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On the Error Exponent for Ergodic 
Markov Source 

KAROL VAŠEK* 

In this paper the exponential behaviour of the error probability for a finite ergodic Markov 
source is studied in the case of a fixed-length encoding scheme. 

1. INTRODUCTION 

Let X = {aj, ..., ar} be a finite set,p = (pu ..., pr)a probability distribution on X 
and P = \\Pij\\\ an irreducible stochastic (r x r) matrix. 

Let (XN, !F, P) be a Markov source with the alphabet X and the probability meas
ure defined on the cr-algebra J5" (generated by all finite dimensional cylindres in XN) 
by the initial probability distribution p and the stochastic matrix P. Since the matrix P 
is supposed irreducible, the source (XN, 3F, P) is ergodic. 

We shall be interested in sequences x" = (x0, ..., x„_x) of length n generated by 
the source (XN, 3F, P). The probability P(x") of a sequence x" is given then by: 

(1.1) P(x") = p(x0) . p(*l/*o) • • • P(*n- ll*.-i) > 

where p(x0) = pt if x0 = a ; and p(x,/x,) = pu if Xj = aj and x ; = a;. 
We shall consider now the encoding problem for the source (XN, J5", P) as follows: 

Let us suppose that messages of length n are required to be encoded into Nn code
words where 

(1.2) exp (nR) < Nn < exp (nR) + 1 

in such a way that the probability of erroneous decoding Pe(n, R) was minimal. It 
will be achieved evidently if the Nn most probable sequences x" are encoded into 

* This work was done while the autor was at the Institute of Information Theory and Auto
mation of the Czechoslovak Academy of Sciences in 1974. 



distinct codewords. The coding of the other sequences can be then performed quite 319 

arbitrarily. For simplicity we assign them the same codeword. If we now denote by A„ 

the set of the most probable sequences x", then 

(1.3) Pe(n,R) = P(A<) 

(where Ac„ is the complement of the set A„). 

We shall be interested in limiting properties of the probability Pe(n, R), forn -> oo. 

It is well known that the important characteristic of the source as regards behaviour 

of Pe(n, R) is its entropy. In case of the Markov source (XN, &', P) it can be shown 

(see [5]) that its entropy H is given by 

(1-4) ff= -EliWnpy, 
> i 

where p = (plt ...,Pr) is the stationary probability distribution of the stochastic 

matrix P. 

In general, the limit of the probability Pe(n, R) when n -» co tends to zero for 

ergodic sources. This can be deduced from Shannon-McMillan theorem (cf. [5]). 

The following assertion is true: 

If the encoding rate R is greater than the entropy H then 

(1.5) lim Pe(n, R) = 0 . 

However for discrete memoryless sources it has been shown rather more. Jelinek 

[1] and also Csizar and Longo [2] have proved that the convergence in (1.5) is ex-

potential and they have found the form of this exponent. The exponential conver

gence of Pe(n, R) has been proved by Longo [3] also for finite ergodic Markov 

sources, but without being able to obtain the expression for the exponent. To give 

this expression will be our aim in the following sections of this paper. 

2. THE AUXILIARY RESULTS 

The purpose of this section is to introduce an auxiliary Markov source. 

Consider, along with original stochastic matrix P = |py[|i an matrix J°(a) depend

ing on a real parameter a and defined as follows 

<-') iч.)-
Pil •• • Plr 

Při ••• P"rr 

where p*j = 0 if ptJ = 0. 

The matrix P(a) is non-negative and irreducible, because the matrix P is supposed 
irreducible. Therefore we can apply Perron-Frobenius theorem (see [6]) that asserts 



that the matrix P(a) possesses a positive eigenvalue X(a) which is larger in modulus 
than any other eigenvalue of P(a) (maximum eigenvalue of the matrix P(aj). More
over, there exists a positive eigenvector v(a) = (v^a), ...,vr(a)), vt(a) > 0, i = 
= 1, 2, ..., r such that 

(2.2) P(a) vr(a) = % ) rT(a) 

where we denote by vT(a) the transpose of vector t>(a). 
The eigenvector r(a) is determined uniquely except a multiplicative factor. To make 

it unique we can suppose that 

(2.3) y>,.(a) = i . 
i 

At first, we shall be interested in behaviour of K(a) and v(a) as functions of a. 

Lemma 2.1. 

(i) X(a) and each component of the vector i>(a) are continuous and possess conti
nuous first derivatives for 0 ^ a g 1, 

(ii) lnX(a) is convex for 0 = a = 1. 

Proof. For the continuity of (d/da) X(a) see [4]. Then the continuity of the first 
derivative of v^a), i = 1, 2 , . . . . r can be deduced from (2.2). 

Using (2.2) we can now define for each 0 = a = 1 a stochastic (r x r) matrix 

G(«) = NiXa)[|ri In this way: 

(2.4) ««w-ifr^ 
X(a) vt(a) 

for Pij 4= 0, and qu(a) = 0 when pu = 0. The matrix Q(a) is evidently also ir
reducible and g( l ) = P. 

By means of the matrix Q(a) and the initial probability distribution p — (plt..., pr) 
we shall further define a Markov source (XN, <F, Qx) with alphabet X. 

The entropy H(a) of this source is then given by: 

(2.5) fl(*)--ZZ4«(«)«iX«)--««(<-) 
i J 

(cf. (1.4)), where q(a) = (#i(a), •••, ^ r(
a)) is the stationary probability distribution 

of the stochastic matrix Q(a). Let us consider the matrix A = ||fly[|i, which has 
arising from the matrix P as follows: atj = 1 when pu > 0 and au = 0 when 
Pij = 0. Let ^0 be the maximum eigenvalue of A. 

Lemma 2.2. 

(i) H(a) is continuous function of a for 0 ^ a = 1; 



(ii) H(l) = H; 

(iii) H(0) = In X0. 

Proof. The continuity of each component of the matrix Q(a) follows from Lemma 
2.1. To prove the continuity of the components of the stationary distribution q(a), 
it is sufficient to take into account that 

(2.8) Q\a)f(a) = F(a). 

Then (i) immediately results from (2.5). Part (ii) is evident, since Q(\) = P. From 
(2.4) it can be seen that #y(0) = 0 if py = 0 and 

'-(0) = r ^ 
V i ( 0 ) 

if Pij > 0. Then we can write 
(2.9) « ( 0 ) = - I » , ( 0 ) ^ l n - A 

i j V i ( ° ) Kvt(0) 

where 4f(0), i = 1, 2, ..., r are the components of the stationary probability distribu
tion of the matrix Q(0). Now, when we shall use the fact that 

(2-10) X 3 i ( 0 ) - ^ - = < 2 ; ( 0 ) 

holds for each j = 1, 2,..., r, then (iii) will follow from (2.9). 

The following lemma establishes a relation between X(a) and H(a). 

Lemma 2.3. 

(2.11) H(a) = In X(a) - — In X(a) . 
da 

Proof. Let us consider, for fixed x0 e X and a E (0, 1), the sequence of functions 
f„(a, x0) defined as follows: 

(2-12) fn(a, x0) = - In £ P*(*»/x0) vja), 

n x" 

where xn = (xt, ..., xn), vxJa) = vt(«) if x„ = at and 

P(x"lx0) = p(x1lx0)...p(xjxn_1). 

Applying (2.2) in (2.12), we obtain 
(2.13) /„(«, x0) = In X(a) + - vXo(a). 



322 Thus 

(2.14) lim/„(a,x0) = m,\(a). 

From (2.13) we also see that 

(2.15) lim — L(a, x0) = — In %(*) . 
„-»co d a da 

On the other hand, computing the first derivative of/„(a, x0) in (2.12) we see 

(2.16) — /„(a, x0) = - In % ) - - Hn(a, x0) + o(l), 
da a a 

where 

(2.17) tf„(a, x0) = - ~ g Q(*"/x0) In Q(x"/x0) 

and where 

Q(xnjx0) = q(xllx0)...q(x„lx„.1). 

However, from the definition of the entropy (see [5]) it follows 

(2.18) lim tf „(a, x0) = tf (a) 

for each x0 eX and a e (0, 1). Then (2.16) along with (2.15) and (2.18) imply (2.11). 

Lemma 2.4. tf (a) is a decreasing function of a for a e [0, 1]. 

Proof. From (2.11) we have 

Afl(a) = _a^lnx(«). 
da da 

To prove the lemma, it is sufficient to remind that the function In A,(a) is convex for 
ae[0, 1]. 

To obtain some insight on the meaning of X0, let us consider the set [xn : P(xn) > 0}. 
Let N0(n) be the number of the elements of this set. Then the following theorem holds: 

Theorem 2.1. 

(2.19) lim-lniVo(n) = lnA,0 

n^oo n 

Proof. It can be easily seen that 

lim £ P°(xn) = N0(n). 
a->0+ i " 



But in [4] it has been shown that 

(2.20) lim - In £ P*(JC") = In X(a) 
n-»oo n x" 

uniformly for a e [0, 1]. Now if we pass in (2.20) to the limit a -> 0 + , (2.19) will be 
proved. 

3. AN UPPER BOUND ON THE ERROR PROBABILITY 

Now we go back to the problem of the estimation of the error probability Pe(n, R). 
At first we shall find an upper bound on the Pe(n, R). 

Theorem 3.1. If 

(3.1) exp (nR) < N„ < exp (nR) + 1 

where H < R < In X0, then 

(3.2) Pe(n, R) < K(a) exp f - n | ~ — " R - I In X(a)l\ , 

for each n > 1 and 0 < a < 1. 

Proof. Using the initial probability distribution p = (pu ...,pr) of the source 
(XN, #•, P) we can define for each real a a probability distribution q(a) = (q^a),... 
..., qr(a)) as follows: 

(3-3) „.(«) = £ 
i ' 

if pi 4= 0 and qt(a) = 0 if pt = 0. 

Now let us consider an auxiliary function fjx") defined for each xn = 
= (x0, ..., x„_j) eX" and each positive a by: 

(3.4) m = u*o) ̂ i/^--,;1
(; -ii^r^M, 

X" (a)uM(a) 

where vM(a) = max (vt(a)), v,„(a) = min (v,(a)). The function fx(x") is non-negative. 
i i 

Moreover using (2.4) we can see that 
(3-5) £/-(**) _i 1 • 

Going further, let 

(3.6) A„>a = {xneXn :/_(„•") > exp ( -nR)} 



324 and let |A„ _| be the number of the elements of the set A„ _. Then from (3.1), (3.5) 
and (3.6) it follows easily that 

(3.7) |A„-| < exp (nR) ^ N„. 

Now, if we regard to the definitions of the sets A„, A„x and if we use that the function 
fa(x") is strictly increasing with the probability P(x"), we immediately obtain from 
inequality (3.7) that A„. _ A„ or Ac„ c Ac„,a. However, we know that Pe(n, R) = 
= P(AC„). Therefore we can write 

(3.8) Pe(n, R) ^ ?{Ac
njt) . 

To obtain an upper bound of the Pe(n, R) we shall try to bound the probability 

P(4U). 
It holds 

(3.9) P(A„-) = E P(x") = X P(x0) P(x1jx0)... p(x„^lx^2). 

Using (2.4) we get from (3.9) that 

(3-10) P(A„ J = E Qa(x") X " ! ( a ) g | X B ) v . - . , v • 

x„,a- p(x1\x0f ...p(x„_1lxn_2f ^ v(x„_1) 
But for each „" e A£ - we have 

(3.11) In/„(„") < - n R . 

This inequality then implies 

(3.12) In 2_>2 X(a) + a In p ^ / * , , ) ... p(*--i/*--2) + 
vM(oc) 

+ In ga(x0) - n In 1(a) < - nR . 

Since we suppose that 0 < a < 1, from (3A2) after an elementary calculation we 
obtain that 

(3.13) I n — -foOX-'frO 
p(x1jxoy

 1 . . .p(x i l_ 1 /x , -2)" J _(*.-l) 

<S _ „ _ _ _ _ [R _ ln„(a)] - ——*• In fla(x0) - - In 2 _ & % ) . 
a a a uM(a) 

By means of (3A3) then from (3.10) we get the following inequality 

(3.14) ?(AC„ .) _ exp (-n [——*• R - - In X(a)\ - - In — - 1 ^ . 
\ |_ a a J a »M(a) / 



Z c e x p ( ^ l n ^ ( x 0 ) V Q a ( x " ) . 

own that 

(3.15) ^ > x p (- ±-~ In «j.(x0)) Qx(x") < r1" . 

At last it can be easily shown that 

Now, when we put 

(3A6) K ( a ) = e x p ( - i l n ^ ) ) , 
V a r vm(a) J 

the inequality (3.2) follows from (3.8), (3.14) and (3.15). The upper estimation (3.2) 
of the probability of error Pe(n, R) is depended on a parameter a. In the following 
section we shall show that the parameter a can be chosen so that the inequality will 
yield the asymptotic optimal estimation of the probability Pe(n, R). 

4. THE LIMITING RATE OF CONVERGENCE FOR Pe(n, R) 

Our following considerations will be based on the ergodicity of the auxiliary 
Markov source (XN, &, Qj). 

Let A„, n — 1, 2,... be a sequence of non-empty sets such that A„ c {x" : P(x") > 
> 0} for each n. Let further |A„| be the number of the elements of set A„. 

Lemma 4.1. If 

(4.1) Mm - In IAJ = R , 

where H < R < lnX0, then for every e > 0 there exist a e (0, l) and an integer 
n(£, a) such that for n > n(£, a) it holds 

(4.2) P(A„C) ^ K*(a) exp(-n H — - ^ R - - In %(a) + s~h , 

with 

\a K«) W 

Proof. Let R be such that H < R < lnX0. Let further ey be an arbitrary positive 
number satisfying the condition 

(4.3) « + 2 £ ) < R l ^ . 



326 Then from Lemma 2.2 we can deduce that there exists ax e (0, 1) such that 

(4.4) R + 2 6 l = ff(a.) . 

For a, chosen in this manner, let us consider the Markov source (XN, 2F, QXi) which 
is defined by the stochastic matrix Q(ax) = ||aj,(ai)||i and the initial probability 
distributionp = (pu ..., pr). Since the source (XN, !F, QXl) is ergodic, by Shannon-
McMillan theorem it can be easily shown that 

(4.5) lim -lnqai(xtlx0)... ^(.Xn-i/*,,^) = ~H(at) 

almost everywhere with respect to QXl. 

Let 

ł.6) B„ = íx" : - - l n «2«i(xI/x0) ... 9«i(x„-i/xя-a) - Il(«i) 

Then there exists an integer n^ej, a.) such that for n > n1(e1, a t ) we have 

(4.7) Qai(B„) > i . 

On the other hand from (4A) it follows that there exists an integer /^(e.) such that 
for n > n2(s1) it holds 

(4.8) |A„| £ i exp (n[R + e.]) . 

However we can write also 

(4-9) KhXQ.MW)]-1 

A„ 

where 

Q«,(~*) = K*<>) fl-,(*l/*o) ••• QaXXn-llXm-2) • 

From (4.6) we see that 

(4.10) - Ч Q Я І И Г 1 > я ( a i ) - £ l 

for each JC" e B,„ so that (4.9) immediately yields 

(4-11) A„| > exp (nlHfa) - 6 J ) . £ Q J * " ) . 
X л nБ„ 

(4.4) and the inequalities (4.8), (4.H) imply 

(4.12) ľ Q..(*") < ł • 
X л n í л 



From (4A2) in view of (4.7) we then have 

(4.13) £ Q j - O . i . 
An

cr>B„ 

The probability P(AJj) can be bounded for n > max (n1(e1) a i ) , n2(s1)) in the fol
lowing way 

(414) P ( _ J ) - £ P ( * O ) - P ( * I / * O ) . - - P ( * - - I / * , . - 2 ) = 
< 4 n

c r - , - -

= Y Q ( x , ) _!_!__!____) 
An'nB., P(xilx0)"

 l . . .p(xB_1 /X-_2) '" ' Da,(x,_2) 

From the definition of the set _ „ it is seen that 

(4.15) - In - — : - < H(ar) + et 

n «_l(x1/xo)...cj<,1(x._1/x-_2) 

for each x" e Ac„ n _„. Since 0 < a! < 1, the following inequality can easily be 
obtained from (4.15) 

n K-i /"o) •••P("»-i/»B-2)' »_,(*,,-1) 

> ______ (H(ai) + - _ i-Mai)) + i . _ _ y . 
K l a i n A,(aj) uM(a i) 

Then (4.16) along with (4.13) and (4.14) provide that 

(4.17) P(A„) > __*(«,) exp f - - [ - -=--- fl(«.) - i In % ) + L z J _ e 1 \ 

where 

(4.18) g * ( g l ) - i e - p ( i l n ^ V 

V«! H,(a.) i>M(-i)j 

Let us take now a0 such that 

(4-19) _ L _ ^ - f l ( a o ) . 

Since the function H(a) is decreasing for 0 < a < 1, clearly a0 < a t or 

(4.20) - - = - - - < - - = - - - . 
a. a0 



328 Using (4.4) and (4.20) we finally obtain that 

(4.21) P«) >X* (a 1 )expf -nr^^ iR - -MnJ^a.) + 3 ^ - ^ S l ? ) 
V L ai ai ao J/ 

for all n > max (n^fij, a^, n2( _))• H w e t ake for an arbitrary e > 0 such et in (4.3) 
that it holds 3(1 — a0) E1 < a0e, lemma will be proved. 

Now we can state the following result 

Theorem 4.1. If 

exp (nR) S N„ < exp (nR) + I 

where H < R < In X0, then 

(4.22) lira - In Pe(n, R) = — In X(a*) - L _ _ _ R 
n-oo n x* a* 

where a* satisfies the equation 

(4.23) H(a*) = R . 

Proof. From Theorem 3.1 and Lemma 4.1 we can deduce that 

(4.24) lim - In Pe(n, _) = - max ( _ _ ! _ R - 1 In X(a) ) . 
n->oo n o<a<i \ a a / 

Using further (2.H) we obtain that 

R - - In X(a)"\ = - - (_ - _(«)) . 
a / a2 

Afii% i,-./-^_ 
da \ a 

If now take into account the convexity of the function In X(x), the proof is complete* 

In the end we note some properties of the exponent 

E(R) _ max ( R - - ln X(x)) . 
o<í.<i \ a a j 

It can be easily shown that E(R) is increasing and convex for H ^ R < In X0. In 
addition to this, E(H) = 0 and 

£(ln _0) = - [— lnX(a) + In X(a)~] 

(Received October 15, 1979.) 
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