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An Optimal Property of the Best Linear 
Unbiased Interpolation Filter 

FRANTIŠEK STULAJTER 

The RKHS methods are used to prove an optimal property of the best linear unbiased inter­
polation filter in the case of a sum of two independent Gaussian processes. 

1. INTRODUCTION 

Let us consider the well known problem of interpolation with filtration. Let 
X(t) — S(t) + N(t); t e T be a signal plus noise observed random process with 
S = {S(t); t e T} and N = {N(t); t e T} independent Gaussian random processes 
defined on a measurable space (Q, s#). It will be assumed that we know the covariance 
functions Rs(s, t) and RN(s, t); s, t e T of these processes. These covariance functions 
are assumed to be continuous on T x T. Let the random process N have zero mean 
value. The mean value of S is unknown, it is assumed merely that it belongs to some 
subspace M of H(RX), where H(RX) is a reproducing kernel Hilbert space (RKHS) 
with a kernel given by Rx(s, t) = Rs(s, t) + RN(s, t); s, t e T. The problem of finding 
the best linear unbiased estimate (BLUE) SM(r) of S(t) given X = {X(t); t e T} 
for a fixed t e T was solved by Parzen [5]. Our aim is to show an optimal property 
of the process SM = {SM(r); t e T} in the case when M is finite-dimensional. It is 
well known, see Kallianpur [4], Parzen [5] that for a Gaussian process X we have 
P(X(-) e H(RX)) = 0. Nevertheless, as was shown by Pitcher [6], Driscoll [3] and Ba­
ker [2], in the case considered some additional conditions on S assure that 

Pm(S(.) e m © H(RN)) = 1 . 

It will be shown that, for the finite-dimensional M, 

Pm(SM(-) e m © H(RN)) = 1 for all meM . 

Next it will be proved that §M(-) is the best unbiased estimate of S(.) given X under 



342 the generalized square-error function L(a, b) = \\a - b\\H\Rlf). This result was 
announced by Driscoll [3], for the case M = {0}, too. 

2. THE MAIN RESULT 

Let the covariance functions RN and JRS be of the form: 

(1) RN(s, t) « £ Xk cpk(s) <pk(t) ; s,teT, Xk > 0 , £ Xk < oo 
&=i fc=i 

and 

(2) Rs(s, t) = £ M * %00 <Pk(t) with ft ^ 0 , £ ft < oo , 
Je = l fc=l 

where {<p4}™=1 is a complete orthonormal system (CONS) in L2[T]. The condition 

£ ft < oo is sufficient to ensure P0(S(.) e H(RN)) = 1, see Pitcher [6]. 
ft»i 

From the RKHS theory (see Aronszajn [ l ]) we know that {ipk(t) = y/(Xk) cpk(t)}k=i 

is a CONS in H(RN). Further, because Rx(s, t) = £ (l + ft) i]/k(s) \]/k(t), the space 
H(RX) can be characterized by: k=1 

H(RX) = j / e fl(Hw) : l <l^>k^ < ooj . 
( *=i 1 + ft j 

The system of vectors {j(l + ft) *l>k}k = u is a CONS in H(RX). 
It was shown by Parzen [5] that 

(3) SM(t) = <X, Rs(, 0>H(KX, + <X, &M[RN(, t)]>H(Rx) 

is the BLUE of S(t) given X for every fixed f e T Here <[X, g)H(Rx)\ 9 e H(RX), 
denotes an isomorphic image of an element g e H(RX) in the space L2\X(t); t e T] 
(see Parzen [5]) and 3?M is a projection operator to the subspace M defined on H(RX). 

Lemma. Let M be a finite-dimensional subspace of H(RX) and let the conditions (1) 
and (2) are satisfied. Then 

Pm(SM(.) em® H(RN)) = 1 for every meM. 

Proof. It is enough to prove that P0(SM(.) e H(RN)) = 1. Because SM(t) = 
= S(t) + MM(t); t e T, where we have used the notations S(t) = (X, Rs(, t)yH(Rx) 

and NM(t) = <X, 0>M[RN(., t)]>H(J?x), the lemma will be proved by showing that 
P0(S(.) e H(RN)) = 1 and P0(NM(je H(RN)) = 1. To do this we can write: 

S(t) = <Z, Rs(., t)}HiRx) = <Z, £ ft U*) U-)>H(RX) = 



= S ^ < X ^ > H ( K x ) - ^ ( t ) ; teT. 
*=1 

Moreover, we have Po(Y, nt<X,il/k)
2

H(Rx) < co) = 1, because 

oO 00 "> 

J^£o[a,^>H(fiX)]-s 
fc=l k = l 1 + jUfc 

and thus P c(S(.)efl(i!j)) == 1. Further 

NM(t) = {x, 0>M[R»(-, t)]>H(Rx) = £ a , ^ M M W ) . Ht); teT. 
k = l 

The series E C^> ^>M['/'k]>H(Rx) converges P0-almost surely, because 
k = l 

EE [<x,^MM>H ( R x ) ] = 
k = l 

= E <^M[<U W w = E 7 ^ — <^M[V(i + M*) </A], .y(i + nk) ^>f l (Rx) = 
k = l 4 = 1 1 + \),k 

g tr 0>M < oo 

if M is finite-dimensional and the lemma is proved. 

Remarks, (l) If M = {0}, then §(i) is the BLUE of S(t) for every fixed t e T. 
(2) Because X = S + N, where S and N are independent Gaussian processes, 

S(t) = E[S(t) | &x~\; t e T, where 38x denotes a completion of a sub cr-algebra of si 
generated by the random process X = [X(t); teT}. 

From this lemma we clearly have Pm(S(.) - SM(.)) e H(RN)) = 1 for every 
me M. Thus almost all sample paths of the Gaussian process (S(r) — SM(t); t e T} 
belong to H(RN). This process generates a Gaussian measure pM in H(RN) uniquely 
determined by its covariance operator RM, for which we have: 

E0[\\S(.) - SM(.)||H(Rs)] = tr RM = E <R*A, <K>H(*W) < °° • 
k = l 

For these results, see Driscoll [3]. 
Let, for every r e T, §M(t) be any linear estimate of S(t) given X such that P0(SM(.) e 

e H(RN)) = 1. Then we have: 

§M(t) = <X, &M[RX(, t)]>H(Rx) + <X, ht}HiRx) = 

= SM(t) - {X, S?ML[RS(., t)]>H(Rx) + <X, ntyimx) ; teT, 

where ht is any element of ML. From this we get: 

<RM RN(., s), RN(., t)}H(RN) = E0[SM(s) - S(s)] [§M(t) - S(tJ] = 



= E0[SM(s) - S(s)] [SM(t) - s(t)] + 
+ E0[<X, 2?M\RS(., s)] - hs> . <X, 3PM\RS(., t)] - h\>] = 

= <RM RN(., s), RN(., t)ymRN) + E0[<z, &M1[RS(., t)] - ntymRx). 

.<x,^[Rs(.,t)]-hsymRx)]. 

Now we can deduce that 

t r R M = Em[||S(.) - SM(.)\\l,RN)] ;> Em[||S(.) - SM(.)|^N)] = t r R M . 

We set 

Em[||S(.) - -U)fl£(-.,>] = + » if P0[SM(.)eH(RNJ] = 0 . 

The results obtained are formulated in the following theorem. 

Theorem. Let X{t) = S(t) + N(t); t e T, where N and S are independent Gaussian 

processes with continuous covariance functions given by (l) and (2). Let E[N(t)] = 0 

and Em[S(t)] = m(t); t e T, where m(.) e M, M-finite-dimensional subspace of 

H(RX). Let SM(f) be the BLUE of S(t) given X, given by (3) for every t e T. Then 

Em[\\s(.) - SM(.)||iWl ^ U\\s - - M W ] 

for any unbiased linear estimate SM(t) of S(i); t e T given X. 
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