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An Optimal Property of the Best Linear 
Unbiased Interpolation Filter 

FRANTIŠEK STULAJTER 

The RKHS methods are used to prove an optimal property of the best linear unbiased inter
polation filter in the case of a sum of two independent Gaussian processes. 

1. INTRODUCTION 

Let us consider the well known problem of interpolation with filtration. Let 
X(t) — S(t) + N(t); t e T be a signal plus noise observed random process with 
S = {S(t); t e T} and N = {N(t); t e T} independent Gaussian random processes 
defined on a measurable space (Q, s#). It will be assumed that we know the covariance 
functions Rs(s, t) and RN(s, t); s, t e T of these processes. These covariance functions 
are assumed to be continuous on T x T. Let the random process N have zero mean 
value. The mean value of S is unknown, it is assumed merely that it belongs to some 
subspace M of H(RX), where H(RX) is a reproducing kernel Hilbert space (RKHS) 
with a kernel given by Rx(s, t) = Rs(s, t) + RN(s, t); s, t e T. The problem of finding 
the best linear unbiased estimate (BLUE) SM(r) of S(t) given X = {X(t); t e T} 
for a fixed t e T was solved by Parzen [5]. Our aim is to show an optimal property 
of the process SM = {SM(r); t e T} in the case when M is finite-dimensional. It is 
well known, see Kallianpur [4], Parzen [5] that for a Gaussian process X we have 
P(X(-) e H(RX)) = 0. Nevertheless, as was shown by Pitcher [6], Driscoll [3] and Ba
ker [2], in the case considered some additional conditions on S assure that 

Pm(S(.) e m © H(RN)) = 1 . 

It will be shown that, for the finite-dimensional M, 

Pm(SM(-) e m © H(RN)) = 1 for all meM . 

Next it will be proved that §M(-) is the best unbiased estimate of S(.) given X under 



342 the generalized square-error function L(a, b) = \\a - b\\H\Rlf). This result was 
announced by Driscoll [3], for the case M = {0}, too. 

2. THE MAIN RESULT 

Let the covariance functions RN and JRS be of the form: 

(1) RN(s, t) « £ Xk cpk(s) <pk(t) ; s,teT, Xk > 0 , £ Xk < oo 
&=i fc=i 

and 

(2) Rs(s, t) = £ M * %00 <Pk(t) with ft ^ 0 , £ ft < oo , 
Je = l fc=l 

where {<p4}™=1 is a complete orthonormal system (CONS) in L2[T]. The condition 

£ ft < oo is sufficient to ensure P0(S(.) e H(RN)) = 1, see Pitcher [6]. 
ft»i 

From the RKHS theory (see Aronszajn [ l ]) we know that {ipk(t) = y/(Xk) cpk(t)}k=i 

is a CONS in H(RN). Further, because Rx(s, t) = £ (l + ft) i]/k(s) \]/k(t), the space 
H(RX) can be characterized by: k=1 

H(RX) = j / e fl(Hw) : l <l^>k^ < ooj . 
( *=i 1 + ft j 

The system of vectors {j(l + ft) *l>k}k = u is a CONS in H(RX). 
It was shown by Parzen [5] that 

(3) SM(t) = <X, Rs(, 0>H(KX, + <X, &M[RN(, t)]>H(Rx) 

is the BLUE of S(t) given X for every fixed f e T Here <[X, g)H(Rx)\ 9 e H(RX), 
denotes an isomorphic image of an element g e H(RX) in the space L2\X(t); t e T] 
(see Parzen [5]) and 3?M is a projection operator to the subspace M defined on H(RX). 

Lemma. Let M be a finite-dimensional subspace of H(RX) and let the conditions (1) 
and (2) are satisfied. Then 

Pm(SM(.) em® H(RN)) = 1 for every meM. 

Proof. It is enough to prove that P0(SM(.) e H(RN)) = 1. Because SM(t) = 
= S(t) + MM(t); t e T, where we have used the notations S(t) = (X, Rs(, t)yH(Rx) 

and NM(t) = <X, 0>M[RN(., t)]>H(J?x), the lemma will be proved by showing that 
P0(S(.) e H(RN)) = 1 and P0(NM(je H(RN)) = 1. To do this we can write: 

S(t) = <Z, Rs(., t)}HiRx) = <Z, £ ft U*) U-)>H(RX) = 



= S ^ < X ^ > H ( K x ) - ^ ( t ) ; teT. 
*=1 

Moreover, we have Po(Y, nt<X,il/k)
2

H(Rx) < co) = 1, because 

oO 00 "> 

J^£o[a,^>H(fiX)]-s 
fc=l k = l 1 + jUfc 

and thus P c(S(.)efl(i!j)) == 1. Further 

NM(t) = {x, 0>M[R»(-, t)]>H(Rx) = £ a , ^ M M W ) . Ht); teT. 
k = l 

The series E C^> ^>M['/'k]>H(Rx) converges P0-almost surely, because 
k = l 

EE [<x,^MM>H ( R x ) ] = 
k = l 

= E <^M[<U W w = E 7 ^ — <^M[V(i + M*) </A], .y(i + nk) ^>f l (Rx) = 
k = l 4 = 1 1 + \),k 

g tr 0>M < oo 

if M is finite-dimensional and the lemma is proved. 

Remarks, (l) If M = {0}, then §(i) is the BLUE of S(t) for every fixed t e T. 
(2) Because X = S + N, where S and N are independent Gaussian processes, 

S(t) = E[S(t) | &x~\; t e T, where 38x denotes a completion of a sub cr-algebra of si 
generated by the random process X = [X(t); teT}. 

From this lemma we clearly have Pm(S(.) - SM(.)) e H(RN)) = 1 for every 
me M. Thus almost all sample paths of the Gaussian process (S(r) — SM(t); t e T} 
belong to H(RN). This process generates a Gaussian measure pM in H(RN) uniquely 
determined by its covariance operator RM, for which we have: 

E0[\\S(.) - SM(.)||H(Rs)] = tr RM = E <R*A, <K>H(*W) < °° • 
k = l 

For these results, see Driscoll [3]. 
Let, for every r e T, §M(t) be any linear estimate of S(t) given X such that P0(SM(.) e 

e H(RN)) = 1. Then we have: 

§M(t) = <X, &M[RX(, t)]>H(Rx) + <X, ht}HiRx) = 

= SM(t) - {X, S?ML[RS(., t)]>H(Rx) + <X, ntyimx) ; teT, 

where ht is any element of ML. From this we get: 

<RM RN(., s), RN(., t)}H(RN) = E0[SM(s) - S(s)] [§M(t) - S(tJ] = 



= E0[SM(s) - S(s)] [SM(t) - s(t)] + 
+ E0[<X, 2?M\RS(., s)] - hs> . <X, 3PM\RS(., t)] - h\>] = 

= <RM RN(., s), RN(., t)ymRN) + E0[<z, &M1[RS(., t)] - ntymRx). 

.<x,^[Rs(.,t)]-hsymRx)]. 

Now we can deduce that 

t r R M = Em[||S(.) - SM(.)\\l,RN)] ;> Em[||S(.) - SM(.)|^N)] = t r R M . 

We set 

Em[||S(.) - -U)fl£(-.,>] = + » if P0[SM(.)eH(RNJ] = 0 . 

The results obtained are formulated in the following theorem. 

Theorem. Let X{t) = S(t) + N(t); t e T, where N and S are independent Gaussian 

processes with continuous covariance functions given by (l) and (2). Let E[N(t)] = 0 

and Em[S(t)] = m(t); t e T, where m(.) e M, M-finite-dimensional subspace of 

H(RX). Let SM(f) be the BLUE of S(t) given X, given by (3) for every t e T. Then 

Em[\\s(.) - SM(.)||iWl ^ U\\s - - M W ] 

for any unbiased linear estimate SM(t) of S(i); t e T given X. 
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