x(u0) corresponding to u0 satisfies the inequalities 

q(x(u0)) (t) S& for r e [0, T] , a(x(u0) (T)) g 0 , 

(the consistency of the constraints or the controllability of the given system 

within the given constraints), 

(vii) either co is bounded or the functional S[L2[0, T R'\ -> R] 

S(u) = cp(x(u)(T))+jy(x(u)(t),u(t))dt 

is on co coercive. 

With respect to both approaches being discussed in this sequel it is convenient 
to transcribe our BP into the form of so called Abstract Convex Optimal Control 
Problem (ACOCP): 

j(u, y) -»inf 
subj. to 

(1) y = nu + y0eY, 

ueco c U, 

-q(y)€DczH, 

where U, Y and H denote the control space, the generalized state-space and the 
constraint space, respectively, J is the optimality criterion, H and y0 describe the 
system dynamics, cone D defines the partial ordering in H in the usual way, and 
— q(y)e D represents the state-space constraints. 

Remark. We call Ythe generalized state-space or also response space (cf. [ l l ] ) 
because it need not be necessarily identified with the space of trajectories x(t) as it 
will be shown in Sec. 3. 

The most natural choice is to set U = L2[0, T R'J, Y = ^ [ 0 , T R"\ and H = 
= C[0, T, Rm] x Rk. The positive cone in H is 

(2) D = {(w, z) e C[0, T, Rm\ x Rk | w(t) £ 0 on [0, T], z ^ 0} 



480 and BP attains the form (1) if we set y = x(t), y0 = eA'x0, 

(3) Hu = J eAi'-x)B u(t) dr , 

(4) q(y) = (q(x)(t),a(x(T))), 

and denote its objective J. The assumptions stated above imply that the ACOCP 
induced by BP by means of (2), (3), (4) satisfies the following set of requirements: 

(5) (i) J\U x Y-» R] is a proper convex, l.s.c. functional (cf. [12]), 
(ii) n e J5?[U, Y], y0 e Y 
(iii) D is a closed convex cone in H with a vertex at the origin, 
(iv) co is closed and convex, 
(v) q is a D-convex continuous map from Yinto H (cf. [20]), 
(vi) there exists at least one solution of (l) and the corresponding value of the 

objective is finite (cf. [2]). 

In what follows we shall systematically investigate two dual approaches for solv
ing BP in terms of (l). Each approach requires a slightly different transcription to the 
general form (1) than the natural one defined above but the general assumptions (5) 
must be satisfied. Moreover, each of them requires some special additional assump
tions which will be given at the appropriate places in terms of BP. 

2. PERTURBATIONS OF THE STATE-SPACE CONSTRAINTS 

This approach is based on the perturbations of the constraint — q(y) e D and re
quires the range space of q to be Hilbert. To satisfy this requirement, we set now 

H = L2[0, T Rra] x Rk, 

and, correspondingly 

(6) D = {(w, z)eH\ w(t) ^ 0 a.e. on [0, T], z ^ 0} . 

It can easily be seen that the map q remains continuous from W^O, T, R"J into H 
so that 

(i) the corresponding ACOCP (1) is equivalent with BP (in the sense that they 
possess the same sets of solutions (u(t), x(i)) and optimal values), 

(ii) the assumptions (5) are satisfied. 

With respect to the numerical method (18, 19) described in this section it is reason
able to assume additionally that 

dom S(u) => co . 



Let us construct the family of dual extremal problems (S)l
r) to BP exploiting the 481 

perturbed essential objective 

(7) Fr(u, p) = J(u, nu + y0) + 5(u | co) + S(Ilu + y0\{y\ p - q(y) 6 D}) + 

+ AW* 
where r ^ 0 is a scalar parameter. The assumptions being imposed guarantee that 
Fr, r ^ 0 is a proper convex, l.s.c. functional on L2[0, T, Rl] x L2[0, T, Rm] x Rk. 
(Si)) attains the form 

(8) - F*(0, p*) -> sup 

subj. to 

p*eH, 

where F* denotes the convex conjugate functional to Fr, i.e. 

(9) F*(0, p*) = sup [<p, p*)H - J(u, nu + y0) - r | p | | ] . 

p-«( / Iu + y0)sD 

It can be easily proved, exploiting Th. 2.4 of [20], that 

(10) -F*(&, p*) = inf Lr(u, p*), 

where 

J(u, nu + y0) - (p*, (£ - q] + q\ + r \(£ - q) + q\\ 

(11) Lr(u,p*)=/ \ ^ r > / - " ^ 1 i-
\ if M e co 

oo if u $ co . 

(Arguments at q were dropped due to the notational simplicity). The functional Lr 

will be termed augmented Lagrangian and corresponds exactly to the functional A 
in [20] where it was defined for duality purposes as a certain modification of the 
penalty functional T. 

Let us denote 

(12) g0(p*) = inf [J(u, nu + y0) - <p, p*)H] , 

p-q(nu + yo)eD 
and 

(13) gr(p*) = mfLr(u,p*) 

the dual objectives in the case r = 0, r > 0, respectively. Both functional gr and Lr 

possess various useful properties, listed for the finite-dimensional problems e.g. 
in [14], [15]. One of the probably most important properties of the dual objective gr 

is expressed in the following proposition the proof of which can be found in [10]. 



482 Theorem 2.1. For all r > 0 

(14) gr(p*) = max \g0(a*) - 1 \\p* - a*\\{\. 

Thus, the dual problems (2$l), r> 0 all have the same optimal solutions and supre-
mum as the ordinary dual (&>l). Moreover (assuming g0 +z — co), gr is everywhere 
finite and continuously Frechet differentiable on H. Especially, if for a given p* 
the infimum defining gr(p*) happens to be attained at a point u e co, then the Frechet 
gradient 

(15) Vgr(p*) = Vp.L,(u, p*) = - \q(llu + y0) + (~ ~ <z(II" + J\»)) 1 • 

Remark. In our case clearly g0 ^ — oo. 

The perturbational functional hr(p) corresponding jo (7) attains the form 

(16) K(p) = h0(p) + r\\p\\2
H , 

where 

(17) h0(p) = inf J(u, nu + y0) 

p-q(Ilu + yo)eD 

is the perturbational functional corresponding to (7) for r = 0. We are not able 
to prove its subdifferentiability at 0 in H (D possesses no interior), but only its 
lower-semicontinuity at 0, if we take into account the assumptions of the previous 
section. 

Theorem 2.2. BP is with respect to perturbations (7) normal, i.e. its perturbational 
functional hr(p), r >. 0 is at 0 finite and l.s.c. 

Proof. Thefiniteness of hr(p) at 0 is evident. Let us now assume that hr(p) is at 0 
not l.s.c, i.e. that in any open ball with the centre in 0 there are points p and an 
s > 0 such that 

inf [F0(u, p) + r\\p\\H] < inf F0(u, 0) - e «. yi - s, 

where F0 is the perturbed essential objective for r = 0 and n is the optimal cost value 
for BP which is finite. Let us take a sequence {pn} converging to 0. It is possible 
to find points u„ for which 

Fo(Hn, Pn) + r\\pn\\
2
H <H~ (e/2). 

The sequence {«„} is bounded due to either the boundedness of co or the coercivity 
of S on co. Therefore, it is possible to select a subsequence {«„.} from {«„} weakly 



converging to some point uQ e co. In the weak topology functional F0(u, p) + rjp\\% 483 
remains l.s.c. (cf. [2]). Thus, 

FQ(u0, 0) < lim [F0(un., pn) + - | f t . . | | ] < n - e/2 < F0(u0, 0) - e/2 

what is the desired contradiction. fj 

The dualisation (7) with r > 0, has two basic advantages in comparison with the 
classical case r = 0. The first is expressed in the Theorem 2.1 (dom gr = H), the 
second in the following important proposition: 

Theorem 2.3. Let p* be a solution of (Si)) for r > 0. Then any u minimizing 
Lr(u, p*) is a solution of BP. 

The p roof differs in no respect from the corresponding finite-dimensional pro
position in [14]. 

For the solution of (S)) e.g. the well-known primal-dual numerical scheme of [15] 
can be applied. 

Given r < 0, p* e H and a sequence {ak} with 0 ^ ak -*• 0, such that £ jak < oo. 
i t= i 

/c-th step: 

1) Given p* e H, determine ukea> such that 

(18) Lr(uk,p*)<MLr(u,p*k) + ak. 

2) Set 

(19) p*k+1 = p* - 2r \q(nuk + y0) + fe - ?(J7u t + y0)^ 1 . 

Theorem 2.4 below deals with the convergence properties of this scheme. 

Theorem 2.4. Let the sequence of multipliers {p*} generated by (18,19) be bounded. 
Then the corresponding sequence of controls {uk} is asymptotically minimizing 
for BP and its every weak cluster point is a solution of BP. 

In the proof we involve following lemmas: 

Lemma 2.1. For a bounded sequence {p*} of elements of H generated by (18, 19) 

lim [flr,(p?+1) - ar(prox p*)] = 0 . 
k-*co -2rg0 



484 Proof. gr is, as a concave functional continuous over H, locally Lipschitz so that 
there exists a constant L such that 

lim [gr(pt+t) - ar(proxp*)] ^ lim |flr(p*+1) - a r(proxp*)| = 
k-*x -2rgo ft-» oo ~2rgo 

= limL[|p*+1 - prox]>*||H. 
ft-<» -2rg0 

As shown in [14], condition (18) yields the estimate 

(20) r\\Vp.Lf(uk, p*k) - Vgr(p*k)l
2
H < ak. 

Recalling the basic properties of proximal mapping from [9], Eq. (15) can be written 
in the form 

V9r(p*) = - — (P* - Prox p*) 
2r -2rg0 

so that 
prox p* = p* + 2r Vgr(p*) . 

Hence, Ineq. (20) and the "up-date" rule (19) imply that 

flPit+i - proxpk\\H S 4rcck 
-2rg0 

so that 

lim|Pft*+i - p r o x p * | | H = 0 
k->oo -2rgo 

and we are done. • 

Lemma 2.2. Let {p*} be a bounded maximizing sequence for (® r), r > 0 and let 
for all k the control uk satisfy Ineq. (18). Then {uk} is an asymptotically minimizing 
sequence for BP, i.e. in our case 

(21) uk e CO 

e(-q(nuk + yo),D)^0. 

J(uk, Huk + j 0 ) -> n . 

where g(p, D) denotes the distance between an element p and the cone D. 

The p roof is omitted since in the finite-dimensional case it is essentially given 
in [14] and our case requires only slight modifications. 

Lemma 2.3. Let the sequence {uk} of controls be such that relations (21) are 
satisfied. Then there exists at least one weak cluster point u of this sequence and this 
control is an actual solution of BP. 



Proof. The distance Q( — q(Il(.) + y0), D) is a convex functional finite over the 
whole space L2[0, T, R1}. It is bounded above on any set 

0S = {u e L2[0, T, Rl] \ -q(nu + y0) e <%s} 

where 

@e = {peH\pe\J N(z, s}, e > 0, N(z, e) = {w | ||w - z\\H < e} 
zefl 

by e. &e is open as an original of an open set BE in a continuous map - g(J7( •) + y0). 
It is nonempty because it includes the set of feasible solutions of BP. Hence^ Q is 
continuous over H. 

Any sequence {uk} with properties (21) is bounded due to the coercivity of S on co. 
Hence, it possesses weak cluster points according to the Eberlein-Shmulyan theorem. 
The continuity and convexity of g( — q(n(-) + y0, D) imply its weak lower semi-
-continuity so that if {uk,} is a subsequence of {uk} weakly converging to a point 
u0, then 

e(-q(nu0 + j0), D) = lim g(-q(nuk, + y0), D) = 0 . 
r->co 

Hence, u0 is with respect to state-space constraints feasible. Similarly the convexity 
and lower semi-continuity of 5 imply the weak lower semi-continuity so that 

S(u0) = J(u0, nu0 + y0) = lim J(uk,, Uuk, + y0) = \x . 
k'-m 

which was to be proved. • 

P roof of T h e o r e m 2.4. If we take into account the assertions of Lemmas 2.2, 
2.3, the only thing which remains to be proved is that the sequence {p*} generated 
by (18, 19) is maximizing for (Q)\), r > 0. 

We observe first from (14) that 

(22) gr(pt) = g0(proxpt) - - fproxp* - p*||H = a0(proxp*) - r|V^,(p*)||H . 
-2rga 4r -2rg0 -2rgo 

But (14) also yields 

(23) 0r(prox pt) = a0(prox pt). 
— 2rgo —2rgo 

Combining (22) with (23), we have 

(24) ^ (proxp*)^a r (p*) + r |Va r(p*)|H for all k. 
-21-90 

From (24), the assertion of Lemma 2.1, and the fact that gr is bounded above (since 
SUP 9r = n), we are able to conclude that 

lim ||Var(p*)||H = 0 . 



486 Since gr is concave, the last equation implies that 

lim gr(pt) = sup gr 
k-oo 

and the proof of the theorem is complete. • 

Let us now turn briefly our attention to the solution of extremal problems (18) 
(being also termed intermediate problems) in the case of our BP. If we denote p* = 
= (X, p) e L2[0, T R"] x Rk, the augmented Lagrangian attains the form 

(25) Lr(x(t), u(t), k(i), n) = <p(x(T)) + [%(x(t), u(t) dt -

- f t m max fox) (t),*M dt - E u W ja;(x(T)),g + 

+ rC f max2 iq'(x) (t), ^ H dt + r £ max2 Ll(x(T)), ^X if « e to , 

Lr(x(t), u(t), l(t), p.) = + oo if u i co , 

with the trajectory x(f) corresponding to the control u(t). Hence, these intermediate 
problems preserve the original optimal control structure. On the other hand, as 
they do not possess any state-space and terminal state constraints, they are much 
easier to be solved than the original BP. 

The multiplier iterations (19) are in the case of BP of the form 

4+1(t) = m - 2rmax j r (* ) ( t ) , ^} , • = 1,2, ...,m, 

A 4 + 1 =A~2r max [a\x(T)), ^ 1 , i = 1, 2 , . . . , k. 

For a more detailed study about intermediate problems (18) and multiplier iterations 
(19) see [10]. Here we illustrate only this whole approach by a simple numerical 
example, where, for the intermediate problems a variant of steepest descent method 
was used and these minimization were performed "exactly" in order to get the infor
mation about the increase of the dual objective at every dual iteration. 

Numerical example. Suppose, we have to solve BP with 

- 4 = 0 1 1 , B = 

Бíj - J^łlML, 

co = {н| - 1 £ u(t) = 1 a.e. on [0, T]} , T = 4 , 

x2(ř) = -0-7 on [0, T], x(T) = . 



We have chosen r = 5, and initial values for the multipliers fx0 = 0, l0(t) = 0 
on [0, 4]. All integrations were performed using the 3rd order variable step Runge-
-Kutta method with the overall permitted error <?max = 10"4 . Definite integrals were 
evaluated using the Simpson's rule. The iterational process was stopped after 5th 
dual iteration where \X6 - X5\ = 0-000148, |/.6 - n5\Rz = 0-000137. In such 
a way the maximal violance of state-space constraints is specified. 

Table 1. Values of p. and gr. 

ßl ß2 9r 

l . i ter . 0- 0. 0-59801 
2. iter. -0-321 0. 0-60663 
3. iter. -0-348 0. 0-60677 
4. iter. -0-354 0. 0-60679 
5. iter. -0-355 0. 0-60684 

Fig. 1. Resulting control u, trajectories x1, x2 and multiplier X. 

3. PERTURBATIONS OF THE SYSTEM DYNAMICS 

This approach is based on the perturbations of the equality constraint y = flu + y0. 
This time it is advantageous to set y = (x(t), x(T)), and to identify the space of 
trajectories with L2[0, T, R"~] which is clearly possible. Hence, 

Y = L2[0, T, R"] x R". 

The control space U, constraint space H and ordering cone D remain as in the pre
vious section. 



488 Let us now denote g[L2[0, T RH] x R" -> L2[0, T Rm] x Rk] a map defined by 

q(y) = (q(x)(t),a(x(T))). 

This map is clearly D-convex. Moreover, the operators q'(x)(t), i = 1, 2 , . . . , m are, 
as Nemycki operators, continuous from L2[0, T R"] into L2[0, T R1] iff there 
exist functions a' e L2[0, T R] and scalars /?' g 0 such that 

(26) \q'(x)\ ^ a'(t) + P'( £ (x')2)1/2 for every x e R H , i = 1, 2, ..., m . 
j = i 

As we wish q to be continuous, we shall henceforth assume that the condition (26) 
is satisfied. 

Let now J(u, y) [L2[0, T Rl] x L2[0, T Rn] x R" ->• R] denote such a proper 
convex, l.s.c. functional that 

(27) J(u, y) = J(u, x(t)) for x(t) e W\ [0, T, R"] , 

and 7J[L2[0, T R!] -> L2[0, T R"] x Rn] be a linear continuous operator given 
by system dynamic equation so that 

(28) y = nu + y0, y0= (eA'*o, eATx0) . 

The extremal problem 

(29) J(u, y) -> inf 

subj. to 

y = Hu + y0 , 

u e co, 

-q(y)eD, 

has the general ACOCP form, is equivalent with BP in the specified sense and satis
fies the assumptions (5). 

Let us construct the dual extremal problem (S2) to (29) exploiting the perturbed 
essential objective G[L2[0, T Rl] x L2[0, T Rn] x R" -> R] 

(30) G(u, p) = J(u, flu + y0 - p) + 6(u \ co) + d(fiu + y0 -

-p\{y\-q(y)eD}). 

Assumptions being imposed guarantee that G is a proper convex, l.s.c. functional 
on U x Y i.e. on L2[0, T Rl] x L2[0, T Rn] x R". 

We denote now 

(31) A(u, y) = J(u, y) + 5(u \ co) + 5(y\{y\ - q(y) s £>}) , 



and assume that the nature of the given BP (more precisely its optimality criterion, 489 
control and state-space constraints) enables us to express explicitly the Fenchel-
-conjugate of A, i.e. the functional 

(32) A*(u*, y*) = sup [<u, u*)v + {y, y*)Y - J(u, yj\ 

-i(y)eD 

defined, of course, on U* x Y* = (L2[0, T jR'] x L2[0, T R'] x R"). 

The corresponding dual problem (2>2) attains now the form (cf. [2]) 

(33) - (p*, y0>r ~ A*(fi*p*, -p*) -* sup 

subj. to 

p* e Y* . 
Let us denote 

(34) y(p) = inf J(u, flu + y0 - p) 

-q(ffu + yo-p)ED 

the perturbational functional corresponding to (30). We are again not able to prove 
its subdifferentiability at 0 in Y (D possesses no interior), but, under slightly more 
restrictive assumptions, its lower semi-continuity not only for p = 0 but over the 
whole space Y 

Theorem 3.1. Let in the case of unbounded co the functional j(M, TJM + y0) be 
coercive on co for all y e Y not only for y0 = (eMx0, eATx0). Then the perturbational 
functional y(p) is l.s.c. on Y, which implies in particular that problem (29) is with 
respect to perturbations (30) normal. 

Proof. The fmiteness of y(p) at 0 is evident. Let us now assume that y(p) is at some 
p0 not l.s.c, i.e. that in any open ball with the centre in p0 there are points p and 
an e > 0 such that 

inf G(M, p) < inf G(M, p0) - s = y(p0) — s . 

Let us take a sequence {p„} converging to p0. It is possible to find points u„ for which 

G(u„, p„) < y(p0) - e/2 . 

The sequence {u„} is bounded; due to either the boundedness of co or the above 
specified coercivity of J. Therefore, it is possible to select a subsequence {M„.} from 
{u„} weakly converging to some point M0 e co. In the weak topology functional 
G(M, p) remains l.s.c. Thus, 

G(M0, PO) = lim G(u„., p„) = y(Po) - e/2 ^ G(u0, p0) - e/2 
Un'-'UO 
Pn-*P0 

what is the desired contradiction. • 



The dual problem (33) may be implicitly constrained due to the incidental un-
boundedness of sets co, Q = [y | — q(y) e D}. However, as its solution exists, these 
sets may be substituted by 

(35) co' = {ueco\ fluflp g M j , 

Q' - {y 6 Q\ |[y\\r = M2} , 

where M«, M2 are sufficiently large real numbers. Indeed, in this case the functional 
A is cofinite and hence 

dom A* - U* x Y* . 

In such a way implicit dual constraints will be eliminated. 
At present there is a lot of numerical methods suitable for solving (33) and various 

subgradient techniques can very well handle its nondifferentiable cost. For this 
purpose we recommend [6], [7], [21] etc. 

The necessary and sufficient optimality conditions can be stated in the form 
of the following assertion: 

Theorem 3.2. An element p* e if is a solution of (33) iff there exists a control 
u such that 

(36) ~{p*, y0} - A*(H*p*, -p*) = A(ii, flu + y0) 

which is equivalent to 

(37) (fl*p*, -p*) e dA(u, flu + y0), 

or 

(38) (u,M + y0) e dA*(fl*p*, - p*) . 

For the proof it is necessary just to combine some basic propositions of convex 
analysis with the assumptions being imposed. 

Remark. In another words the previous theorem states that, under specified condi
tions, p* belongs to the set of solution of (33) iff among the couple 

(39) (u, y) = arg max [<u, fi*p*}v + <j, ~P*)Y - 3(u, y)] 

-iWeD 

there exists a couple (u, j>) satisfying the relation j> = flu + y0; u is then an optimal 
control for (29) and hence also for BP. 

If the functional A can be decomposed into control- and state-dependent part Ax 

and A2, i.e. 

(40) A(u, y) = J » + 5(u | co) + J2(y) + S(y \ {y\ - q(y) e D}) = 

= Ax(u) + A2(y) , 

an evident consequence of Theorem 3.2. can be formulated as follows: 



Corrollary 3.2.1. In the case of A given by (40) an element p* e H is a solution of 
(33) if there exists a control u such that 

(41) u e dA*(H*p*), 

na + yQedA*2(-p*). 

Theorem 3.2 and its Corrollary provide us in many cases with a satisfactory tool 
for computing a solution of (29) from a known solution p* of (33). This inverse 
transformation is especially simple if all couples satisfying (39) have the same first 
element (control part) because then we immediately have for optimal p* the optimal 
control it. Such case appears if e.g. the optimality criterion J is strictly convex 
with respect to u or does "not depend on u at all (J1 = 0), at is a strictly convex 
set and p* $ ker 7J*. Note that if p* = 0 then 

inf J(u, y) = J(u, flu + y0), 

-q(y)eD 

so that the system dynamics equality constraint can be principially "taken off". 
As it was mentioned above, it is generally necessary to apply for the solution 

of (33) some numerical procedure capable of handling nondifferentiable costs. But 
in some cases the dual cost in (33) is even Frechet differentiable over Y*or over some 
open subset of Y*. These situations we have studied in [11] with the help of the 
concept of rotundity defined in [1]. To this sequel we include only three basic differen
tiability conditions obtained from more general statements of [11] for the case 
of problems (29), 33). 

Theorem 3.3. Let J(- , •) be strictly convex over its effective domain and elements 
« e U, y e Y be (uniquely) determined by 

(42) (u, y) = arg max [<«, 77*p*}v + <>>, - p*}y - J(u, j,)] . 

-q(y)sD 

(Provided to, Q are, if necessary replaced by a', Q'). Then the objective in (33) is 
Frechet differentiable over Y* with 

(43) v = -j>0 - flu +y 

being its gradient. 

Theorem 3.4. Let the optimality criterion J be only control-dependent, i.e. A can 
be written in the form (40) with J2(-) = 0. Let J^*) be strictly convex over its 
effective domain, Q be a strictly convex set, and elements u, y be (uniquely) deter
mined by 

(44) u = arg max [<u, fl*p* } v - Jt(u)] , 

yeC(-p*\Q). 



(Provided co, Q are if necessary, replaced by co', Q'). Then the objective in (33) is 
Frechet differentiable at all points except p* = 0 with the gradient given by (43). 

Theorem 3.5. Let the optimality criterion J be only state-dependent, i.e. A can be 
written in the form (40) with J^-) = 0. Let J2 be strictly convex .over its effective 
domain, co be a strictly convex set, and elements u, y be (uniquely) determined by 

(45) u e C(n*p* | co), 

y = arg max [<y, -p*) - J2(y)] . 
-q(y)€D 

(Provided co, Q are, if necessary, replaced by co', Q'). Then the objective in (33) is 
Frechet differentiable at all points except p* e ker H* with the gradient given by (43). 

We shall now illustrate this dualisation on one example for which the appropriate 
dual problem (33) in terms of our BP will be found. 

Let the objective in BP be given by 

(46) <c, x(T)> + K " , u)L2 + K*, x)L2, 

the set of admissible controls 

(47) co = {ue L2[0, T, Rl]\ \ul(t)\ < 1 , a.e. on [0, T] , i = 1, 2, ..., /} , 

and the state-space constraints be given by 

(48) x\t) = V a.e. on [0, T] , i = 1, 2, ..., n , 

x ^ ^ d ' a.e. on [0, T] , i =- 1, 2 , . . . , n , 

where bl > d\ i =• 1, 2 , . . . , n are some given scalars, and 

(49) \x(T)\\Rn<Q, 0<QeR'. 

As the assumptions (i) — (v) and (vii) of Sec. 1 and the additional assumption of Sec. 3 
are clearly satisfied, it remains merely to assume that also the controllability condition 
(vi) is fulfilled. 

It can easily be derived that if p* = (p\, p\), p* e L2[0, T, R"], p*2 e R" then 

(50) ft*p* = f V ( e ^ - ' > ) r PX dt + BT(e«T-y p*2 . 

By definition 

(51) A*(n*P*, -P*) = A\(n*P*) + A*2(-P*) = 

= sup f [<M, Tl*p*)Rl - K«, ">*•] df + 
H60, J 0 

+ sup I [<x, -p\)Rn - i<* . x)Rn] dt + 
d'Sx'(t)£b' Jo 

+ sup [<x(T), -p*2)Rn - <x(T), C>R„] . 
Il*<r)||g« 



Let us denote for simplicity v* = ff*p* and introduce the sets 

(52) x[ = { te[0 , T]\v'*(t) < -1} , 

= {t e [0, T] | - 1 < vl*(t) < 1} , 

= { te[0 , T]\v'*(t)> 1} , i = 1 ,2 , . . . , / , 

^ 1 = { t 6 [ O , T ] | p { * ( 0 < - d J . } , 

^ i = { t e [ 0 , T ] | - / J , < p J * ( f ) < - d J ' } , 

ti = {t e [0, T] | P{*(t) <-bj}, j = 1, 2, ..., n . 

The first two extremal subproblems in (51) are clearly solved by 
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•1 on y\ 
ul = \ v1* on y\ 

1 on %\, i = 1,2, . . . , / , 

dj on £,{ 

\ -Á* on £ 

(53) 

and 

(54) 

bJ on ^ , j = 1, 2, ..., n . 

The third one attains its maximum at 

c + p\ (55) X(T)=-Q 
\\C + P2\\R» 

and at any feasible x(f) if p* = _ c - T h u s> 

- PÌ * - c , 

sup 

where 

f [<«, »*>«. - K" , «>,.] dt = 2 r * ^ ' * ) , 
Jo i _ 1 

( „ ' * ) - f ( _ » ' * - i ) d í + i f ( V * ) 2 d f + f ( » ' * - i ) d t , i = 1 ,2 , . . . , / , 
J * , l J*2< J * 3 ' 

sup f T[<x, -]>?>*„ - Kx , x>R„] dí = I s*(PÍ*), 
<UíxJ(t)ĚbJ Jo 3"i 

where 

s*(pi*) = f (ďpi* - 0)2)dt + i f (pí*)2 át + f (-íVpí* - K W d í , 
J { l J J«2J J í s ' 

and 

j = 1, 2, ..., n , 

SUp [<X(T), -*>*>«« - <*(-), C>«n] = e||c + p* | R „ . 
IWOllSe 



Dual problem (33) attains now the form 

(56) - f V ' x 0 , p*yRn dt - <eATx0, P*2yRn - i r*(v>*) - f s](pi*) -

Jo •-! ; - i 

- Q\C + Paljp. -> sup 

subj. to 

p* e L2[0, T Rn] , p* e R". 

None from three differentiability conditions stated above is directly applicable to (56). 
However, the following assertion is true: 

Theorem 3.6. The dual cost in (56) is Frechet differentiable at all couples (p\, p*) e H 
except of those where p* = — c. The gradient is given by 

v = ~y0 - flu + y 

where u is given by (53) and y by (54), (55). 

Proof. With respect to the theory developed in [11] it remains to prove that the 
infimum of the functional y(-) — < -,p*> is attained strongly at any P* with 
P* * c (y is the corresponding perturbational functional) with respect to the norm 
topology of Y Clearly, 

inf [y(p) - (p, p*yY] = inf [ inf J(u, flu + y0 - p) - <p, p*>y] = 
peY peY _ ueut 

-q(nu+y0-p)eD 

= inf [ inf J(u, y) - <JJu + y0 - y, p*yY] = 
yeY UEO) 

-q(y)eD 

= - sup [<«, n*P*yv - (y, P*yY - J(u, y)] - o0, P*yY = 
-Z(y)zD 

= - sup f [<a, n*P*yR, - i<U, U)RI] dt -
ueco J 0 

- sup I [<x, P'tyRn - j<x, xyRn] dt - sup <x(T), -p*2- cyRn -
d<zxHt)Zb'J0 \\xm\\se 
i=l,2 n " 

- J <e"'x0, ptyRn dt - (eATx0, P*yR„. 

The suprema in the first and second term are attained strongly with respect to norm 
topologies in L2[0, T R'] and L2[0, T R"] due to the strict convexity of the corres
ponding quadratic forms at u and x, respectively. The supremum of the third term 
is attained strongly at x(T) due to the nature of the support function of the ball 
|U(L)|| ^ Q whenever p* + —c. Q 



Still one aspect of this approach seems to be worth mentioning. At evaluation 49S 

of A* and fl*p* some methods of numerical quadrature are to be applied. In the case 

of the rectangular rule, we obtain finally a piecewise constant approximation of an 

actual optimal control. This corresponds to the case, if, by using some primal method, 

the Euler integration rule would be applied for the solution of the system equation 

and the rectangular rule for the evaluation of the objective. For more advanced 

quadrature formulae better approximations of an actual optimal control can be 

obtained and their appropriate choice should be further investigated. 

The differentiable case will now be illustrated by the following numerical example 

where, for the solution of (3>2), the well-known Polak - Ribiere - Powell conjugate 

gradient algorithm was applied. 

Numerical example. Suppose we have to solve BP with 

A = Г0 П я = Гo~|, x 0 = Г П , 

Lo oj Ld lАІ 

I = « + iHL> 
w = {u I - 1 = u(t) = 1 a.e. on [0, T]} , T = 4 , 

x2(t) = - 0-3 on [0, T] . 

The interval [0, 4] was discretized into 80 equidistant subintervals, the definite 

integrals were evaluated using the rectangular rule, the maximization procedure was 

2 

— " ^ x ^ ) 

X 

0 ^ t — 

-0,3 V / 2 4 

x(t) 

- Л i ( t ) 
-1 

-2 

Fig. 2. Resulting control u and trajectories x1, x2. 

started from p* = 0 and stopped at the moment when no increase of the objective in 

the gradient direction could be found due to the errors. At this moment the value of 

the objective was 5-3053. 



496 4. CONCLUSION 

It is far not yet clear, whether, for a given problem, a primal or dual technique 
will be bstter and which particular method suits its structure best. This analysis 
offers an important and attractive research area for the future and is especially 
important if we wish to control some nonlinear plant by means of the convex feedback 
method as described in [3]. 

The first approach described in this sequel is more universal; on the other hand 
usually more intermediate problems are to be solved even if the dual iterational 
scheme converges relatively fast. At any dual iteration we have an admissible control 
but the corresponding trajectory may not neccessarily satisfy the state-space con
straints. The Frechet gradient of the dual objective at some multiplier p* is given by 
(15) and equals such a perturbation vector — p that p solves the extremal problem (9). 
In other words, this gradient measures in a certain sense the violance of state-space 
constraints. If the structure of a> is sufficiently complicated, it is possible to treat 
the control constraints also by means of the generalized penalty term but we do 
not recommend it for the case of upper and lower bounds or affine inequality con
straints (cf. [19]). 

The second approach requires much more special assumptions so that its applica
bility is substantially narrower. Its advantage over the first one is that we need to 
perform merely one unconstrained minimization over Y For any multiplier p* the 
current control and trajectory are admissible with respect to the appropriate con
straints but they do not satisfy the system dynamic equation. The appropriate 
difference in Y provide us in the differentiable case with the Frechet gradient of the 
dual objective. 

ACKNOWLEDGEMENT 

The authors are indebted to Prof. A. P. Wierzbicki for a useful discussion of the problem 
reported above. 

(Received February 4, 1980.) 

REFERENCES  

[1] E. Asplund, R. T. Rockafellar: Gradients of convex functions. Trans. Amer. Math. Society 
189, (1969), 443-467. 

[2] I. Ekeland, R. Tem am ".Analyse Convexe et Problemes Variationnels Dunod, Paris 1974. 
[3] N. Eldin: A report on the convex feedback method with applications. Proc. 2nd IFAC/IFIP 

Symposium Optimization Methods (Applied Aspscts), Pergamon Press, Oxford 1979. 
[4] T. Glad: Constrained Optimization Using Multiplier Methode with Applications to Control 

Problems. Lunds Tekniska Hogskola Press, Lund 1976. 
[5] W. Heins, S. K. Mitter: Conjugate convex functions, duality and optimal control problems I. 

Information Sciences 2 (1970), 211-243. 



[6] C. Lemarechal: An Algorithm for minimizing convex functions. Information Processing 
74, Proc. of ths IFIP Congress 1974. North Holland, Amsterdam. 

[7] C. Lemarechal: Nondifferentiable optimization, subgradient and «-subgradient methods, 
Lecture Notes: Numerical Methods in Optimization and Opsrations Research. Springer 
Verlag, Berlin 1975. 

[8] D. E. Luenbsrger: Optimization by Vector Space Methods. J. Wiley and Sons, N. Y. 1968. 
[9] J. J. Moreau: Proximite et dualite dans un espace Hilbsrtien. Bull. Soc. Math. France 93 

(1965), 273-299. 
[10] J. V. Outrata: A multiplier method for convex optimal control problems. Proc. 2nd 

IFAC/IFIP Symposium Optimization Methods (Applied Aspects), Pergamon Press, Oxford 
1979. 

[11] J. V. Outrata: On the differentiability in dual optimal control problems. Math. Opsrations-
forsch. Statist., Ser. Optimization 10 (1979), 527—540. 

[12] R. T. Rockafellar: Integrals which are convex functionals. Pac. J. of Math. 24 (1968), 525 to 
539. 

[13] R. T. Rockafellar: Conjugate convex functions in optimal control and the calculus of varia
tions. J. of Math. Anal, and Appl. 32 (1970), 174-222. 

[14] R. T. Rockafellar: A dual approach to solving nonlinear programming problems by un
constrained optimization. Math. Programming 5 (1973), 354—373. 

[15] R. T. Rockafellar: The multiplier method of Hestens and Powell applied to convex pro
gramming. J. Optimiz. Theory and Appl. 12 (1973), 555—562. 

[16] R. T. Rockafellar: Conjugate Duality and Optimization. SIAM/CBMS monograph series 
No 16, SIAM Publications, 1974. 

[17] R. D. Rupp: A method for solving a quadratic optimal control problem. J. Optimiz. Theory 
and Appl. 9 (1972), 251-264. 

[18] R. D. Rupp: A nonlinear optimal control minimization technique. Trans. AMS 775 (1973), 
357-381 . 

[19] T. Tanino, H. Nakayama, Y. Sawaragi: Multiplier functions and duality for non-linear 
programmes having a set constraint. Ing. J. Syst. Sci. 9 (1978), 467—481. 

[20] A. P. Wierzbicki, S. Kurcyusz: Projection on a cone, penalty functionals and duality theory 
for problems with inequality constraints in Hilbert space. SIAM J. Contr. and Optimiz. 
75 (1977), 2 5 - 5 6 . 

[21] P. Wolfe: A method of conjugate subgradients for minimizing nondifferentiable functions. 
Math. Programming Study 3 (1975), 145—173. 

Ing. Jifi V. Outrata, CSc, Ing. Otakar F. KHz, Vstav teorie informace a automatizace CSAV 
(Institute of Information Theory and Automation — Czechoslovak Academy of Sciences), 
Pod voddrenskou vezi 4, 182 08 Praha 8, Czechoslovakia. 


