KYBERNETIKA - VOLUME 16 (1980), NUMBER 4

An Invariant for Continuous Mappings

J. S. CHAWLA

The purpose of this work is to show that the Topological Entropy given by Adler, Konheim and McAndrew [1] is not the only invariant for continuous mappings, but, there also exists another invariant which we call here the Topological δ -entropy.

1. δ -ENTROPY

In what follows, we shall assume that X is a compact topological space. For any open cover \mathfrak{A} of X, let $N(\mathfrak{A})$ denote the number of sets in a subcover of minimal cardinality. A subcover of a cover is minimal if no other subcover contains fewer members. Since X is compact and \mathfrak{A} is an open cover, therefore there always exists a finite subcover.

Definition 1.1. The expression $H_{\delta}(\mathfrak{A}) = [\log N(\mathfrak{A})]^{\delta}$, $0 < \delta \leq 1$; is defined as the δ -entropy of the open cover \mathfrak{A} .

Definition 1.2. For any two open covers \mathfrak{A} and \mathfrak{B} of X, $\mathfrak{A} \vee \mathfrak{B} = \{A \cap B | A \in \mathfrak{A}, B \in \mathfrak{B}\}$ is defined as the join of \mathfrak{A} and \mathfrak{B} .

Definition 1.3. An open cover \mathfrak{B} is said to be a refinement of an open cover \mathfrak{A} ; denoted as $\mathfrak{A} \prec \mathfrak{B}$, if every member of \mathfrak{B} is a subset of some member of \mathfrak{A} . The following theorem shows that δ -entropy is sub-additive.

Theorem 1.1. If \mathfrak{A} and \mathfrak{B} are open covers of X, then

$$H_{\delta}(\mathfrak{A} \vee \mathfrak{B}) \leq H_{\delta}(\mathfrak{A}) + H_{\delta}(\mathfrak{B}).$$

Proof. Let $\{A_1, A_2, ..., A_{N(\mathscr{U})}\}$ be a minimal subcover of \mathfrak{A} and $\{B_1, B_2, ..., B_{N(\mathscr{B})}\}$ (here from typographical reasons $N(\mathscr{U})$, resp. $N(\mathscr{B})$, is used instead of $N(\mathfrak{A})$, resp. **316** $N(\mathfrak{B})$ be a minimal subcover of \mathfrak{B} . Now, $\{A_i \cap B_j | i = 1, 2, ..., N(\mathfrak{A}); j = 1, 2, ..., N(\mathfrak{B})\}$ is a subcover of $\mathfrak{A} \lor \mathfrak{B}$. Consequently,

2. TOPOLOGICAL δ -ENTROPY

Let Φ be a continuous mapping of X into itself. If \mathfrak{A} is an open cover of X, then, the family $\Phi^{-1}\mathfrak{A} = \{\Phi^{-1}A | A \in \mathfrak{A}\}$ is also an open cover.

Definition 2.1. The Topological $\delta\text{-entropy }h_{\delta}(\varPhi)$ of a continuous mapping \varPhi is defined as

$$h_{\delta}(\Phi) = \operatorname{Sup} h_{\delta}(\Phi, \mathfrak{A})$$

where Sup is taken over all open covers \mathfrak{A} of X and $h_{\delta}(\Phi, \mathfrak{A})$ is given by

$$h_{\delta}(\Phi, \mathfrak{A}) = \lim_{n \to \infty} H_{\delta}(\mathfrak{A} \vee \Phi^{-1}\mathfrak{A} \vee \ldots \vee \Phi^{-(n-1)}\mathfrak{A}) \mid n^{\delta}.$$

In the following note we justify that this limit exists and is finite.

Note 2.1. Let the number of members in a minimal subcover of $\mathfrak{A} \vee \Phi^{-1}\mathfrak{A} \vee \ldots \vee \Phi^{-(n-1)}\mathfrak{A}$ be denoted by $N_n(\mathfrak{A})$. Therefore,

$$h_{\delta}(\Phi, \mathfrak{A}) = \lim_{n \to \infty} H_{\delta}(\mathfrak{A} \lor \Phi^{-1}\mathfrak{A} \lor \ldots \lor \Phi^{(n-1)}\mathfrak{A}) \mid n^{\delta} =$$

$$= \lim_{n \to \infty} \frac{\left[\log N_n(\mathfrak{A})\right]^{\delta}}{n^{\delta}} = \lim_{n \to \infty} \left[\frac{\log N_n(\mathfrak{A})}{n}\right]^{\delta} = \left[\lim_{n \to \infty} \frac{\log N_n(\mathfrak{A})}{n}\right]^{\delta}.$$

From [1]

$$\lim_{n\to\infty}\frac{1}{n}\log N_n(\mathfrak{A})$$

exists and is finite. Hence,

$$\lim_{n\to\infty}\frac{H_{\delta}(\mathfrak{A}\vee\Phi^{-1}\mathfrak{A}\vee\ldots\vee\Phi^{-(n-1)}\mathfrak{A})}{n^{\delta}}$$

exists and is finite.

Theorem 2.1. Topological δ -entropy is an invariant in the sense that $h_{\delta}(\Psi \Phi \Psi^{-1}) = 3$ = $h_{\delta}(\Phi)$ where Φ is a continuous mapping of X into itself and Ψ is a homeomorphism of X onto some X'; where X and X' both are compact topological spaces.

Proof. For an open cover \mathfrak{A} of X, we have

$$\begin{split} h_{\delta}(\Psi \Phi \Psi^{-1}, \Psi \mathfrak{A}) &= \\ &= \lim_{n \to \infty} H_{\delta}(\Psi \mathfrak{A} \vee (\Psi \Phi \Psi^{-1})^{-1} \Psi \mathfrak{A} \vee \ldots \vee (\Psi \Phi \Psi^{-1})^{-(n-1)} \Psi \mathfrak{A})/n^{\delta} = \\ &= \lim_{n \to \infty} H_{\delta}(\Psi \mathfrak{A} \vee \Psi \Phi^{-1} \Psi^{-1} \Psi \mathfrak{A} \vee \ldots \vee \Psi \Phi^{-(n-1)} \Psi^{-1} \Psi \mathfrak{A})/n^{\delta} = \\ &= \lim_{n \to \infty} H_{\delta}(\Psi \mathfrak{A} \vee \Psi \Phi^{-1} \mathfrak{A} \vee \ldots \vee \Psi \Phi^{-(n-1)} \mathfrak{A})/n^{\delta} = \\ &= \lim_{n \to \infty} H_{\delta}(\mathfrak{A} \vee \Phi^{-1} \mathfrak{A} \vee \ldots \vee \Phi^{-(n-1)} \mathfrak{A})/n^{\delta} = h_{\delta}(\Phi, \mathfrak{A}) \,. \end{split}$$

Since Ψ is a homeomorphism; therefore, as \mathfrak{A} ranges over all open covers of X, $\Psi\mathfrak{A}$ ranges over all open covers of X'. Hence,

$$h_{\delta}(\Psi \Phi \Psi^{-1}) = h_{\delta}(\Phi) \,.$$

(Received September 21, 1977.)

REFERENCES

- R. L. Adler, A. G. Konheim, M. H. McAndrew: Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 2, 309-319.
- [2] G. H. Hardy, J. E. Littelwood, G. Polya: Inequalities. 2nd edition, Cambridge University Press, Cambridge 1956.

Dr. J. S. Chawla, Department of Mathematics, Aitkinson College, York University, 4700 Keele Street, Downsview, Ontario. Canada.

317