Locally Best Unbiased Estimates of Functionals of Covariance Functions of a Gaussian Stochastic Process

František Štulajter

Using the RKHS (Reproducing Kernel Hilbert Space) methods the characterization of the locally best unbiased estimable functionals of unknown covariance function of a Gaussian stochastic is given.

1. INTRODUCTION

The theory of locally best unbiased estimates was founded by Barankin [2]. Parzen [9] investigated the connection between this theory and the theory of RKHS. Parzen [9], Kailath-Duttweiler [3] and the autor [12] utilised the theory to the problem of unbiased estimation of functionals of unknown mean value function of a Gaussian random process. The aim of this paper is to characterize the locally best unbiased estimable functionals of an unknown covariance function of a Gaussian stochastic process $X=\{X(t) ; t \in[0, T]\}$ having its mean value function identically equal to zero. The unknown covariance function of the process X is assumed to be of the type $R(s, t)=\sum_{k=1}^{\infty} \lambda_{k} e_{k}(s) e_{k}(t)$, where the $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ are unknown real numbers such that $\lambda_{k}>0 ; k=1,2, \ldots \sum_{k=1}^{\infty} \lambda_{k}<\infty$, and $\left\{e_{k}\right\}_{k=1}^{\infty}$ is a known complete orthonormal system in $L^{2}([0, T])$.

2. GENERAL THEORY OF LOCALLY BEST UNBIASED ESTIMATES

Now we shall give a brief review of the general theory of locally best unbiased estimates following [9]. Let $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric set of probability measures and let $\theta_{0} \in \Theta$ be fixed. It is assumed that, for every $\theta \in \Theta$, the measure P_{θ} is absolute-
ly continuous with respect to $P_{\theta_{0}}$ and the function $\mathrm{d} P_{\theta} / \mathrm{d} P_{\theta_{0}}$ belongs to the $L^{2}\left(P_{\theta_{0}}\right)$ space for every $\theta \in \Theta$. Denote by $L_{\theta_{0}}^{2}$ the subspace of $L^{2}\left(P_{\theta_{0}}\right)$ generated by the set of functions $\left\{\mathrm{d} P_{\theta} / \mathrm{d} P_{\theta_{0}} ; \theta \in \Theta\right\}$. Then for the function $f: \Theta \rightarrow E^{1}$ there exists an unbased estimate having finite variance at θ_{0} if and only if $f \in H\left(K_{\theta_{0}}\right)$, where

$$
K_{\theta_{0}}\left(\theta, \theta^{\prime}\right)=E_{\theta_{0}}\left[\frac{\mathrm{~d} P_{\theta}}{\mathrm{d} P_{\theta_{0}}} \cdot \frac{\mathrm{~d} P_{\theta^{\prime}}}{\mathrm{d} P_{\theta_{0}}}\right]
$$

$\theta, \theta^{\prime} \in \Theta$ is a reproducing kernel of the RKHS $H\left(K_{\theta_{0}}\right)$. The spaces $H\left(K_{\theta_{0}}\right)$ and $L_{\theta_{0}}^{2}$ are isomorphic. For every function $f \in H\left(K_{\theta_{0}}\right)$ there exists a random variable $V \in$ $\in L_{\theta_{0}}^{2}$ - the isomorphic image of f, such that

$$
E_{\theta}[V]=E_{\theta_{0}}\left[V \cdot \frac{\mathrm{~d} P_{\theta}}{\mathrm{d} P_{\theta_{0}}}\right]=f(\theta)
$$

for every $\theta \in \Theta$ and

$$
\|f\|_{H\left(K_{\left.\theta_{0}\right)}\right)}^{2}=E_{\theta_{0} \mathrm{l}}\left[V^{2}\right] \leqq E_{\theta_{0}}\left[U^{2}\right]
$$

for every $U \in L^{2}\left[P_{\theta_{0}}\right]$ having the property $E_{\theta}[U]=f(\theta)$ for all $\theta \in \Theta$.

3. LOCALLY BEST UNBIASED ESTIMATES OF DISPERSION

Now we shall study the simplest case of estimation of functions of dispersion. Let X be a $\mathrm{N}\left(0, \sigma^{2}\right)$ distributed random variable. Then for any $\sigma_{0}^{2}, \sigma^{2}>0$ the measure P_{σ} given on the Borel sets of real line by

$$
P_{\sigma}(A)=\frac{1}{\sqrt{ }(2 \pi) \sigma} \int_{A} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x
$$

is absolutely continuous with respect to $P_{\sigma_{0}}$ and $\mathrm{d} P_{\sigma} / \mathrm{d} P_{\sigma_{0}}$ belongs to $L^{2}\left[P_{\sigma_{0}}\right]$ if and only if $0<\sigma^{2}<2 \sigma_{0}^{2}$. Accordingly, we have

$$
\begin{gathered}
K_{\sigma_{0}}\left(\sigma, \sigma^{\prime}\right)=E_{\sigma_{0}}\left[\frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}} \cdot \frac{\mathrm{~d} P_{\sigma^{\prime}}}{\mathrm{d} P_{\sigma_{0}}}\right]=\frac{\sigma_{0}^{2}}{\sigma \sigma^{\prime} \sigma_{0}} \frac{1}{\sqrt{(2 \pi)}} \int_{-\infty}^{\infty} \mathrm{e}^{\left[-x^{2} / 2\left(1 / \sigma^{2}+1 / \sigma^{\prime 2}-1 / \sigma_{0}^{2}\right)\right]} \mathrm{d} x= \\
=\left[\frac{\sigma_{0}^{4}}{\left(\sigma^{\prime} \sigma_{0}\right)^{2}+\left(\sigma \sigma_{0}\right)^{2}-\left(\sigma \sigma^{\prime}\right)^{2}}\right]^{1 / 2}=\left[1-\frac{\sigma^{2}-\sigma_{0}^{2}}{\sigma_{0}^{2}} \cdot \frac{\sigma^{\prime 2}-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right]^{-1 / 2},
\end{gathered}
$$

where $0<\sigma^{2}, \sigma^{\prime 2}<2 \sigma_{0}^{2}$. We shall now characterize the space $H\left(K_{\sigma_{0}}\right)$. To do this we need the following lemma.
Lemma 1. Let H be a Hilbert space of functions which are analytic in the unit circle $E=\{z=x+\mathrm{i} y:|z|<1\}$ and such that $\iint_{E}|f(z)|^{2} \mathrm{~d} x \mathrm{~d} y<\infty$. Then the system

$$
\left\{\varphi_{n}(z)=(n / \pi)^{1 / 2} z^{n-1}\right\}_{n=1}^{\infty}
$$

is a complete orthonormal system in H endowed by the inner product $(f, g)_{H}=$ $=\iint_{E} f \cdot \bar{g} \mathrm{~d} x \mathrm{~d} y$. Moreover, $H=H\left(K_{0}\right)$ with

$$
K_{0}(z, \bar{u})=\sum_{n=1}^{\infty} \varphi_{n}(z) \varphi_{n}(\bar{u})=\sum_{n=1}^{\infty} \frac{n}{\pi} z^{n-1} \bar{u}^{n-1}=\frac{1}{\pi(1-z \bar{u})^{2}} ; \quad z, u \in E
$$

Proof. Meschkowski [7].
Now let $\mathscr{E}_{\sigma_{0}}=\left\{w:\left|w-\sigma_{0}^{2}\right|<\sigma_{0}^{2}\right\}$ be the circle centred at σ_{0}^{2} and of the radius σ_{0}^{2} and let $h: \mathscr{E}_{\sigma_{0}} \rightarrow E$ be a transformation given by $h(w)=\left(w-\sigma_{0}^{2}\right) / \sigma_{0}^{2}$. Then the following lemma is true.

Lemma 2. Let $H_{\sigma_{0}}$ be the Hilbert space of functions that are analytic in the circle $\mathscr{E}_{\sigma_{0}}$ and such that $\iint_{\mathscr{E}_{\sigma 0}}|f(w)|^{2} \mathrm{~d} x \mathrm{~d} y<\infty$. Then the system

$$
\left\{\psi_{n}(w)=\left(\frac{n}{\pi}\right)^{1 / 2} h(w)^{n-1} \cdot \frac{\mathrm{~d} h}{\mathrm{~d} w}\right\}_{n=1}^{\infty}=\left\{\left(\frac{n}{\pi}\right)^{1 / 2} \cdot \frac{1}{\sigma_{0}^{2}} \cdot\left(\frac{w-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right)^{n-1}\right\}_{n=1}^{\infty}
$$

is a complete orthonormal system in $H_{\sigma_{0}}, H_{\sigma_{0}}=H\left(K_{\sigma_{0}}^{*}\right)$, where

$$
K_{\sigma_{0}}^{*}(w, v)=\frac{h^{\prime}(w) \overline{h^{\prime}(v)}}{\pi(1-h(w) \overline{h(v)})^{2}}=\frac{1}{\sigma_{0}^{4} \pi} \frac{1}{\left[1-\frac{\left(w-\sigma_{0}^{2}\right)}{\sigma_{0}^{2}} \cdot \overline{\left.\frac{v-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right]^{2}}\right.}=\sum_{n=1}^{\infty} \psi_{n}(w) \psi_{n}(v)
$$

Proof. Meschkowski [7].
Now let

$$
K(w, v)=\left[1-\frac{w-\sigma_{0}^{2}}{\sigma_{0}^{2}} \cdot \frac{\overline{v-\sigma_{0}^{2}}}{\sigma_{0}^{2}}\right]^{-1 / 2} ; \quad w, v \in \mathscr{E}_{\sigma_{0}}
$$

Then we have:

$$
\begin{aligned}
& K(w, v)=\frac{\mathrm{d}}{\mathrm{~d} z} \arcsin z \left\lvert\, \frac{w-\sigma_{0}^{2}}{{ }_{0}^{2}} \cdot \frac{\overline{v-\sigma_{0}^{2}}}{\sigma_{0}^{2}}=1+\frac{1}{2} \frac{w-\sigma_{0}^{2}}{\sigma_{0}^{2}} \cdot \frac{\overline{v-\sigma_{0}^{2}}}{\sigma_{0}^{2}}+\right. \\
& +\frac{1.3}{2.4}\left(\frac{w-\sigma_{0}^{2}}{\sigma_{0}^{2}} \cdot \frac{\overline{v-\sigma_{0}^{2}}}{\sigma_{0}^{2}}\right)^{2}+\ldots=\sum_{n=1}^{\infty} c_{n}\left(\frac{w-\sigma_{0}^{2}}{\sigma_{0}^{2}} \frac{\overline{v-\sigma_{0}^{2}}}{\sigma_{0}^{2}}\right)^{n-1}=\sum_{n=1}^{\infty} d_{n} \psi_{n}(w) \overline{\psi_{n}(v)},
\end{aligned}
$$

where

$$
c_{1}=1 ; \quad c_{n}=\frac{(2 n-3)!!}{(2 n-2)!!}=\frac{(2 n-3) \ldots 3.1}{(2 n-2) \ldots 4.2} \text { for } n \geqq 2
$$

and

$$
d_{n}=\frac{\pi c_{n} \sigma_{0}^{4}}{n} ; \quad n=1,2, \ldots
$$

From the expression $K(w, v)=\sum_{n=1}^{\infty} d_{n} \psi_{n}(w) \overline{\psi_{n}(v)}$ we have the following characterization (see Aronszajn [1]) of $H(K)$:

$$
H(K)=\left\{f \in H_{\sigma_{0}}: \sum_{n=1}^{\infty} \frac{\left|\left(f, \psi_{n}\right)_{H \sigma_{0}}\right|^{2}}{d_{n}}<\infty\right\} .
$$

Using the fact that $f \in H_{\sigma_{0}}$ is analytic in $\mathscr{E}_{\sigma_{0}}$ we get

$$
\begin{aligned}
& f(w)= \sum_{k=0}^{\infty} \frac{f^{(k)}\left(\sigma_{0}^{2}\right)}{k!}\left(w-\sigma_{0}^{2}\right)^{k}=\sum_{n=1}^{\infty} \frac{\left(\sigma_{0}^{2}\right)^{n-1} f^{(n-1)}\left(\sigma_{0}^{2}\right)}{(n-1)!} . \\
& \cdot\left(\frac{\pi}{n}\right)^{1 / 2} \sigma_{0}^{2} \cdot \psi_{n}(w)=\sum_{n=1}^{\infty}\left(f, \psi_{n}\right)_{H \sigma_{0}} \cdot \psi_{n}(w)
\end{aligned}
$$

we get for

$$
H(K): H(K)=\left\{f \in H_{\sigma_{0}}: \sum_{n=1}^{\infty} \frac{\left(\sigma_{0}^{2}\right)^{2 n-2}\left[f^{(n-1)}\left(\sigma_{0}^{2}\right)\right]^{2}}{[(n-1)!]^{2} c_{n}}=\|f\|_{H(K)}^{2}<\infty\right\} .
$$

According to the uniqueness extension theorem (Saks [10]) and the restriction theorem (see [1]) in RKHS, the following theorem giving the characterization of $H\left(K_{\sigma_{0}}\right)$ can be proved.

Theorem 1. A function $f:\left(0,2 \sigma_{0}^{2}\right) \rightarrow E^{1}$ has an unbiased estimate with finite dispersion at σ_{0}^{2} if and only if it can be extended to an analytic function in $\mathscr{E}_{\sigma_{0}}$ such that

$$
\|f\|_{H\left(K_{\sigma 0}\right)}^{2}=\sum_{n=1}^{\infty} \frac{\left(\sigma_{0}^{2}\right)^{2(n-1)}\left[f^{(n-1)}\left(\sigma_{0}^{2}\right)\right]^{2}}{[(n-1)!]^{2} c_{n}}<\infty,
$$

where

$$
c_{1}=1 ; \quad c_{n}=\frac{(2 n-3)!!}{(2 n-2)!!} \text { for } n \geqq 2 .
$$

It is easy to see that every polynomial f_{n} given by

$$
f_{n}\left(\sigma^{2}\right)=\sum_{k=0}^{n} a_{k} \sigma^{2 k} ; \quad 0<\sigma^{2}<2 \sigma_{0}^{2}
$$

belongs to the space $H\left(K_{\sigma_{0}}\right)$. Especially, let $h_{k}\left(\sigma^{2}\right)=\left(\sigma^{2}\right)^{k}$. Then we have

$$
\begin{gathered}
\left\langle h_{k}, h_{l}\right\rangle_{H\left(K_{00}\right)}=\sum_{n=1}^{\infty} \frac{\left(\sigma_{0}^{2}\right)^{2(n-1)} h_{k}^{(n-1)}\left(\sigma_{0}^{2}\right) h_{k}^{(n-1)}\left(\sigma_{0}^{2}\right)}{[(n-1)!]^{2} c_{n}}= \\
= \\
\sum_{n=1}^{\min \{k+1, l+1\}} \frac{\left(\sigma_{0}^{2}\right)^{k+l}\binom{k}{n-1}\binom{l}{n-1}}{c_{n}} ; \quad k, l=0,1,2, \ldots
\end{gathered}
$$

For $k=1$ we have:

$$
\left\|h_{1}\right\|_{H\left(K_{c o}\right)}^{2}=\sigma_{0}^{4} \sum_{n=1}^{2}\binom{1}{n-1}^{2} \cdot \frac{1}{c_{n}}=3 \sigma_{0}^{4}=E_{\sigma_{0}}\left[X^{4}\right]
$$

so that the random variable X^{2} is the locally best unbiased estimate of h_{1} at σ_{0}^{2} for h_{1} defined by $h_{1}\left(\sigma^{2}\right)=\sigma^{2} ; 0<\sigma^{2}<2 \sigma_{0}^{2}$. Because this estimate does not depend on σ_{0}^{2} and it is unbiased estimate for the function $f\left(\sigma^{2}\right)=\sigma^{2}, \sigma^{2}>0$ we get the known result that X^{4} is the uniformly best unbiased estimate for f.

Now we shall prove that the random variable $U_{k}=\left(X^{2}\right)^{k} /(2 k-1)$!! is the uniformly best unbiased estimate for $h_{k}\left(\sigma^{2}\right)=\left(\sigma^{2}\right)^{k} ; \sigma^{2}>0$. Because

$$
E_{\sigma}\left[U_{k}\right]=E_{\sigma_{0}}\left[U_{k} \cdot \mathrm{~d} P_{\sigma} / \mathrm{d} P_{\sigma_{0}}\right]=h_{k}\left(\sigma^{2}\right) \text { for } 0<\sigma^{2}<2 \sigma_{0}^{2}
$$

$\sigma_{0}^{2}>0$, it is enough to prove that U_{k} belongs to the space $L_{\sigma_{0}}^{2}$ for every $\sigma_{0}^{2}>0$.
Lemma 3. Let $U_{k}=\left(X^{2}\right)^{k} ; k=0,1,2, \ldots$ Then $U_{k} \in L_{\sigma_{0}}^{2}$ for every $\sigma_{0}>0$.
Proof. For $k=0,1,2$ it is easy to prove that $\left\|U_{k}\right\|_{L^{2}\left(P_{\sigma 0}\right)}^{2}=\left\|h_{k}\right\|_{\|\left(K_{\sigma 0}\right)}^{2}$ and the lemma is proved. For $k \geqq 3$ we can proceed by induction. Because $L_{\sigma_{0}}^{2}$ is a subspace of $L^{2}\left[P_{\sigma_{0}}\right], U_{k} \in L_{\sigma_{0}}^{2}$ iff $U_{k} \in\left(L_{\sigma_{0}}^{2 \perp}\right)^{\perp}$, that is iff $\left(U_{k}, V\right)_{L^{2}\left(P_{\sigma 0}\right)}=0$ for all $V \in L^{2}\left(P_{\sigma_{0}}\right)$ such that

$$
\left(V, \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\right)_{L^{2}\left(P_{\sigma 0}\right)}=0 \text { for all } 0<\sigma^{2}<2 \sigma_{0}^{2}
$$

Because

$$
\left(U_{k}, V\right)_{L^{2}\left(P_{\sigma 0}\right)}=\left(U_{k-1}, U_{1} V\right)_{L^{2}\left(P_{\sigma 0}\right)}
$$

it is enough to prove according to the induction assumption that $U_{1} V \in\left(L_{\sigma_{0}}^{2}\right)^{\perp}$ if $V \in\left(L_{\sigma_{0}}^{2}\right)^{\perp}$, so that

$$
\int U_{1} V \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}} \cdot \mathrm{~d} P_{\sigma_{0}}=0 \text { for all } 0<\sigma^{2}<2 \sigma_{0}^{2}
$$

if $V \in\left(L_{\sigma_{0}}^{2}\right)^{\perp}$. This will be done for $\sigma_{0}^{2}=1$. In this case the system of Hermite polynomials $\left\{H_{n}(x)\right\}_{n=0}^{\infty}$ is known to be a complete orthonormal system in $L^{2}\left(P_{\sigma_{0}}\right)$ and we can write:

$$
\left(V, \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\right)_{L^{2}\left(P_{\sigma 0}\right)}=\sum_{n=0}^{\infty}\left(V, H_{n}\right) \cdot\left(\frac{\mathrm{d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}, H_{n}\right)=\sum_{n=0}^{\infty}\left(V, H_{n}\right) \cdot E_{P_{\sigma}}\left[H_{n}\right] .
$$

For $n=2 k+1 ; k=0,1, \ldots$ we have

$$
\int_{-\infty}^{\infty} H_{2 k+1}(x) \frac{1}{\sqrt{(2 \pi) \sigma}} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=0
$$

because $H_{2 k+1}(x)$ is a polynomial in x containing only odd powers of x. We shall prove now by induction

$$
E_{P_{\sigma}}\left[H_{2 k}\right]=\int_{-\infty}^{\infty} H_{2 k}(x) \frac{1}{\sqrt{(2 \pi) \sigma}} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=\left(\frac{(2 k-1)!!}{2 k!!}\right)^{1 / 2}\left(\sigma^{2}-1\right)^{k}
$$

The relation is true for $k=1$, because

$$
\frac{1}{\sqrt{ }(2 \pi) \sigma} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2!}}\left(x^{2}-1\right) \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=\frac{\sigma^{2}-1}{\sqrt{2!!}}
$$

Let the relation be true for $k=n-1$. Then, because

$$
H_{n+2}(x)=\frac{1}{\sqrt{ }(n+2)}\left(x H_{n+1}(x)-H_{n+1}^{\prime}(x)\right)
$$

and $H_{n}^{\prime}(x)=\sqrt{ }(n) H_{n-1}(x)$ (see Jarník [5]), we get

$$
\begin{gathered}
\int_{-\infty}^{\infty} H_{2 n}(x) \frac{1}{\sqrt{ }(2 \pi) \sigma} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{ }(2 n)}\left[x H_{2 n-1}(x)-H_{2 n-1}^{\prime}(x)\right] \\
\frac{1}{\sqrt{(2 \pi) \sigma}} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=-\sigma^{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{(2 n)}} H_{2 n-1}(x)\left(\frac{1}{\sqrt{ }(2 \pi) \sigma} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)}\right) \mathrm{d} x- \\
-\frac{1}{\sqrt{(2 n)}} \int_{-\infty}^{\infty} H_{2 n-1}^{\prime}(x) \frac{1}{\sqrt{ }(2 \pi) \sigma} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=\frac{\sigma^{2}-1}{\sqrt{ }(2 n)} \\
\quad \cdot \int_{-\infty}^{\infty} H_{2 n-1}^{\prime}(x) \frac{1}{\sqrt{ }(2 \pi) \sigma} \mathrm{e}^{\left(-x^{2} / 2 \sigma^{2}\right)} \mathrm{d} x=\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{1 / 2}\left(\sigma^{2}-1\right)^{n}
\end{gathered}
$$

According to this we have $V \in\left(L_{\sigma_{0}}^{2}\right)^{\perp}$ iff

$$
0=\left(V, \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\right)_{L^{2}\left(P_{\sigma 0}\right)}=\sum_{n=0}^{\infty}\left(V, H_{2 n}\right)\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{1 / 2}\left(\sigma^{2}-1\right)^{n}
$$

for all $0<\sigma^{2}<2$. Hence $\left(V, H_{2 n}\right)=0$ for $n=0,1, \ldots$ and $V(x)=\sum_{n=0}^{\infty}\left(V, H_{2 n+1}\right)$. . $H_{2 n+1}(x)$. For $U_{1}\left(\mathrm{~d} P_{\sigma} / \mathrm{d} P_{\sigma_{0}}\right)$ we get:

$$
\left(U_{1} \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}, H_{2 n+1}\right)=\int_{-\infty}^{\infty} x^{2} H_{2 n+1}(x) \mathrm{d} P_{\sigma}(x)=0 \quad \text { for } n=1,2, \ldots
$$

and using this we obtain:

$$
\left(V U_{1}, \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\right)_{L^{2}\left(P_{\sigma 0}\right)}=\left(V, U_{1} \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\right)_{L^{2}\left(P_{\sigma 0}\right)}=\sum_{n=0}^{\infty}\left(V, H_{n}\right)\left(U_{1} \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}, H_{n}\right)=0
$$

for all $0<\sigma^{2}<2$, and the proof of the lemma for $\sigma_{0}^{2}=1$ is finished. If $\sigma_{0}^{2} \neq 1$, then we use fact that $\left\{G_{n}(x)=1 / \sigma_{0} H_{n}\left(x / \sigma_{0}\right)\right\}_{n=0}^{\infty}$ is a complete orthonormal system in $L^{2}\left(P_{\sigma_{0}}\right)$ and the proof is analogous to that given.

Corollary 1. For any nonnegative integers k, l the following combinatorial identity is true:

$$
\sum_{n=1}^{\min \{k+1, l+1\}}\left(\begin{array}{cc}
k & \\
n-1
\end{array}\right)\binom{l}{n-1} c_{n}^{-1}=\frac{(2 k+2 l-1)!!}{(2 k-1)!!(2 l-1)!!}
$$

where

$$
c_{1}=1 ; \quad c_{n}=\frac{(2 n-3)!!}{(2 n-2)!!} \text { for } n \geqq 2
$$

Proof. The left-hand side of the identity is equal to $1 /\left(\sigma_{0}^{2}\right)^{k+l}\left\langle h_{k}, h_{l}\right\rangle_{H\left(K_{\sigma 0}\right)}$; the right-hand side equals to:

$$
\frac{1}{\left(\sigma_{0}^{2}\right)^{k+l}} E_{\sigma_{0}}\left[\frac{U_{k}}{(2 k-1)!!} \cdot \frac{U_{l}}{(2 l-1)!!}\right]=\frac{1}{\left(\sigma_{0}^{2}\right)^{k+l}} E_{\sigma_{0}}\left[\frac{U_{k+l}}{(2 k-1)!!(2 l-1)!!}\right]
$$

and these expressions equal each other, according to the Lemma 3.

Corollary 2. If $f \in H\left(K_{\sigma_{0}}\right)$, then its locally best unbiased estimate $U_{\sigma_{0}}$ at σ_{0} is given by

$$
U_{\sigma 0}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(\sigma_{0}^{2}\right)}{n!} \sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} \frac{X^{2 j}}{(2 j-1)!!}\left(\sigma_{0}^{2}\right)^{n-j},
$$

where the series converges in $L^{2}\left(P_{\sigma_{0}}\right)$.

Proof. If $f \in H\left(K_{\sigma_{0}}\right)$, then

$$
f\left(\sigma^{2}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(\sigma_{0}^{2}\right)}{n!}\left(\sigma^{2}-\sigma_{0}^{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(\sigma_{0}^{2}\right)}{n!} \cdot \frac{\left(\sigma_{0}^{2}\right)^{n}}{\sqrt{c_{n+1}}} x_{n+1}\left(\sigma^{2}\right)
$$

where

$$
\left\{x_{n+1}\left(\sigma^{2}\right)=\sqrt{ }\left(d_{n+1}\right) \psi_{n+1}\left(\sigma^{2}\right)=\sqrt{ }\left(c_{n+1}\right)\left(\frac{\sigma^{2}-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right)^{n}\right\}_{n=0}^{\infty}
$$

is a complete orthonormal system in $H\left(K_{\sigma_{0}}\right)$. According to the isomorphism between $H\left(K_{\sigma_{0}}\right)$ and $L_{\sigma_{0}}^{2}$ we get the desired result, because the system of random variables

$$
\left\{\frac{\sqrt{ } c_{n+1}}{\left(\sigma_{0}^{2}\right)^{n}} \sum_{j=0}^{n}\binom{n}{j} \frac{X^{2 j}}{(2 j-1)!!}(-1)^{n-2 j}\left(\sigma_{0}^{2}\right)^{2 j}\right\}_{n=0}^{\infty}
$$

is a complete orthonormal system in $L_{\sigma_{0}}^{2}$ for every $\sigma_{0}^{2}>0$.

Example 1. Let $f\left(\sigma^{2}\right)=\left(\sigma^{2}\right)^{1 / 2}$. The function $f(z)=z^{1 / 2}$ is analytic in every circle $\mathscr{E}_{\sigma_{0}}, \sigma_{0}>0$ and

$$
f\left(\sigma^{2}\right)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(\sigma_{0}^{2}\right)}{n!}\left(\sigma^{2}-\sigma_{0}^{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{a_{n}}{n!}\left(\sigma^{2}-\sigma_{0}^{2}\right)^{n}
$$

where

$$
a_{0}=\sigma_{0}, \quad a_{1}=\frac{1}{2}\left(\sigma_{0}\right)^{-1 / 2}, \quad a_{n}=(-1)^{n+1} \frac{(2 n-3)!!}{2^{n}}\left(\sigma_{0}^{2}\right)^{-(2 n-1) / 2}
$$

for $n=2,3, \ldots$. The series

$$
\sum_{n=0}^{\infty} \frac{a_{n}^{2}\left(\sigma_{0}^{2}\right)^{2 n}}{(n!)^{2} c_{n+1}}
$$

converges, because for $n \geqq 2$ we have

$$
\begin{gathered}
\frac{a_{n}^{2}\left(\sigma_{0}^{2}\right)^{2 n}}{(n!)^{2} c_{n+1}}=\sigma_{0}^{2} \frac{((2 n-3)!!)^{2}(2 n)!!}{2^{2 n}(n!)^{2}(2 n-1)!!}=\sigma_{0}^{2} \frac{(2 n-1)!!(2 n)!!}{2^{2 n}(n!)^{2}(2 n-1)^{2}}= \\
=\sigma_{0}^{2} \frac{(2 n-1)!!2^{n} n!}{2^{2 n}(n!)^{2}(2 n-1)^{2}}=\sigma_{0}^{2} \frac{(2 n-3)!!}{2^{n} n!(2 n-1)} \leqq \sigma_{0}^{2} \frac{(2 n-2)!!}{2^{n} n!(2 n-1)}= \\
=\frac{\sigma_{0}^{2}}{2} \frac{1}{2 n^{2}-n} \leqq \frac{\sigma_{0}^{2}}{2 n^{2}}
\end{gathered}
$$

and the function $f($.$) has the locally best unbiases estimate at \sigma_{0}^{2}$.

Remark. The theory just derived can be used in the case of a random sample, too. If X_{1}, \ldots, X_{n} are independent, identically $\mathrm{N}\left(0, \sigma^{2}\right)$ distributed random variables, then

$$
K_{n}\left(\sigma, \sigma^{\prime}\right)=\left(1-\frac{\sigma^{2}-\sigma_{0}^{2}}{\sigma_{0}^{2}} \cdot \frac{\sigma^{\prime 2}-\sigma_{0}^{2}}{\sigma_{0}^{2}}\right)^{-n / 2}
$$

The Hilbert space $H\left(K_{n}\right)$ can be characterized in this case utilizing the fact that

$$
K_{2 k+1}(z)=(1-z)^{-(2 k+1) / 2}=\frac{2^{k}}{(2 k-1)!!} K_{1}^{(k)}(z)
$$

from which we have

$$
K_{2 k+1}(z, \bar{u})=\sum_{m=1}^{\infty} a_{m}^{(k)}(z \cdot \bar{u})^{m-1}
$$

with

$$
a_{m}^{(k)}=c_{m+k} \frac{2^{k}}{(2 k-1)!!}(m+k-1) \ldots m
$$

Because

$$
K_{2 k+2}(z)=\frac{1}{(1-z)^{k+1}}=K_{2}^{(k)}(z) \cdot 1 / k!
$$

we can proceed by analogy and get:

$$
K_{2 k+2}(z, \bar{u})=\frac{1}{(1-z \bar{u})^{k+1}}=\sum_{m=1}^{\infty} b_{m}^{(k)}(z \cdot \bar{u})^{m-1},
$$

where $b_{m}^{(1)}=1$,

$$
b_{m}^{(k)}=\frac{(m+k-1) \ldots m}{k!} \text { for } k \geqq 1
$$

and

$$
K_{2}(z, \bar{u})=\frac{1}{(1-z \bar{u})}=\sum_{m=1}^{\infty}(z \cdot \bar{u})^{m-1} .
$$

Using Lemma 1 and Lemma 2 we get:

$$
H\left(K_{n}\right)=\left\{f \in \mathscr{E}_{\sigma_{0}}: \sum_{m=1}^{\infty} \frac{\left(\sigma_{0}^{2}\right)^{2(m-1)}\left[f^{(m-1)}\left(\sigma_{0}^{2}\right)\right]^{2}}{[(m-1)!]^{2} e_{m}^{(n)}},\right.
$$

where

$$
e_{m}^{(2 k+1)}=\frac{2^{k}}{(2 k-1)!!} c_{m+k}(m+k-1) \ldots m \text { if } k=1,2, \ldots
$$

and

$$
e_{m}^{(2 k)}=\frac{(m+k-1) \ldots m}{k!} \text { if } k=1,2, \ldots
$$

and it is possible to prove again that the random variables $\left(\sum X_{i}^{2}\right)^{k} \in L_{\sigma_{0}}^{2}$ for $k=$ $=0,1,2, \ldots$, where $L_{\sigma_{0}}^{2}$ is now generated by the system

$$
\left\{\frac{\mathrm{d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \frac{\mathrm{~d} P_{\sigma}}{\mathrm{d} P_{\sigma_{0}}}\left(X_{i}\right) ; \quad 0<\sigma^{2}<2 \sigma_{0}^{2}\right\}
$$

of random variables.
4. LOCALLY BEST UNBIASED ESTIMATES OF FUNCTIONALS OF COVARIANCE FUNCTIONS OF A GAUSSIAN STOCHASTIC PROCESS

Let us assume that we observe a Gaussian measurable stochastic process $X=$ $=\{X(t) ; t \in[0, T]\}$ with zero mean value function and with an unknown covariance function of the type

$$
R(s, t)=\sum_{k=1}^{\infty} \lambda_{k} e_{k}(s) e_{k}(t) ; \quad s, t \in[0, T],
$$

where $\left\{e_{k}\right\}_{k=1}^{\infty}$ is a known given complete orthonormal system in $L^{2}([0, T])$ and
$\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ are unknown positive real numbers such that $\sum_{k=1}^{\infty} \lambda_{k}<\infty$. The last condition is sufficient to ensure the existence of a Gaussian probability measure P_{R} in $L^{2}([0, T])$ which is completely determined by the integral operator in $L^{2}([0, T])$ with the kernel $R(s, t) ; s, t \in[0, T]$.

In order to be able to utilize the general theory of estimation as given in part 2 to the problem of estimation of functionals of a covariance function we need to know the conditions under the measures P_{R} and $P_{R_{0}}$ are equivalent and $\mathrm{d} P_{R} / \mathrm{d} P_{R_{0}}$ belongs to the space $L^{2}\left(P_{R_{0}}\right)$. These problems were solved by many authors; the approach of Skorochod [11] is convenient for us.

Lemma 4. Let R and R_{0} be positive definite covariance operators in $L^{2}([0, T])$. The Gaussian measures P_{R} and $P_{R_{0}}$ are either orthogonal or equivalent. The necessary and sufficient condition for equivalence of P_{R} and $P_{R_{0}}$ is the following one: there exist a symmetric, Hilbert-Schmidt operator U such that $I+U$ is invertible and $R=R_{0}^{1 / 2}(I+U) R_{0}^{1 / 2}$. If P_{R} is equivalent with $P_{R_{0}}$ then

$$
\frac{\mathrm{d} P_{R}}{\mathrm{~d} P_{R_{0}}}(x)=\exp \left\{\frac{1}{2} \sum_{i, j}\left(U(I+U)^{-1} e_{i}, e_{j}\right)_{L^{2}}\left[\frac{\left(x, e_{i}\right)\left(x, e_{j}\right)}{\lambda_{i}^{0} \lambda_{j}^{0}}-\delta_{i j}\right]+\eta\right\}
$$

where

$$
\eta=\frac{1}{2} \sum_{k=1}^{\infty}\left[\frac{\gamma_{k}}{1+\gamma_{k}}-\log \left(1+\gamma_{k}\right)\right] ; \quad\left\{\lambda_{k}^{0}\right\}_{k=1}^{\infty},\left\{e_{k}\right\}_{k=1}^{\infty},
$$

are proper values and proper vectors of the operator R_{0}, and $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ are proper values of the operator $U . \mathrm{d} P_{R} / \mathrm{d} P_{R_{0}}$ belongs to the $L^{2}\left[P_{R_{0}}\right]$ iff $\left|\gamma_{k}\right|<1 ; k=1,2, \ldots$. Because U is Hilbert-Schmidt, $\sum_{k=1}^{\infty} \gamma_{k}^{2}<\infty$.

Proof. Skorochod [11]. Let $R^{\prime}=R_{0}^{1 / 2}\left(I+U^{\prime}\right) R_{0}^{1 / 2}$ and let $\left\{\gamma_{k}^{\prime}\right\}_{k=1}^{\infty}$ be the proper values of the operator $U^{\prime},\left|\gamma_{k}^{\prime}\right|<1, \sum_{k=1}^{\infty} \gamma_{k}^{\prime 2}<\infty$ and let $R^{\prime}(s, t)=\sum_{k=1}^{\infty} \lambda_{k}^{\prime} e_{k}(s) e_{k}(t)$, $\lambda_{k}^{\prime}>0, \sum_{k=1}^{\infty} \lambda_{k}^{\prime}<\infty$.

Then

$$
\begin{gathered}
K_{R_{0}}\left(R, R^{\prime}\right)=E_{P_{R 0}}\left[\frac{\mathrm{~d} P_{R}}{\mathrm{~d} P_{R_{0}}} \cdot \frac{\mathrm{~d} P_{R^{\prime}}}{\mathrm{d} P_{\mathrm{R}_{0}}}\right]=\mathrm{e}^{\eta} \cdot \mathrm{e}^{\eta^{\prime}} . \\
\cdot E_{P_{R 0}}\left[\exp \left\{\frac{1}{2} \sum_{k}\left[\frac{\gamma_{k}^{\prime}}{1+\gamma_{k}}+\frac{\gamma_{k}^{\prime}}{1+\gamma_{k}^{\prime}}\right]\left[\frac{\left(x, e_{k}\right)^{2}}{\lambda_{k}^{0}}-1\right]\right\}\right]= \\
=\prod_{k=1}^{\infty} \frac{\exp \left\{\frac{1}{2}\left(\frac{\gamma_{k}}{1+\gamma_{k}}+\frac{\gamma_{k}^{\prime}}{1+\gamma_{k}^{\prime}}\right)\right\}\left(\frac{1}{1+\gamma_{k}}\right)^{1 / 2}\left(\frac{1}{1+\gamma_{k}^{\prime}}\right)^{1 / 2}}{\exp \left\{\frac{1}{2} \frac{\gamma_{k}}{1+\gamma_{k}}+\frac{\gamma_{k}^{\prime}}{1+\gamma_{k}^{\prime}}\right\} \cdot\left(1-\frac{\gamma_{k}}{1+\gamma_{k}}-\frac{\gamma_{k}^{\prime}}{1+\gamma_{k}^{\prime}}\right)^{1 / 2}}=
\end{gathered}
$$

$$
=\prod_{k=1}^{\infty}\left(1-\gamma_{k}^{\prime} \gamma_{k}^{\prime}\right)^{-1 / 2}=\prod_{k=1}^{\infty}\left(1-\frac{\lambda_{k}-\lambda_{k}^{0}}{\lambda_{k}^{0}} \cdot \frac{\lambda_{k}^{\prime}-\lambda_{k}^{0}}{\lambda_{k}^{0}}\right)^{-1 / 2}
$$

where $0<\lambda_{k}, \lambda_{k}^{\prime}<2 \lambda_{k}^{0}$ for $k=1,2, \ldots$ This follows from the facts, that $\gamma_{k}=$ $=\lambda_{k} \mid \lambda_{k}^{0}-1$ and $\left|\gamma_{k}\right|<1, k=1,2, \ldots$ and

$$
\sum_{k=1}^{\infty} \gamma_{k}^{2}=\sum_{k=1}^{\infty}\left(\frac{\lambda_{k}-\lambda_{k}^{0}}{\lambda_{k}^{0}}\right)^{2}<\infty
$$

As we see, the kernel $K_{R_{0}}(\cdot,-)$ is defined on the set $\mathscr{R}_{0} \times \mathscr{R}_{0}$, where

$$
\begin{aligned}
& \mathscr{R}_{0}=\left\{R: R(s, t)=\sum_{k=1}^{\infty} \lambda_{k} e_{k}(s) e_{k}(t)\right. \\
&\left.0<\lambda_{k}<2 \lambda_{k}^{0}, \quad \sum_{k=1}^{\infty} \lambda_{k}<\infty, \sum_{k=1}^{\infty}\left(\frac{\lambda_{k}-\lambda_{k}^{0}}{\lambda_{k}^{0}}\right)^{2}<\infty\right\},
\end{aligned}
$$

and the RKHS $H\left(K_{R_{0}}\right)$ consisting of the functions defined on \mathscr{R}_{0} have to be considered in connection with unbiased estimation of functionals of covariance function. The following theorem describes the structure of $H\left(K_{R_{0}}\right)$.

Theorem 2. The space of estimable functionals of covariance functions $H\left(K_{R_{0}}\right)$

$$
\begin{gathered}
K_{i}\left(\lambda_{i}, \lambda_{i}^{\prime}\right)=\left(1-\frac{\lambda_{i}-\lambda_{i}^{0}}{\lambda_{i}^{0}} \cdot \frac{\lambda_{i}^{\prime}-\lambda_{i}^{0}}{\lambda_{i}^{0}}\right)^{-1 / 2}, \\
0<\lambda_{i}, \lambda_{i}^{\prime}<2 \lambda_{i}^{0} ; i=1,2, \ldots
\end{gathered}
$$

Proof. The notion of infinite tensor product of Hilbert spaces is given in Guichardet [4]. Because the elements $\left\{K_{R_{0}}(\cdot, R) ; R \in \mathscr{R}_{0}\right\}$ generates $H\left(K_{R_{0}}\right)$, the isomorphism between $H\left(K_{R_{o}}\right)$ and $\underset{i=1}{\infty} H\left(K_{i}\right)$ is a consequence of the fact that

$$
\begin{gathered}
\left\langle K_{R_{0}}(., R), K_{R_{0}}\left(., R^{\prime}\right)\right\rangle_{R\left(K R_{0}\right)}=K_{R_{0}}\left(R, R^{\prime}\right)=\prod_{i=1}^{\infty} K_{i}\left(\lambda_{i}, \lambda_{i}^{\prime}\right)= \\
=\prod_{i=1}^{\infty}\left\langle K_{i}\left(., \lambda_{i}\right), K_{i}\left(., \lambda_{i}^{\prime}\right)\right\rangle_{H\left(K_{i}\right)}=\left\langle{ }_{i=1}^{\infty} K_{i}\left(., \lambda_{i}\right),{\left.\left.\underset{i=1}{\infty} K_{i}\left(., \lambda_{i}^{\prime}\right)\right\rangle\right\rangle_{i=1}^{\infty} H\left(K_{i}\right) .}^{\infty} .\right.
\end{gathered}
$$

 of the type $h=\otimes_{i=1}^{\infty} h_{i}$, where $h_{i}=f_{i} \in H\left(K_{i}\right)$ for every $i \in J, J$ being a finite subset of $I=\{1,2, \ldots,\}^{i=1}$ and $h_{i}=1$ for $i \in I-J$. The function

$$
g(R)=g\left(\left\{\lambda_{i}\right\}_{i=1}\right)=\prod_{i \in J} f_{i}\left(\lambda_{i}\right) ; \quad R \in \mathscr{R}_{0}
$$

is an isomorphic image of such vector h. Now let $x_{i}=\otimes_{j=1}^{\infty} h_{j}$, where $h_{j}=1$ for $j \neq i$ and $h_{j}=f_{i} \in H\left(K_{i}\right)$ for $j=i ; i=1,2, \ldots$. Then the function $g(R)=$ $=g\left(\left\{\lambda_{i}\right\}_{i=1}^{\infty}\right)=\sum_{i=1}^{\infty} f_{i}\left(\lambda_{i}\right) ; R \in \mathscr{R}_{0}$ belongs to $H\left(K_{R_{0}}\right)$ if and only if the series $\sum_{i=1}^{\infty} x_{i}$ converges in $\underset{i=1}{\otimes} H\left(K_{i}\right)$. The necessary and sufficient condition for this is that the series $\sum_{i, j=1}^{\infty}\left\langle x_{i}, x_{j}\right\rangle_{\otimes i H\left(K_{i}\right)}$ converges, where

$$
\left\langle x_{i}, x_{j}\right\rangle_{\otimes i H\left(K_{i}\right)}=\left\|f_{i}\right\|_{H\left(K_{i}\right)}^{2} \quad \text { if } \quad i=j
$$

and

$$
\left\langle x_{i}, x_{j}\right\rangle_{\otimes i H(K i)}=\left\langle 1, f_{i}\right\rangle_{H\left(K_{i}\right)} \cdot\left\langle 1, f_{j}\right\rangle_{H\left(K_{j}\right)}
$$

for $i \neq j$.
Example 2. Let $f_{i}\left(\lambda_{i}\right)=\lambda_{i} e_{i}(s) e_{i}(t) ; s, t$ fixed points in [$\left.0, T\right]$. Then

$$
\sum_{i, j=1}^{\infty}\left\langle x_{i}, x_{j}\right\rangle=\left(\sum_{i=1} \lambda_{i}^{0} e_{i}(s) e_{i}(t)\right)^{2}+2 \sum_{i=1}^{\infty}\left(\lambda_{i}^{0}\right)^{2} e_{i}^{2}(s) e_{i}^{2}(t)<\infty
$$

and from the preceding results we can conclude that $U=\sum_{i=1}^{\infty} X_{i}^{2} e_{i}(s) e_{i}(t)$, where $X_{i}=\int_{0}^{T} X(s) e_{i}(s) \mathrm{d} s$ is the locally best unbiased estimate of the functional $f_{s, t}(R)=$ $=R(s, t) ; R \in \mathscr{R}_{0}$.

Example 3. Let $X(t)=X_{1} \sin t+X_{2} \cos t ; 0 \leqq t \leqq 2 \pi$, where X_{i}, are independent $\mathrm{N}\left(0, \lambda_{i}\right) ; i=1,2$, distributed random variables. Let $U=X_{1}^{2} \operatorname{sins} \sin t+X_{2}^{2} \cos s \cos t$ and let $V=X(s) X(t)$. Then $E_{R}[U]=E_{R}[V]=R(s, t)$ for all $R \in \mathscr{R}_{0}$, but it can be easily computed that $E_{R}\left[V^{2}\right]-E_{R}\left[U^{2}\right]=\lambda_{1} \lambda_{2}[\sin (s+t)]^{2} \geqq 0$ for all $R \in \mathscr{R}_{0}$.

5. ESTIMATION OF COMPONENTS OF COVARIANCE FUNCTION

Let us assume that an unknown covariance function of a Gaussian stochastic process X is of the form $R_{\alpha}(s, t)=\sum_{i=1}^{n} \alpha_{i} R_{i}(s, t)$, where $\alpha_{i}>0 i=1,2, \ldots, n$ are unknown parameters and $R_{i}(s, t)$ are known linearly independent covariance functions of the form $R_{i}(s, t)=\sum_{k=1}^{\infty} \lambda_{k, i} e_{k}(s) e_{k}(t)$ with $\lambda_{k, i}>0 k=1,2, \ldots$ and $\sum_{k=1}^{\infty} \lambda_{k, i}<\infty$ for $i=1,2, \ldots, n$. Under these conditions $R_{\alpha}(s, t)=\sum_{k=1}^{\infty} \lambda_{k} e_{k}(s) e_{k}(t)$, where we have denoted $\lambda_{k}=\sum_{i=1}^{n} \lambda_{k i} \alpha_{i} ; k=1,2, \ldots$. According to results of preceding
chapters $P_{R \alpha}$ is equivalent to $P_{R x 0}$ for fixed vector $\alpha_{0}^{\prime}=\left(\alpha_{1}^{0}, \ldots, \alpha_{n}^{0}\right)$ if and only if $\left|\left(\lambda_{k}-\lambda_{k}^{0}\right)\right| \lambda_{k}^{0} \mid<1$ for all k and

$$
\sum_{k=1}^{\infty}\left(\frac{\lambda_{k}-\lambda_{k}^{0}}{\lambda_{k}^{0}}\right)^{2}<\infty, \quad \text { where } \quad \lambda_{k}^{0}=\sum_{i=1}^{n} \lambda_{k, i} \alpha_{i}^{0} ; \quad k=1,2, \ldots
$$

If these conditions are fulfiled, then

$$
K_{R \alpha^{0}}\left(R_{\alpha}, R_{\alpha^{\prime}}\right)=E_{P R \alpha^{0}}\left[\frac{\mathrm{~d} P_{R x}}{\mathrm{~d} P_{R x^{0}}} \cdot \frac{\mathrm{~d} P_{R x^{\prime}}}{\mathrm{d} P_{R x^{0}}}\right]=\prod_{k=1}^{\infty}\left(1-\frac{\lambda_{k}-\lambda_{k}^{0}}{\lambda_{k}^{0}} \cdot \frac{\lambda_{k}^{\prime}-\lambda_{k}^{0}}{\lambda_{k}^{0}}\right)^{-1 / 2} .
$$

The following examples illustrate the situations that may occur.
Example 4. Let $\lambda_{k, 1}=1 / k^{2}$ and $\lambda_{k, 2}=1 /\left(k^{2}+k\right) ; k=1,2, \ldots$ and let $\alpha^{0}=$ $=(1,1)$. Because the series

$$
\sum_{k=1}^{\infty}\left(\frac{\left(\alpha_{1}-1\right) / k^{2}+\left(\alpha_{2}-1\right) /\left(k^{2}+k\right)}{1 / k^{2}+1 /\left(k^{2}+k\right)}\right)^{2}
$$

diverges for all $\alpha^{\prime}=\left(\alpha_{1}, \alpha_{2}\right) \neq \alpha^{0}$ the measures $P_{R \alpha}$ and $P_{R \alpha^{0}}$ are orthogonal for $\alpha \neq \alpha^{0}$.

Example 5. For $\lambda_{k, 1}=1 / k^{2} ; \lambda_{k, 2}=1 / k^{4}, k=1,2, \ldots$ and $\alpha^{0}=(1,1), \alpha=(1, b)$ where $0<b<2$, the series

$$
\sum_{k=1}^{\infty}\left(\frac{(b-1) / k^{4}}{1 / k^{2}+1 / k^{4}}\right)^{2}=\sum_{k=1}^{\infty}\left(\frac{b-1}{k^{2}+1}\right)^{2}
$$

converges and $P_{R \alpha}$ is equivalent to $P_{R \alpha^{0}}$. If $\alpha=(c, 1)$ with $0<c<2$, then the series

$$
\sum_{k=1}^{\infty}\left(\frac{(c-1) / k^{2}}{1 / k^{2}+1 / k^{4}}\right)^{2}=\sum_{k=1}^{\infty}\left(\frac{k^{2}(c-1)}{k^{2}+1}\right)^{2}
$$

diverges for $c \neq 1$ and for such α^{\prime} s that $P_{R \alpha}$ and $P_{R \alpha^{0}}$ are orthogonal.
For a discrete stochastic process $Y=\left\{X_{k}^{2}\right\}_{k=1}^{\infty}$, where $X_{k}=\int_{0}^{T} X(s) e_{k}(s) \mathrm{ds}$; $k=1,2, \ldots$ are independent random variables we have the following model:

$$
E_{R \alpha}\left[X_{k}^{2}\right]=\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}=\sum_{i=1}^{n} \alpha_{i} a_{i},
$$

where $a_{i}=\left(\lambda_{1 i}, \lambda_{2 i}, \ldots\right)$ are such that $a_{i} \in l^{1}$, that is $\sum_{k=1}^{\infty} \lambda_{k i}<\infty ; i=1,2, \ldots, n$. But at least one of the vectors $a_{i} ; i=1,2, \ldots, n$ does not belong to the space $H\left(R_{a^{0}}^{Y}\right)$, where $R_{\alpha^{0}}^{Y}(i, j) ; i, j=1,2, \ldots$ is a covariance function of the process Y by given α^{0}. Actually, let all $a_{i} ; i=1,2, \ldots, n$ belong to $H\left(R_{\alpha^{0}}^{Y}\right)$, then

$$
\left\|a_{i}\right\|_{H\left(R T \alpha^{0}\right)}^{2}=\sum_{k=1}^{\infty} \frac{\lambda_{k i}^{2}}{D_{\alpha^{0}}^{2}\left[X_{k}^{2}\right]}=\frac{1}{2} \sum_{i=1}^{\infty}\left[\frac{\lambda_{k i}}{\sum_{j=1}^{n} \alpha_{j}^{0} \lambda_{k j}}\right]^{2}<\infty
$$

for $i=1,2, \ldots, n$, from which we have:

$$
\lim _{k \rightarrow \infty} \frac{\lambda_{k i}}{\sum_{j=1}^{n} \alpha_{j}^{0} \lambda_{k j}}=0 \quad \text { for } \quad i=1, \ldots, n
$$

and this implies

$$
\lim _{k \rightarrow \infty} \frac{\sum_{i=1}^{n} \alpha_{i}^{0} \lambda_{k i}}{\sum_{j=1}^{n} \alpha_{j}^{0} \lambda_{k j}}=0, \text { a contradiction }
$$

Because of this fact we cannot use the methods of linear regression analysis given by Parzen [9] to estimate the vector α.

An unbiased estimate of vector $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ can be found by the method of least squares. The series $\sum_{k=1}^{\infty}\left[X_{k}^{2}-\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right]^{2}$ converges with probability one for every $\alpha_{i}>0 ; i=1,2, \ldots, n$ because $\sum_{k=1}^{\infty} E_{\alpha}\left|X_{k_{i}}^{2}-\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right|^{2}=2 \sum_{k=1}^{\infty}\left(\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right)^{2}<\infty$.
Next

$$
\sum_{k=1}^{\infty}\left|\frac{\partial}{\partial \alpha_{j}}\left(X_{k}^{2}-\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right)^{2}\right| \leqq 2 \sum_{k=1}^{\infty}\left(X_{k}^{2} \lambda_{k j}+\sum_{i=1}^{n} \lambda_{k i} \lambda_{k j} \alpha_{i}\right)<\infty
$$

with probability one for every $\alpha_{i}>0 ; i=1,2, \ldots, n$, because $\sum_{k=1}^{\infty} E_{\alpha}\left|X_{k}^{2} \lambda_{k j}\right|=$ $=\sum_{k=1}^{\infty} \lambda_{k} \lambda_{k j}<\infty$, so that we can write

$$
\frac{\partial}{\partial \alpha_{j}} \sum_{k=1}^{\infty}\left(X_{k}^{2}-\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right)^{2}=\sum_{k=1}^{\infty}\left(X_{k}^{2}-\sum_{i=1}^{n} \lambda_{k i} \alpha_{i}\right) \lambda_{k j}=0
$$

for $j=1,2, \ldots, n$ and unbiased estimate $\hat{\alpha}$, found by the method of least squares, is a solution of a system of normal equations

$$
A \alpha=\left(\begin{array}{c}
\left(a_{1}, Y\right)_{l^{2}} \\
\vdots \\
\left(a_{n}, Y\right)_{l^{2}}
\end{array}\right)
$$

where the matrix $A=\left\|\left(a_{i}, a_{j}\right)_{l^{2}}\right\| i, j=1,2, \ldots, n$ with $\left(a_{i}, a_{j}\right)_{l^{2}}=\sum_{k=1}^{\infty} \lambda_{k i} \lambda_{k j}$ and
$\left(a_{j}, Y\right)_{l^{2}}=\sum_{k=1}^{\infty} \lambda_{k j} X_{k}^{2}$. For the matrix A we have

$$
\sum_{i, j=1}^{n}\left(a_{i}, a_{j}\right)_{l^{2}} c_{i} c_{j}=\sum_{k=1}^{\infty}\left(\sum_{i=1}^{n} \lambda_{k i} c_{i}\right)^{2} \geqq 0
$$

and from the assumption of linear independence of covariance functions $R_{i} ; i=$ $=1,2, \ldots, n$ we get $\sum_{i=1}^{n} \lambda_{k i} c_{i}=0$ for all $k=1,2, \ldots$ if and only if $c_{i}=0$; from which can be deduced that A is nonsingular and

$$
\hat{\alpha}=A^{-1}\left(\begin{array}{c}
\left(a_{1}, Y\right)_{l^{2}} \\
\vdots \\
\left(a_{n}, Y\right)_{l^{2}}
\end{array}\right)
$$

(Received February 2, 1979.)

REFERENCES

[1] N. Aronszajn: Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68 (1950), 337 404.
[2] E. W. Barankin: Locally Best Unbiased Estimates. Ann. Math. Stat. 20 (1949), 477-501.
[3] D. L. Duttweiler, T. Kailath: Parameter Estimation. IEEE Trans. Infor. Th. IT-19 (1973), 1, 29-37.
[4] A. Guichardet: Symmetric Hilbert Spaces and Related Topics. (Lecture Notes in Math. 261), Springer, New York 1972.
[5] V. Jarnik: Integrální počet II. Nakladatelství ČSAV, Praha 1955.
[6] T. Kailath, H. L. Weinert: RKHS Approach to Detection and Estimation Problems - Part II. Gaussian Signal Detection. IEEE Trans. Infor. Th. IT-21 (1975), 1, 15-23.
[7] H. Meschkowski: Hilbertsche Räume mit Kernfunktion. Springer, Berlin 1962.
[8] J. Neveu: Processus aléatoires gaussiens. Presses de l'Université de Montréal, 1968.
[9] E. Parzen: Time Series Analysis Papers. Holden-Day, San Francisco 1967.
[10] S. Saks, A. Zygmund: Analytic Functions. PWN, Warszawa 1965.
[11] A. V. Skorochod: Integration in Hilbert Space. Springer, New York 1974.
[12] F. Štulajter: Nonlinear Estimations of Polynomials in Mean Values of a Gaussian Stochastic Process. Kybernetika 14 (1978), 3, 206-220.

RNDr. František Štulajter, CSC., Ústav merania a meracej techniky SAV (Institute of Measurement and Measuring Technique - Slovak Academy of Sciences), Dúbravská cesta, 88527 Bratislava. Czechoslovakia.

