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Locally Best Unbiased Estimates
of Functionals of Covariance Functions
of a Gaussian Stochastic Process

FRANTISEK §TULAJ TER

Using the RKHS (Reproducing Kernel Hilbert Space) methods the characterization of the
locally best unbiased estimable functionals of unknown covariance function of a Gaussian sto-
chastic is given.

1. INTRODUCTION

The theory of locally best unbiased estimates was founded by Barankin [2].
Parzen [9] investigated the connection between this theory and the theory of RKHS.
Parzen [9], Kailath-Duttweiler [3] and the autor [12] utilised the theory to the
problem of unbiased estimation of functionals of unknown mean value function of
a Gaussian random process. The aim of this paper is to characterize the locally best
unbiased estimable functionals of an unknown covariance function of a Gaussian
stochastic process X = {X(t); ¢ € [0, T]} having its mean value function identically
equal to zero. The unknown covariance function of the process X is assumed to be

of the type R(s, t) = ¥, 4, ei(s) et), where the {A.};>, are unknown real numbers
=1

such that 4, > 0; k = 1,2,... Y 4, < o0, and {e,};=; is a known complete ortho-
=1

normal system in I*([0, T7).

2. GENERAL THEORY OF LOCALLY BEST UNBIASED ESTIMATES

Now we shall give a brief review of the general theory of locally best unbiased
estimates following [9]. Let {P,, 6 € ©} be a parametric set of probability measures
and let 8, € O be fixed. It is assumed that, for every 0 € ©, the measure P, is absolute-




ly continuous with respect to P,, and the function dPs/dP,, belongs to the I?(Py,)
space for every 0 € @. Denote by L the subspace of I*(P,,) generated by the set of
functions {dP,[dP,,; 0 € @}. Then for the function f : @ — E* there exists an unbiased
estimate having finite variance at 0, if and only if f e H(K,,), Where

dPy df,’?:] :
dPy, " dP,, ]’

Koi(0,0) = E,,u[

0,¢ € @ is a reproducing kernel of the RKHS H(K,,). The spaces H(K,,) and L7,
are isomorphic. For every function f e H(K,,) there exists a random variable Ve
€ L% — the isomorphic image of f, such that

dP,

E[V] = E, [V.a;g:] - 1(0)

for every 6 € @ and
I/ [cgon = EallV?] S Eo[U*]

for every U e I?[ Py,] having the property E[U] = f(6) for all 0 € ©.

3. LOCALLY BEST UNBIASED ESTIMATES OF DISPERSION

Now we shall study the simplest case of estimation of functions of dispersion.
Let X be a N(0, o) distributed random variable. Then for any a5, 6> > 0 the measure
P, given on the Borel sets of real line by

1 -x2 2
P, A) = ——— | el=*/2e) 4
@ J(Zn)o_L

is absolutely continuous with respect to P,, and dP,[dP,, belongs to I’[P, ] if and
only if 0 < ¢ < 2¢2. Accordingly, we have

2 o
K,o(o‘, a") =E, dp, ) [s7 % 1 el~*¥2/2(1/a* + /572~ 1/o0)] §y —
dpP,, dP,, .

" 60’0, /(27)
~ ot 2 - o — gl = GZ]
(c'00)* + (000)* — (00")? oz | ’
where 0 < 6%, 0’2 < 20%. We shall now characterize the space H(K,,). To do this

we need the following lemma.
Lemma 1. Let H be a Hilbert space of functions which are analytic in the unit

circle E = {z = x + iy : |z < 1} and such that [f; [f(z)|? dx dy < co. Then the

system
{(pn(z) = (n/n)l/Z val}:ozl
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is a complete orthonormal system in H endowed by the‘inner product (f, g)ﬂ =
= [{zf.d dx dy. Moreover, H = H(K,) with

Kofz, 1) = ) ¢ A1) = —pr o~
ofz. ) nzl iz 0:lE) n; T (1 — zit)?
Proof. Meschkowski [7].
Now let &,, = {w: |w — o3| < 0§} be the circle centred at ¢; and of the radius a3
and let h:&,, — E be a transformation given by h(w) = (w — 03)[og. Then the
following lemma is true.

z,ueE.

Lemma 2. Let H,, be the Hilbert space of functions that are analytic in the circle
&,, and such that [f, ]f(w)|2 dx dy < oo. Then the system

_(n 172 1 dh = (/n 12 1 W — g2\~ 1) ®
{ll’n(W)— <7;> h(W) ‘dw}n:l N {<;‘> 03( Kx ) }n:l

H,, = H(K}), where

ao.

is a complete orthonormal system in H,

G0?

7(w) i (v) 1 1 i
K::ﬂ (W, L’) = e R e ———————— = Z I/I,,(W) lll,,(l’) -
Tl — h(w) Q@) oom 1 (w=03) v—a3 P =t
% 9
Proof. Meschkowski [7].
Now let

2

2 T2

w— o2 v—0og

K{w, u)=[1 - g ] ; W, 0E8,, .
0 0

Then we have:

2 2 2 T 2
‘YV—GOU_UQ_1+1’“'_UOU“0'0
2 o ap

K(w, v) = f— arc sin z

o
Q
on

13(w—02 v— o2\’ @ Ww— g2y — g2\*"! ©
+ 2.,4( 0 777,;?) + .= ;c,,( To? rO,) :,,;d" (W) ¥l0)

2
0o o

n 0o o
where

2n — 3! 2n — 3)...3.

e =1; c,,=(*2E M _ @0 = 3).. 3L for nz2

(2n—=2)1! (2n—2)...42

and
00
d,l:*f; n=12,....
n

From the expression K(w, v) = ¥ d, y,(w) ¢,(v) we have the following characteriza-
n=1

tion (sec Aronszajn [1]) of H(K):



R = (e, £ Bl

Using the fact that f € H,_ is analytic in &,, we get

YL P B )
JO) =L e = B T

()" 9 = 50 v

n

s

we get for

(9 111(8) = (71, 5O O < g < ).

According to the uniqueness extension theorem (Saks [10]) and the restriction
theorem (see [1]) in RKHS, the following theorem giving the characterization of
H(K,,) can be proved.

Theorem 1. A function f:(0,203) - E' has an unbiased estimate with finite
dispersion at ¢ if and only if it can be extended to an analytic function in &,, such
that

I 1 )
Wl = 2700~ e, ’

~n=1
where
_ (2n -3

=1; ¢, =
o = (2n 2

[1\%
[

It is easy to see that every polynomial f, given by
fie?) =Y a0®; 0<o? <203
k=0
belongs to the space H(K,,). Especially, let k(o) = (c%)". Then we have
(2))2(1:—1) h;‘n—l) (0_(2’) h}:l- 1) (O’é) _

[ = ) e
(E)GE)
min(kt 1,141} (G2Wk+1{ _
= ¥ @ \n =\ =1 o1,

n=1 Cn

& (o
s B ko = ;(

For k = 1 we have:

1\ 1
Ihilfco =8 5(, L) = 30k = Bl
n

n=1
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so that the random variable X2 is the locally best unbiased estimate of h, at o
for h, defined by hy(0%) = 6%; 0 < 6* < 207. Because this estimate does not depend
on o3 and it is unbiased estimate for the function f(¢%) = ¢, 6% > 0 we get the known
result that X* is the uniformly best unbiased estimate for .

Now we shall prove that the random variable U, = (X2)¥/(2k — 1)!! is the uni-
formly best unbiased estimate for i,(a?) = (¢%)%; 6® > 0. Because

E[U] = E,[U,.dP,[dP, ] = h(c?) for 0<o® <205

o2 > 0, it is enough to prove that U, belongs to the space LZ, for every a5 > 0.

Lemma 3. Let Uy, = (X*f; k = 0,1,2,.... Then U, e LZ, for every o, > 0.

Proof. For k = 0,1,2 it is easy to prove that |Uy|}ap.e = ||Pal|fick.o) and the
lemma is proved. For k = 3 we can proceed by induction. Because L, is a subspace
of I[P, Upe L}, iff U, e (L2, that is iff (Uy, V)pap,o) = O for all Ve IX(P,,)
such that

(V, dP") =0 forall 0<¢® < 202.
dPan L2(Pgo)

Because
(U V)izepooy = (Ui=1, Us V)iaeey

it is enough to prove according to the induction assumption that U, Ve (L2)" if
Ve (L) so that

U3 ap =0 foral 0<o® <202
dp,,
if Ve (L2)" This will be done for o3 = 1. In this case the system of Hermite poly-
nomials {H,{x)}, is known to be a complete orthonormal system in I*(P,;) and
we can write:

dpP 2 dp ®
¥, < =SwH). (L, 1))=Y (v H,). E[H].
(%45),.p, =01 (G2 1) = E 01 B ]

a0

For n=2k+1; k=0,1,... we have

r_oszm(x)

¥ 2N qx = 0,

J@r)e

because Hzi+1(x) is a polynomial in x containing only odd powers of x. We shall
prove now by induction

- X U -xpe _ w 1/2 -
Ep [Hul J‘_szk()\/(zn)o_é / >dx—( YAl > ( 1)k,



The relation is true for k = 1, because 253

1 © 1, (=x2/20)
—_— — (x* —1)¢ dx = ~.
J@n)ye ) -, V2! V2!

Let the relation be true for k = n — 1. Then, because

g% — 1

=1 x x) — Hpy(x
Hn+2(x) = \/(n I 2)( Hn+1( ) Un+1( ))

and Hy(x) = \/(n) H,_(x) (see Jarnik [5]), we get

@ 1 -x2 2 @ 1
H,(x)— e gy = —— [x Hy,_(x) = Hj,_ .
R r T e EESSC R A
* 1

1 opm , U e
—— ¢ dx = -0 — o Hyy(x) [ ——— e ) dx —
NESE v R WP

1 «© 1 121202 o —1
— Hyuoq (x e®2 Ny = =,
Tl O T D)

o N 2
I Hy,_y (x) b elm*/2eh gy — l:(———zn 1)] (0% — 1),

o J@n) e (2n)

According to this we have Ve (L2 )" iff

0= (V, ;}f) =Y.V, Hsy) [Lz"‘—l)”]m (o7 — 1y

o/ L2(Poo)  1=0 (an)n1

for all 0 < ¢* < 2. Hence (V, H,,) = 0for n = 0,1,... and V(x) = Y. (V, Hypyy) -
« Hyy31(x). For U (dP,[dP, ) we get: =0

(U1 __:11:” , H2"+1> =J x* Hppet(x)dP,(x) =0 for n=1,2,...

and using this we obtain:

dP, hed
(VUD dp“) - (V, U, > =S (V1) <U, ar, Hn) -0
dp,, 12(Pyo) dP,o L2(Pooy n=0 dpP,,

for all 0 < ¢® < 2, and the proof of the lemma for ¢3 = 1 is finished. If 62 + 1,
then we use fact that {G,(x) = 1/oq H,(xo,)}7-, is a complete orthonormal system
in I}(P,,) and the proof is analogous to that given.

Corollary 1. For any nonnegative integers k, I the following combinatorial identity
is true:



254 mint1,141) 0 f ) PNl @e+20-1n
=) n—1/\n-1/" (k- 1@ -
where

o (@n=3)n

a=1; ¢ for =2.
’ @-2n "

Proof. The left-hand side of the identity is equal to  1/(oo)? (hy M uk.op
the right-hand side equals to:

_]_. E _,U"’ U = 1 E Ui
(o2 T L2k — (20— ] (o2 L2k — (20 — 1)

and these expressions equal each other, according to the Lemma 3.

Corollary 2. If f € H(KUO), then its locally best unbiased estimate U, at o, is given by
Y 2\ n 2
f(n) g . X i I\a—i
v, =3 TS (Y ey,
n=0 nl j=o

n
j @i - N

where the series converges in I*(P,,).

Proof. If fe H(K,,), then

© n)( .2 o £n)f 2 0'2"
Y S A o YO o LR )

w=0 n! n=0 nl Gy

where

fre) = Vo) v = ) (4,»

o n=0

is a complete orthonormal system in H(K,,). According to the isomorphism between
H(K,,) and L2, we get the desired result, because the system of random variables

{\/c:“ i (71) £ (- 1)n~2j(ag)zj}ao
(oa)r =o\j/ (2 — ! 220
is a complete orthonormal system in Ljo for every o3 > 0.

Example 1. Let f(o?) = (¢2)"/% The function f(z) = z'/? is analytic in every
circle &,,, o, > 0 and

A 2 _ v a2 2\n
50) =51 2~ gy - 3 B0t iy,

=o n! =0 n!

where



— H
ag =0, a i}z(ao)—”z, a, = ( 1)n+1 (2" 3) ) (2n-1)/2

for n = 2,3,.... The series
© 2( 2‘)2:1
n=0 ("') Cut 1

converges, because for n = 2 we have

P _ g (= DUPCAN_ (0= )1 (ut

(n') Cpsy 225(nt)? (2n — DI 2%ty (2n — 12
o n UM i3 -2
22(nt)? (2n — 1) 2" (20 — 1) 2'n!(2n — 1)
_o L %

222 —n " 2m?

and the function f(.) has the locally best unbiases estimate at ¢3.

Remark. The theory just derived can be used in the case of a random sample, too.
If X4, ..., X, are independent, identically N(0, ¢%) distributed random variables,

then
2 2 2 2\ =n/2
, 0 —0y 07 —0p
Ko, o) =|1 - —5-2.—
o ‘70

The Hilbert space H(K,) can be characterized in this case utilizing the fact that

k
Kapnils) = (1 = 270 = 2 ki),

(k= 1)t

from which we have

@
Kopr 1(‘7’ ’7) = Zlag)(z Lt
=

with
k

2
ag:)=cm+k(2k_vm(m +k—1)...m.

Because
1
e - K lk

(1

we can proceed by analogy and get:

Koia(2) =
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] o
K 2,0) = —— =5 ¥z Gy,
ZHZ( ) (1 - zﬁ)k+1 mzl ( )
Where (1) = 1,

w _{m+k— 1) om
" k!

b for k=1

and
Koz, it) = LI i (z.a)y"*.

T (L-zE) W2
Using Lemma 1 and Lemma 2 we get:

© (G_g)l(nz—l)[f(m—i)(0_(2))]2
H(K,) = {feés: ) — e,
(o) = {fede, .12'1 [fm — 1)1 e
where N
2D o ;kcm“(m +k—1)..m if k=1,2,..
@k — 1)1
and
0 = [’”i,kf;'}_)__"? if k=1,2,...

and it is possible to prove again that the random variables (Y X7)¢e L2, for k =
=0,1,2,..., where Lﬁﬁ is now generated by the system

dP " dP,
Xy, n X)) = [[—2(X); 0<0®<20)
{dP *s ) il;[lquu( ) °}

a0

of random variables.

4. LOCALLY BEST UNBIASED ESTIMATES OF FUNCTIONALS
OF COVARIANCE FUNCTIONS OF A GAUSSIAN
STOCHASTIC PROCESS

Let us assume that we observe a Gaussian measurable stochastic process X =
= {X(1); t € [0, T]} with zero mean value function and with an unknown covariance
function of the type

R, 1) =k§1,1k o(s)ald); s tel0,T],

where {e:}ix, is a known given complete orthonormal system in I*([0, T]) and



0

{4}i~ are unknown positive real numbers such that ) 4, < co. The last condition 27
K=1

is sufficient to ensure the existence of a Gaussian probability measure Py in L*([0, T)

which is completely determined by the integral operator in I*([0, T]) with the kernel

R(s, 1); s, te[0, T].

In order to be .able to utilize the general theory of estimation as given in part 2
to the problem of estimation of functionals of a covariance function we need to know
the conditions under the measures Py and Py, are equivalent and dPy/dPp, belongs
to the space L*(Pg,). These problems were solved by many authors; the approach
of Skorochod [11] is convenient for us.

Lemma 4. Let R and R, be positive definite covariance operators in IX([0, T7).
The Gaussian measures Py and Pp are either orthogonal or equivalent. The necessary
and sufficient condition for equivalence of Pr and P is the following one: there
exist a symmetric, Hilbert-Schmidt operator U such that I + U is invertible and
R = RY/*(I + U) Ry>. If Py is equivalent with Py, then

P () = exp (4 X (U + V) e s [(" @) (% ¢) 5;,.] +)

dPyg, ] 8%
where

= %Z — log (1 + ?k)]; {Ag}:’:u {ek}l‘iﬂl s
K=1fl + Px
are proper values and proper vectors of the operator Ry, and {y,}i%; are proper
values of the operator U. dPp/dPy, belongs to the I2[Pg Jiff 3] < 1,k = 1,2,....
Because U is Hilbert-Schmidt, Y 77 < co.
k=1
Proof. Skorochod [11]. Let R = Ry/*(I + U’) Ry/* and let {y;}7, be the proper
@ 2]
values of the operator U, |yi| <1, Y9 < oo and let R'(s, 1) = Y, A e(s) e(t),
o k=1 k=1
>0, YAk < oo
K=1

Then

KR, R) = Epy, [ 270 50 |
Ro R

2
Epg|exp [ty Tl el T
2% L4+ 1+ A
, 1/2 1/2
exp1 By n) 1 1
2\l +y 14+ 1479, 1+ 9y .

“exp{l Ve o el (y__m __m \"
. 2147y 1+ T4+y 1+

s
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© e © 1 — 2 }.—lo“”z
= 1 - ) ”’=H(1 kﬁoﬁk-’ﬁr—)

K E=1
where 0 < 4, 4 < 24f for k=1,2,.... This follows from the facts, that y, =
=X ~land [p| <1 k=12 and

© _q0\2
L= Z(’l" ’1) <.
k=1 k=1

k

As we see, the kernel KRo(" —) is defined on the set %, x %,, where

Ry = {R 1R(s, 1) =D:;/Ik e(s) eft) ;

k=1

0 = 2 (= R\
O<A <2k, Yh<ow, Y T)<OO s
k=1 K

and the RKHS H(Kj,) consisting of the functions defined on £, have to be con-
sidered in connection with unbiased estimation of functionals of covariance function.

The following theorem describes the structure of H(Kkg,).

Theorem 2. The space of estimable functionals of covariance functions H(Kpg,)

o<
is isomorphic to the infinite tensor product ® H(K,) of RKHS H(K;), where
i=1

, P Al
K 4) = (1 TR, > ,
i i

0<i,Aj<20i=1,2,...

Proof. The notion of infinite tensor product of Hilbert spaces is given in Guichar-
det [4]. Because the elements {Kg,(-, R); R € %,} generates H(Kx,), the isomorphism

between H(Ky,) and ® H(K;) is a consequence of the fact that
i=1
0
{Kpofs R) Krols R ixroy = KpofR, R') = I_IIK;'(;L:', ) =

Kiles 1)y Kilos A)Vnexy = <'i®1Ki(': A i@lKi(': M»_@l H(K).

=T

i

Elementary decomposable vectors ([4]) — generating elements of ® H(Kg) — are

of the type h = ® h;, where h; = f; € H(K,) for every ie J, J bemg a finite subset
of 1={12.. } aud h; =1 for iel — J. The function

!I(R) = g({ii}iﬂ) = gfi(/li) ; Red,



is an isomorphic image of such vector h. Now let x; = ® h;, where h; = 1 for
j#*iand hy=feHK) for j=i; i=12,.. Then the function g(R)
@ @0
= g({A}2,) = X f{A); Re R, belongs to H(KRn) if and only if the series Y, x;
i=1 i=1
@
converges in ® H(K,-). The necessary and sufficient condition for this is that the
i=1

@
series Z {Xp XD @k, converges, where
ij=

$xi XD oy = [fillicy i =
and

{xp xj>®,H(Ki) = <1,fi>I{(K.-) . <17fj>H(K,)
for i + j.

Example 2. Let f;(1;) = 1, e(s) ¢(t); s, t fixed points in [0, T]. Then

@®

L, oxp = (S0 e ) + 2T (0P i) < o0

and from the preceding results we can conclude that U = ZX 7 ei(s) eff), where
X; = [§ X(s) es) ds is the locally best unbiased estimate of the functlonal fodR) =
= R(s, t); R€ R,.

Example 3. Let X(f) = X, sint + X, cost; 0 £ t < 2, where X ;, are independent
N(0, 4,); i = 1, 2, distributed random variables. Let U = X7 sins sint + X3 coss cost
and let ¥ = X(s) X(f). Then E[U] = Ef[V] = R(s, {) for all R € &, but it can be
easily computed that Ex[V?] — Eg[U%] = AA,[sin (s + )J? = 0 for all ReR,.

5. ESTIMATION OF COMPONENTS OF COVARIANCE FUNCTION

Let us assume that an unknown covariance function of a Gaussian stochastic
"
process X is of the form R,(s,t) = ¥ «; Ri(s, t), where o; > 0 i =1,2,...,n are
i=1
unknown parameters and R(s,f) are known linearly independent covariance
0
functions of the form R(s,t) = A ;efs) ef) with 4., >0 k=1,2,... and
K1
0 «©
Y A< o for i =1,2,...,n Under these conditions R,(s, 1) = ¥ 4, ei(s) &l1),
k=1 k=1

n
where we have denoted 4, = Z At k= 1,2,.... According to results of preceding
=1

259
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chapters Pg, is equivalent to Ppg,, for fixed vector af = (a5, ..., o) if and only if
[(4 = A)[A2| < 1 for all k and

o (= RN 0o_ v, 0.
3 s <o, where A=) A e k=1,2,....
k=1 A i1

If these conditions are fulfiled, then

) p X £ A o— 20 4 = a0\-12
Kroo(RuRer) = Eprao dPry dPpe ] _ 5 _ k_o’i.ik_oi’g ,
dPgye dPpy | x=1 A Ay
The following examples illustrate the situations that may occur.

Example 4. Let J,; = 1/k* and A, = 1)(k* + k); k=1,2,... and let «° =
= (1, 1). Because the series

& oy — DK + (o, — DR + k)\?
L)

k=1
diverges for all &’ = (x;, @,) # a® the measures Pg, and Pg,o are orthogonal for

@+ ol

Example 5. For 4, ; = 1/k%; 4, , = 1/k*, k = 1,2,...and «® = (1, 1), « = (L, b)
where 0 < b < 2, the series

£ (Lo (hoy

converges and P, is equivalent to Pgyo. If @ = (c, 1) with 0 < ¢ < 2, then the series

S (e =D\ & [k¥c - 1)\*
§(ConEy_ 2 e
=1 \1/k* + 1]k =1\ kP + 1

diverges for ¢ #= 1 and for such a’s that Pg, and Pg,o are orthogonal.

For a discrete stochastic process Y = {X7};2;, where X, = [J X(s)e(s) ds;
k =1,2,... are independent random variables we have the following model:

ERa[Xﬂ = iz:l)“ki“i = ‘Zlaiai s

o
where @; = (A;; 425, ...) are such that @;el*, that is ) A; < 00; i=1,2,...,n
k=1

But at least one of the vectors a;; i =1,2,...,n does not belong to the space
H(RL), where RX(i, j); i,j = 1,2, ... is a covariance function of the process Y by
given a®. Actually, letall a;; i = 1,2, ..., n belong to H(RL), then



: 2 2
i i
”"i"mRYa“) =3 NI Jf_z n < 0
=1 D% [X7] i=1 0,
Z Y
=1
fori=1,2,...,n, from which we have:
. i .
lim —*— =0 for i=1..,n,
k-0 0
2 %A
=1
and this implies
n
0
_Zlailki
lim = =0, a contradiction .

XY
i=1

Because of this fact we cannot use the methods of linear regression analysis given
by Parzen [9] to estimate the vector a.
An unbiased estimate of vector &' = (&, ..., %,) can be found by the method of
n

least squares. The series Y [Xi — ¥ A,;]* converges with probability one for
k=t izlw n 0 n

every a; > 0; i = 1,2, ..., n because Y EJX7 — ¥ Ml * = 2 Y (¥ Au))* < 0.

Next k=1 S =51 k=1 i=1

@ Fl n ‘
Z o (Xl% - Z ’lkidi)z
k=1 | O; =1

0 n
S2Y (Xiky + Y Aidejo) < 0
k=1 i=1

©
with probability one for every a; > 0; i =1,2,...,n, because ) E|Xik| =
st

«©
=Y Ady; < o0, so that we can write
k=1

PR " ) n
o Z(th - Z}'kiai)z = Z(Xf - Z Aki“i) Ay =0
Oy k=1 i=1 k=1 i=1

for j = 1,2,...,n and unbiased estimate &, found by the method of least squares,
is a solution of a system of normal equations

(a5, Y)i
An = :

>

(an, Y)

where the matrix 4 = |(a, ;)

@
i,j=1,2,...n with (as a;)p =kzl/1kii,”— and

261
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(aj, Y)i = ¥, A;Xz. For the matrix A4 we have
k=1

¥ (@ a)icic; =3 (Y Auci)* 20
ij=1 k=1 i=1
and from the assumption of linear independence of covariance functions R;; i =
n
=1,2,..,nweget  Ac; =O0forallk = 1,2,...if and only if ¢; = 0; from which
i=1
can be deduced that A4 is nonsingular and
(ay, Y)i2
1 :

(am ‘Y)lz

&=Ad"

(Received February 2, 1979.)
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