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An Optimal Property of the Best Linear
Unbiased Interpolation Filter

FRANTISEK STULAJTER

The RKHS methods are used to prove an optimal property of the best linear unbiased inter-
polation filter in the case of a sum of two independent Gaussian processes.

1. INTRODUCTION

Let us consider the well known problem of interpolation with filtration. Let
X(t) = S(t) + N(t); te T be a signal plus noise observed random process with
S ={S(t); te T} and N = {N(¢); te T} independent Gaussian random processes
defined on a measurable space (2, &l)‘ 1t will be assumed that we know the covariance
functions Rs(s, l) and RN(s, t); s, t € T of these processes. These covariance functions
are assumed to be continuous on T x T. Let the random process N have zero mean
value. The mean value of S is unknown, it is assumed merely that it belongs to some
subspace M of H(Ry), where H(Ry) is a reproducing kernel Hilbert space (RKHS)
with a kernel given by Ry{s, f) = Ry{s, t) + Ra(s, t); s, t € T. The problem of finding
the best linear unbiased estimate (BLUE) S,(r) of S(1) given X = {X(1); te T}
for a fixed ¢t € T was solved by Parzen [5]. Our aim is to show an optimal property
of the process Sy = {Sy(#); te T} in the case when M is finite-dimensional. It is
well known, see Kallianpur [4], Parzen [5] that for a Gaussian process X we have
P(X(") e H(Rx)) = 0. Nevertheless, as was shown by Pitcher [6], Driscoll [3] and Ba-
ker [2], in the case considered some additional conditions on S assure that

P.(S()em@ H(Ry) =1.
It will be shown that, for the finite-dimensional M,
P(Su()em @ HRy)) =1 forall meM.

Next it will be proved that Sy(-) is the best unbiased estimate of S(-) given X under
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the generalized square-error function L{a, b) = |la — b|#g,)- This result was
announced by Driscoll [3}, for the case M = {0}, too.

2. THE MAIN RESULT

Let the covariance functions Ry and Rg be of the form:

e o0
8 Ry(s, ) =Y hols) @u(t); s,teT, 4 >0, YAh<wm
K=t K51
and
(2) RS(S’ 7) '—:kzl.uk’lk (Pk(s) @k(t) with 4 =0, kz,lﬂk <,

where {¢,}7, is a complete orthonormal system (CONS) in I*[T']. The condition
0
Y < oo is sufficient to ensure Py(S(.) € H(Ry)) = 1, see Pitcher [6].
K=1
From the RKHS theory (see Aronszajn [1]) we know that {1,(f) = /(%) o)},
L
is a CONS in H(Ry). Further, because Ry(s, 1) = Y (1 + 1) Y (s) yr(1), the space
H(Ry) can be characterized by: k=t
0 2
H(Ry) = {feH(RN):Z & ouwm oo}.
k=1 14y
The system of vectors {\/(1 + i) ¥i}i-1, is a CONS in H(Ry).
It was shown by Parzen [5] that
©)] Sult) = <X, Rs(o> Puenr + <X PY[Ry( ) Dncry

is the BLUE of S(¢) given X for every fixed te T. Here (X, gDu(ryy 9 € H(Ry),
denotes an isomorphic image of an element g € H(Ry) in the space I?[X(1); te T]
(see Parzen [5]) and 2" is a projection operator to the subspace M defined on H(Ry).

Lemma. Let M be a finite-dimensional subspace of H(Ry) and let the conditions (1)
and (2) are satisfied. Then

P, (Su()em @ H(Ry)) =1 forevery meM.

Proof. It is enough to prove that Po(Sy(.)e H(Ry)) = 1. Because Sy(t) =
= §(t) + Nu(t); t € T, where we have used the notations §(t) = <X, Rs(- )Dacrx
and Ny(t) = <X, ZY[Ry(., )]Duryy» the lemma wiil be proved by showing that
Py(S(.) e H(Ry)) = 1 and Po(Ny(.)e H(Ry)) = 1. To do this we can write:

§(t) = (X, Ry(., 1)>H(Rx) = <X,k:ilﬂk Vi) Vil rge =
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= ’{v._,lﬂk<X, Yomern - Vilt); teT.

©
Moreover, we have PO(kZ HedX, idhrey < @) = 1, because
=1

w o 2
kZ:lPZEoRXs wk>%1(Rx)] =k§‘ 1 j—kﬂk < 0
and thus Py(S(.) EH(RN)) = 1. Further
NM(’) = <X, WM[RN(" t)]>H(Rx) =k; <X, ?M[wk]>H(Rx) . Wk(t); teT.

®
The series . <X, WM[¢k]>ZH(RX) converges Py-almost surely, because
k=1

k;E[(X, P Dhan] =

= i <-@M[l//k]’ Viorere = i ! <WM[\/(1 + ”k) 'J/k], \/(1 + ﬂk) Voo =
k=1 k=t 1 4+ p,

P’ <o

if M is finite-dimensional and the lemma is proved.

Remarks. (1) If M = {0}, then S(¢) is the BLUE of S(t) for every fixed te T
(2) Because X = S + N, where S and N are independent Gaussian processes,

5(t) = E[S(1) | #x]; t e T, where By denotes a completion of a sub c-algebra of &/
generated by the random process X = {X(t); te T}.

From this lemma we clearly have P,(S(.) — Sxu()) € H(Ry)) = 1 for every
m e M. Thus almost all sample paths of the Gaussian process {S(f) — Sy(2); te T}
belong to H(Ry). This process generates a Gaussian measure flyr in H(Ry) uniquely
determined by its covariance operator T?M, for which we have:

ELISO) = SuOlonn] = 5 = X Bt Womesy < 0

For these results, see Driscoll [3].

Let, for every t € T, $y(?) be any linear estimate of S(f) given X such that Po(Su(-) €
€ H(Ry)) = 1. Then we have:

Sult) = <X, P"[Rales Dracray + <X Adueany =
= 8u(t) — <X, P*Rs(, N nray + <X Bdnny s teT,

where , is any element of M*. From this we get:

(Ryr Ryfes 8), Ryler DPamy = EolSu(s) — S(s)] [Su(r) — ()] =
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= Eo[Su(s) — S(s)] [Sm(t) - S(1)] +

+ Eo[ (X, MRy, )] = Ay . <X, PMHRo(, )] = Fip] =
= <kM RN(" s), RN(" l)>11(Rm + Eo[<Xa (@Mi[Rs(-, f)] - Fll>H(Rx) .
X, PR 0] = B agen] -
Now we can deduce that
tr Ry = E[|S() — Sulliien] 2 EallISC) = Suliien] = tr Byy .
We set
E[[S() — Sul-)

The results obtained are formulated in the following theorem.

Hrm] = +oo if Po[Su(-)e H(Ry)] = 0.

Theorem. Let X(7) = S(t) + N(t); t € T, where N and S are independent Gaussian
processes with continuous covariance functions given by (1) and (2). Let E[N(t)] = 0
and E,[S(t)] = m(t); teT, where m(.)e M, M-finite-dimensional subspace of
H(Ry). Let §)() be the BLUE of S(t) given X, given by (3) for every t€ T. Then

En[150) = Su()iiwm] £ EallS = Sullficrm]
for any unbiased linear estimate Sy(t) of S(t); t € T given X.
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