Optimal Control of Stabilizable Time-Varying Linear Systems with Time Delay

Jozef Komorník

The linear-quadratic problem on the infinite time interval is considered. Optimal control is derived from the smallest nonnegative continuous bounded solution of the known system of three Riccati-type equations.

In this paper we show that the optimal control of stabilizable time-varying linearquadratic systems with time delay on the infinite time interval is given by the formula similar to the known formula for the optimal feedback control of systems on a finite time interval. The main results are contained in Theorem 1 and Theorem 2.

Theorem 1 describes the asymptotic behavior (in T) of the solution W^{T} of the Riccati-type system of equations in three variables (cf. [1], [2]) subject to the initial conditions $W^{T}(T)=0$. The limit is the solution of the above system on the infinite interval. Theorem 2 contains the formulas for optimal control and minimal cost and a discussion of some properties of solutions of the mentioned Riccati-type system on infinite time interval. The functional of minimal cost corresponds to the smallest nonnegative bounded continuous solution. A sufficient condition for uniqueness of this solution is presented.

Consider the system described by the equation

$$
\begin{gather*}
\dot{x}(t)=A_{0}(t) \cdot x(t)+\int_{-h}^{0} A_{1}(t, \tau) \cdot x(t+\tau) \mathrm{d} \tau+A_{2}(t) \cdot x(t-h)+B(t) u(t) \\
\text { for } t \in\left\langle t_{0}, \infty\right) \tag{1}
\end{gather*}
$$

with the initial condition

$$
x\left(t_{0}+\tau\right)=\varphi(\tau) ; \quad \tau \in\langle-h, 0\rangle
$$

where
$x(t)$ is the n-dimensional state vector $u(t)$ is the p-dimensional control function $A_{0}(t), A_{1}(t, \tau), A_{2}(t), B(t)$ are matrix coefficients of appropriate types which are bounded and continuous on their domains.

Let $Q_{1}(t)$ and $Q_{2}(t)$ are bounded continuous matrix functions with nonnegative definite and positive definite values, respectively. Our aim is to minimize the loss function

$$
\begin{equation*}
C_{t_{0}}^{\infty}(u, \varphi)=\int_{t_{0}}^{\infty} c(t, x(t), u(t)) \mathrm{d} t \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c(t, x(t), u(t))=x^{\prime}(t) \cdot Q_{1}(t) \cdot x(t)+u^{\prime}(t) \cdot Q_{2}(t) \cdot u(t) \tag{2a}
\end{equation*}
$$

It is well known (see [1], [2]) that for any $T>s \geqq t_{0}$ the optimal control of the system (1) with respect to the cost function
(2b) $\quad C_{s}^{T}(u, x)=\int_{s}^{T} c(t, x(t), u(t)) \mathrm{d} t, \quad x(s+\tau)=\varphi(\tau) \quad$ for $\quad \tau \in\langle-h, 0\rangle$
can be written in the form

$$
\begin{equation*}
u^{T}(t)=-Q_{2}^{-1}(t) \cdot B^{\prime}(t) \cdot\left[W_{0}^{T}(t) \cdot x^{T}(t)+\int_{-h}^{0} W_{1}^{T}(t, \tau) \cdot x^{T}(t+\tau) \mathrm{d} \tau\right] \tag{3}
\end{equation*}
$$

and the corresponding minimal cost can be written in the form

$$
\begin{gather*}
C_{s}^{T}\left(u^{T}, \varphi\right)=\varphi^{\prime}(0) \cdot W_{0}^{T}(s) \cdot \varphi(0)+2 \varphi^{\prime}(0) \cdot \int_{-h}^{0} W_{1}^{T}(s, \tau) \varphi(\tau) \mathrm{d} \tau+ \tag{4}\\
\quad+\int_{-h}^{0} \int_{-h}^{0} \varphi^{\prime}(\tau) \cdot W_{2}^{T}(s, \tau, \varrho) \varphi(\varrho) \mathrm{d} \varrho \mathrm{~d} \tau=W^{T}(s)(\varphi)
\end{gather*}
$$

where the triple $W_{0}^{T}(t), W_{1}^{T}(t, \tau), W_{2}^{T}(t, \tau, \varrho)$ of bounded continuous matrix functions of type $n \times n$ defined for $t \in\left\langle t_{0}, T\right\rangle ; \tau, \varrho \in\langle-h, 0\rangle$ is the unique solution of the Riccati-type system of equations:

$$
\begin{align*}
& \frac{\mathrm{d} W_{0}(t)}{\mathrm{d} t}+A_{0}^{\prime}(t) \cdot W_{0}(t)+W_{0}(t) \cdot A_{0}(t)+W_{1}(t, 0)+W_{1}^{\prime}(t, 0)+ \tag{5.1}\\
& \quad+Q_{1}(t)-W_{0}(t) \cdot B_{1}(t) \cdot W_{0}(t)=0 \\
& \begin{array}{l}
\frac{\mathrm{d} W_{1}(t, s-t)}{\mathrm{d} t}+ \\
\quad+A_{0}^{\prime}(t) \cdot W_{1}(t, s-t)+W_{0}(t) \cdot A_{1}(t, s-t)+ \\
\quad W_{2}(t, 0, s-t)-W_{0}(t) B_{1}(t) \cdot W_{1}(t, s-t)=0
\end{array} \tag{5.2}
\end{align*}
$$

$$
\begin{gather*}
\frac{\mathrm{d} W_{2}(t, s-t, r-t)}{\mathrm{d} t}+A_{1}^{\prime}(t, s-t) \cdot W_{1}(t, r-t)+ \tag{5.3}\\
+W_{1}^{\prime}(t, s-t) \cdot A_{1}(t, r-t)-W_{1}^{\prime}(t, s-t) \cdot B_{1}(t) \cdot W_{1}(t, r-t)=0
\end{gather*}
$$

where $s, r \in\langle t-h ; t\rangle ; B_{1}=B^{\prime} Q_{2}^{-1} . B$

$$
\begin{equation*}
W_{1}(t,-h)=W_{0}(t) \cdot A_{2}(t) \tag{5.4}
\end{equation*}
$$

$$
\begin{gather*}
W_{2}(t,-h, \tau)=A_{2}^{\prime}(t) . W_{1}(t, \tau) \tag{5.5}\\
W_{2}(t, \tau, \varrho)=W_{2}^{\prime}(t, \varrho, \tau) \tag{5.6}
\end{gather*}
$$

with the initial conditions

$$
\begin{equation*}
W_{0}^{T}(\tau)=W_{1}^{T}(T, \tau)=W_{2}^{T}(T, \tau, \varrho)=0 . \tag{6}
\end{equation*}
$$

We show that all the functions $W_{0}^{T}(t), W_{1}^{T}(t, \tau)$ and $W_{2}^{T}(t, \tau, \varrho)$ converge (under the condition of stabilizability of the system (1)) in T to a triple of continuous functions $W_{0}(t), W_{1}(t, \tau)$ and $W_{2}(t, \tau, \varrho)$ which is a solution of system (5) on $\left\langle t_{0}, \infty\right)$. Moreover, the optimal control and minimal cost are given by (3) and (4) (with T omitted).

First we introduce some formalism. For any matrix A of type $m \times n$ we consider the Euclidean norm in $R^{m, n}$.

Definition 1. For any Lebesgue measurable subset M of the interval $\langle-h, 0\rangle$ we put

$$
m(\boldsymbol{M})=\lambda(\boldsymbol{M})+\operatorname{card}(\boldsymbol{M} \cap\{-h, 0\})
$$

and

$$
m_{0}(\boldsymbol{M})=\lambda(\boldsymbol{M})+\operatorname{card}(\boldsymbol{M} \cap\{0\})
$$

where λ is a standard Lebesgue measure on $\langle-h, 0\rangle$.
Definition 2. a) We denote by $L_{1}^{n}\left(m_{0}\right)$ the system of all finite n-dimensional measurable functions on $\langle-h, 0\rangle$ satisfying the condition

$$
\|\varphi\|_{1}=\|\varphi(0)\|+\int_{-h}^{0}\|\varphi(\tau)\| \mathrm{d} \tau=\int\|\varphi(\tau)\| \mathrm{d} m_{0}(\tau)<\infty
$$

b) Let $\mathbf{Q F}\left(m_{0}\right)$ be the system of all matrix functions of type $n \times n$ defined on the product set $\langle-h, 0\rangle \times\langle-h, 0\rangle$ and having the following properties:

$$
W(\tau, \varrho)=W^{\prime}(\varrho, \tau) \text { for } \tau, \varrho \in\langle-h, 0\rangle .
$$

ii) If we put
(7a) $W_{0}=W(0,0), \quad W_{1}(\tau)=W(0, \tau), W_{2}(\tau, \varrho)=W(\tau, \varrho)$ for $\tau, \varrho \in\langle-h, 0)$

186 then the functions W_{1} and W_{2} are continuous and continuously prolongable on the sets $\langle-h, 0\rangle$ and $\langle-h, 0\rangle \times\langle-h, 0\rangle$, respectively. Hence we can put
(7b)

$$
W_{1}(0)=\lim _{\tau \rightarrow 0} W_{1}(\tau), \quad W_{2}(0, \varrho)=\lim _{\tau \rightarrow 0} W_{2}(\tau, \varrho) .
$$

Definition 3. a) We say that the function

$$
W:\left\langle t_{0}, t_{1}\right\rangle \rightarrow \mathrm{QF}\left(m_{0}\right)
$$

is continuous if all the functions

$$
W_{0}(t), \quad W_{1}(t, \tau), \quad W_{2}(t, \tau, \varrho)
$$

are continuous on their domains.
b) For $W \in \mathbf{Q F}\left(m_{0}\right)$ and $\varphi \in \boldsymbol{L}_{1}^{n}\left(m_{0}\right)$ we define

$$
W(\varphi)=\iint \varphi^{\prime}(\tau) \cdot W(\tau, \varrho) \cdot \varphi(\varrho) \mathrm{d} m_{0}(\varrho) \mathrm{d} m_{0}(\tau)
$$

c) We introduce a partial order on $\mathrm{QF}\left(m_{0}\right)$ by

$$
W \leqq V \Leftrightarrow \forall \varphi \in \mathbf{L}_{1}^{n}\left(m_{0}\right): W(\varphi) \leqq V(\varphi)
$$

$W \in \mathbf{Q F}\left(m_{0}\right)$ is said nonnegative if $0 \leqq W$.
Now we return to study the system (1) more closely. We can rewrite it in the form

$$
\begin{equation*}
\dot{x}(t)=\int A(t, \tau) \cdot x_{t}(\tau) \mathrm{d} m(\tau)+B(t) u(t) \tag{1a}
\end{equation*}
$$

where

$$
A(t, \tau)=\left\{\begin{array}{lll}
A_{0}(t) & \text { for } & \tau=0 \tag{8a}\\
A_{1}(t, \tau) & \text { for } & \tau \in(-h, 0) \\
A_{2}(t) & \text { for } & \tau=-h
\end{array}\right.
$$

and

$$
\begin{equation*}
x_{t}(\tau)=x(t+\tau) \tag{8b}
\end{equation*}
$$

Lemma 1. (cf. [1], [4]). Consider the equation

$$
\begin{equation*}
\dot{x}(t)=\int A(t, \tau) \cdot x_{t}(\tau) \mathrm{d} m(\tau) \tag{9}
\end{equation*}
$$

with the initial condition $x_{s}=\varphi \in \mathrm{L}_{1}^{n}\left(m_{0}\right)$
Let $X(t, s)$ be the matrix solution of the equation
(9a)

$$
\frac{\partial X(t, s)}{\partial t}=\int_{-h}^{0} A(t, \tau) X(t+\tau, s) \mathrm{d} m(s)
$$

subject to the initial condition $X(t, t)=I ; X(t, s)=0$ for $t<s$.
The solution $x(t)$ of (9) can be written in the form:
(9b)

$$
x(t)=\int Y(t, s, \tau) \varphi(\tau) \mathrm{d} m_{0}(\tau)
$$

where
(9c) $\quad Y(t, s, \tau)=\left\{\begin{array}{l}X(t, s) \text { for } \tau=0 \\ X(t, s+\tau+h) \cdot A_{2}(s+\tau+h)+\end{array}\right.$

$$
+\int_{0}^{\tau+h} X(t, s+\varrho) A_{1}(s+\varrho, \tau-\varrho) \mathrm{d} \varrho \text { for } \tau \in\langle-h, 0\rangle
$$

The following quite simple result will be very useful.
Proposition 1. Consider the solution $x(t)$ of (9) with the initial condition $x_{s}=$ $=\varphi \in L_{1}^{n}\left(m_{0}\right)$. There exists a real function $K(a, d)$ nondecreasing in both the real variables a and d such that for $t-s \leqq d$ and

$$
\sup \{\|A(r, \tau)\|: r \in\langle s, t\rangle, \tau \in\langle s-h, 0\rangle\} \leqq a
$$

the inequality
(10)

$$
\|x(t)\| \leqq K(a, d) \cdot\|\varphi\|_{1}
$$

holds.

Proof. Let the matrix function N be defined by

$$
N(t, s)=-A_{0}(t) \cdot \theta(t-s)-\int_{t-h}^{t} A_{1}(t, \tau) \cdot \theta(\tau-s) \mathrm{d} \tau-A_{2}(t) \cdot \theta(t-h-s)
$$

where θ is the step function

$$
\theta(t)= \begin{cases}1 & \text { for } t>0 \\ 0 & \text { for } t \leqq 0 .\end{cases}
$$

The function $X(t, s)$ is the solution of the integral equation (cf. [4])

$$
X(t, s)+\int_{s}^{t} X(t, \tau) . N(\tau, s) \mathrm{d} \tau=I .
$$

We have $\|I\|=\sqrt{ } n$. Using the inequality

$$
\|N(\tau, s)\| \leqq(h+2) \cdot a=a_{1}
$$

and the Gronwal's lemma we get

$$
\begin{equation*}
\|X(t, s)\| \leqq n^{t / 2} \cdot \mathrm{e}^{a_{1}(t-s)} \leqq n^{1 / 2} \cdot \mathrm{e}^{a_{1} d}=K_{0}(a, d) . \tag{10a}
\end{equation*}
$$

Substituting into (9c) and (9b) we get

$$
\begin{align*}
\|Y(t, s, \tau)\| & \leqq \max \left(1, a_{1}\right) \cdot \max \{\|X(t, \tau)\|: \tau \in\langle s, t\rangle\} \leqq \tag{10b}\\
& \leqq \max \left(1, a_{1}\right) \cdot K_{0}(a, d)=K(a, d)
\end{align*}
$$

hence

$$
\|x(t)\| \leqq K(a, d) \cdot\|\varphi\|_{1}
$$

Further we concern with stable or stabilizable systems.

Definition 4. a) We say that the system (9) is stable if there exists a constant K_{0} such that for any $s \in\left\langle t_{0}, \infty\right)$ the inequality

$$
\begin{equation*}
\int_{s}^{\infty}\|X(t, s)\|^{2} \mathrm{~d} t=K_{0} \tag{11}
\end{equation*}
$$

holds.
b) We say that the system (1) is stabilizable if there exists a pair of continuous bounded functions $L_{0}(t), L_{1}(t, \tau)$; for $t \in\left\langle t_{0}, \infty\right) \tau \in\langle-h, 0\rangle$ such that the system

$$
\begin{equation*}
\dot{x}(t)=\int A(t, \tau) x_{r}(\tau) \mathrm{d} m(\tau)+B(t) \int L(t, \tau) x_{t}(\tau) \mathrm{d} m_{0}(\tau) \tag{lb}
\end{equation*}
$$

is stable.
The feedback control

$$
\begin{equation*}
u(t)=\int L(t, \tau) x_{t}(\tau) \mathrm{d} m(\tau) \tag{12}
\end{equation*}
$$

where

$$
L(t, \tau)=\left\{\begin{array}{lll}
L_{0}(t) & \text { for } & \tau=0 \\
L_{1}(t, \tau) & \text { for } & \tau \in\langle-h, 0\rangle
\end{array}\right.
$$

is called stabilizing.

Proposition 2. Suppose that the function $A(t, \tau)$ is bounded on $\left\langle t_{0}, \infty\right) \times\langle-h, 0\rangle$. The system (9) is stable if and only if there exists a constant K_{1} such that for any $s \in\left\langle t_{0}, \infty\right)$ and any solution $x(t)$ with the initial condition $x_{s}=\varphi \in \mathbf{L}_{1}^{n}\left(m_{0}\right)$ the inequality

$$
\begin{equation*}
\int_{5}^{\infty}\|x(t)\|^{2} \mathrm{~d} t \leqq K_{1}\|\varphi\|_{1}^{2} \tag{13}
\end{equation*}
$$

holds.

Proof. Put

$$
\begin{equation*}
a=\sup \left\{\|A(t, \tau)\|: t \in\left\langle t_{0}, \infty\right) ; \tau \in\langle-h, 0\rangle\right\} \tag{8c}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}=(h+2) a \tag{8d}
\end{equation*}
$$

From (10) we get

$$
\int_{s}^{s+h}\|x(t)\|^{2} \mathrm{~d} t \leqq h \cdot K^{2}(a, h) \cdot\|\varphi\|_{1}^{2}=K_{1}^{\prime} \cdot\|\varphi\|_{1}^{2}
$$

For $t \in\langle s+h, \infty)$ we get from (9b) and (9c)

$$
\begin{gathered}
x(t)=X(t, s+h) \cdot x(s+h)+\int_{s}^{s+h}\left[X(t, \tau+h) \cdot A_{2}(\tau+h)+\right. \\
\left.+\int_{s+h}^{\tau+h} X(t, \varrho) \cdot A_{1}(\varrho, \tau-\varrho) \mathrm{d} \varrho\right] \cdot x(\tau) \mathrm{d} \tau
\end{gathered}
$$

hence

$$
\begin{aligned}
&\|x\| \leqq\|\varphi\|_{1} \cdot K(a, h) \cdot\|X(t, s+h)\|+\int_{s+h}^{s+2 h}\|X(t, \varrho)\| \cdot\left[\left\|A_{2}(\varrho)\right\|+\right. \\
&+\left.\int_{\varrho-h}^{s+h}\left\|A_{1}(\varrho, \tau-\varrho)\right\| \mathrm{d} \tau\right] \mathrm{d} \varrho \leqq\|\varphi\|_{1} \cdot K(a, h) \\
& \cdot\left[\|X(t, s+h)\|+a_{1} \int_{s+h}^{s+2 h}\|X(t, \varrho)\| \mathrm{d} \varrho\right] .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\int_{s+h}^{\infty}\|x(t)\|^{2} \mathrm{~d} t \leqq\|\varphi\|_{1}^{2} \cdot K^{2}(a, h) \cdot \int_{s+h}^{\infty}\left[2\|X(t ; s+h)\|^{2}+2 a_{1}^{2} h .\right. \\
\left.\cdot \int_{s+h}^{s+2 h}\|X(t, \varrho)\|^{2} \mathrm{~d} \varrho\right] \mathrm{d} t \leqq 2 K^{2}(a, h)\left(1+a_{1}^{2} h^{2}\right) \cdot K_{0} \cdot\|\varphi\|_{1}^{2}=K_{1}^{\prime \prime} \cdot\|\varphi\|_{1}^{2} .
\end{gathered}
$$

Hence (13) is fulfilled for

$$
K_{1}=K_{1}^{\prime}+K_{1}^{\prime \prime}
$$

Proposition 3. Let the system (9) be stable and let the function $A(t, \tau)$ be bounded on $\left\langle t_{0}, \infty\right) \times\langle-h, 0\rangle$. Then for any solution $x(t)$ of (9) we have

$$
\lim _{t->\infty} x(t)=0 .
$$

Proof. Let $x(t)$ be a solution of (9) with the initial condition $x_{s}=\varphi \in L_{1}^{n}\left(m_{0}\right)$. From (9) and (13) we deduce that there exists a positive constant D^{2} such that

$$
\int_{s+h}^{\infty}\|\dot{x}(t)\|^{2} \mathrm{~d} t<D^{2}
$$

Suppose that (13a) is not valid. There exists $\varepsilon>0$ and an increasing sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ such that $\left\|x\left(t_{n}\right)\right\|>\varepsilon$. Put $\Delta=\varepsilon^{2} / 4 D^{2}$. The sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ can be choosen in such a way that $s+h \leqq t_{1}, t_{n+1}>t_{n}+\Delta$. For $t \in\left\langle t_{n} ; t_{n}+\Delta\right\rangle$ we have

$$
\begin{gathered}
\|x(t)\| \geqq\left\|x\left(t_{n}\right)\right\|-\int_{\tau_{n}}^{t}\|\dot{x}(\tau)\| \mathrm{d} \tau \geqq \varepsilon-\Delta^{1 / 2}\left[\int_{t_{n}}^{t}\|\dot{x}(\tau)\|^{2} \mathrm{~d} \tau\right]^{1 / 2} \geqq \\
\geqq \varepsilon-\varepsilon / 2 D . D=\varepsilon / 2
\end{gathered}
$$

Hence

$$
\int_{i_{n}}^{t_{n}+\Delta}\|x(t)\|^{2} \mathrm{~d} t \geqq \varepsilon^{2} / 4 . \Delta=\varepsilon^{4} / 16 D^{2}
$$

Therefore

$$
\int_{t_{0}}^{\infty}\|x(t)\|^{2} \mathrm{~d} t \geqq \sum_{n=1}^{\infty} \int_{t_{n}}^{t_{n}+\Delta}\|x(t)\|^{2} \mathrm{~d} t=\infty
$$

which contradicts to (13).
Theorem 1. Suppose that the system (1) is stabilizable. The system of functions $W^{T}(t, \tau, \varrho)$ converges in T to the function $W(t, \tau, \varrho)$ which has the following properties:
a)

$$
W(t, \tau, \underline{o}) \in \mathbf{Q} F\left(m_{0}\right) \quad \text { for } \quad t \in\left\langle t_{0}, \infty\right)
$$

b) The mapping

$$
W:\left\langle t_{0}, \infty\right) \rightarrow \mathbf{Q F}\left(m_{0}\right)
$$

is continuous.
c) The triple $W_{0}(t), W_{1}(t, \tau), W_{2}(t, \tau, \varrho)$ given by (7a), (7b) is the solution of (5) on $\left\langle t_{0}, \infty\right.$).

Proof. Choose a stabilizing control

$$
u_{0}(t)=\int L^{0}(t, \tau) x(\tau) \mathrm{d} m_{0}(\tau)
$$

Suppose that

$$
x_{s}^{0}=\varphi \in L_{1}^{n}\left(m_{0}\right)
$$

From the fact that the functions $Q_{1}(t), Q_{2}(t)$ and $L^{0}(t, \tau)$ are bounded we obtain that there exists a constant K_{2} such that

$$
\begin{equation*}
c\left(t, x^{0}(t), u^{0}(t)\right) \leqq K_{2} \cdot\left\|x_{t}^{0}\right\|_{1}^{2} . \tag{14}
\end{equation*}
$$

Denote

$$
A^{0}(t, \tau)=A(t, \tau)+B(t) \cdot L^{0}(t, \tau) .
$$

Let

$$
a=\sup \left\{\left\|A^{0}(t, \tau)\right\|: t \in\left\langle t_{0}, \infty\right) ; \tau \in\langle-h, 0\rangle\right\} .
$$

For $t \in\langle s, s+h\rangle$ we have

$$
\left\|x^{0}(t)\right\| \leqq K(a, d) \cdot\|\varphi\|_{1}
$$

and

$$
\begin{aligned}
\left\|x_{t}^{0}\right\|_{1}= & \int_{t-h}^{0}\|\varphi(\tau)\| \mathrm{d} \tau+\int_{0}^{t}\left\|x^{0}(\tau)\right\| \mathrm{d} \tau+\left\|x^{0}(t)\right\| \leqq \\
& \leqq\|\varphi\|_{1}+(1+h) \cdot K(a, h) \cdot\|\varphi\|_{1}
\end{aligned}
$$

when
(15a)

$$
\int_{s}^{s+h}\left\|x_{x}^{0}\right\|_{1}^{2} \mathrm{~d} t \leqq K_{3}^{\prime} \cdot\|\varphi\|_{1}^{2}
$$

For $t \geqq s+h$ we have

$$
\left\|x_{t}\right\|_{1}^{2} \leqq(1+h)\left[\|x(t)\|^{2}+\int_{-h}^{0}\|x(\tau)\|^{2} \mathrm{~d} \tau\right] .
$$

Therefore

$$
\begin{align*}
& \int_{s+h}^{\infty}\left\|x_{t}^{0}\right\|_{1}^{2} \mathrm{~d} t \leqq(1+h)^{2} \cdot \int_{s}^{\infty}\left\|x^{0}(t)\right\|^{2} \mathrm{~d} t \leqq \tag{15b}\\
& \quad \leqq(1+h)^{2} \cdot K_{1} \cdot\|\varphi\|_{1}^{2}=K_{3}^{\prime \prime} \cdot\|\varphi\|_{1}^{2} .
\end{align*}
$$

Combining (14) with (15a) and (15b) we get

$$
\begin{equation*}
\int_{s}^{\infty} c\left(t, x^{0}(t), u^{0}(t)\right) \mathrm{d} t \leqq K_{3} \cdot\|\varphi\|_{1}^{2} \tag{15}
\end{equation*}
$$

For $T \geqq t_{0}$ we put

$$
\begin{equation*}
L^{T}(t, \tau)=-Q_{2}^{-1}(t) \cdot B^{\prime}(t) \cdot W^{T}(t, 0, \tau) \tag{16a}
\end{equation*}
$$

and

$$
A^{T}(t, \tau)=A(t, \tau)+B(t) . L^{T}(t, \tau)
$$

where W^{T} is the solution of (5) and (6).
Let $x^{T}(t)$ be the solution of (1) for the control function

$$
\begin{equation*}
u^{T}(t)=\int_{-h_{i}^{\prime}}^{0} L^{T}(t, \tau) x_{t}(\tau) \mathrm{d} m_{0}(\tau) \tag{16c}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
x_{s}^{T}=\varphi \in L_{1}^{n^{\prime}}\left(m_{0}\right) \tag{16~d}
\end{equation*}
$$

Then we have

$$
W_{(s)}^{T}(\varphi)=\int_{s}^{T} c\left(t, x^{T}(t), u^{T}(t)\right) \mathrm{d} t \leqq \int_{s}^{T} c\left(t, x^{0}(t), u^{0}(t)\right) \mathrm{d} t \leqq K_{3} \cdot\|\varphi\|_{1}^{2}
$$

Let $T_{1} \leqq T_{2}$. We denote by x^{i} and u^{i} the functions $x^{T_{i}}, u^{T_{i}}, i=1 ; 2$. We have

$$
\begin{aligned}
W_{(s)}^{T_{1}}(\varphi)= & \int_{s}^{T_{1}} c\left(t, x^{1}(t), u^{1}(t)\right) \mathrm{d} t \leqq \int_{s}^{T_{1}} c\left(t, x^{2}(t) ; u^{2}(t)\right) \mathrm{d} t \leqq \\
& \leqq \int_{s}^{T_{2}} c\left(t, x^{2}(t), u^{2}(t)\right) \mathrm{d} t=W_{(s)}^{T_{2}}(\varphi)
\end{aligned}
$$

Thus for $t_{0} \leqq s \leqq T_{1} \leqq T_{2}$ we have the following inequalities in $\operatorname{QF}\left(m_{0}\right)$:

$$
\begin{equation*}
W_{(s)}^{T_{1}} \leqq W_{(s)}^{T_{2}} \leqq K_{3} \cdot I \tag{17}
\end{equation*}
$$

where $K_{3} . I$ is the constant matrix function on $\langle-h, 0\rangle \times\langle-h, 0\rangle$.
We denote by In the class of initial functions of the types

$$
\begin{equation*}
\varphi_{i}=e_{i} \cdot \chi_{\{0\}} \text { for } i=1, \ldots, n \tag{18a}
\end{equation*}
$$

(18b) $\psi_{\tau, j}^{m}=m \cdot e_{j} \cdot \chi_{\langle\tau-1 / m, \tau+1 / m\rangle}$ for $j=1, \ldots, n ; \tau \in\langle-h, 0\rangle ; m=1,2, \ldots$

$$
\begin{equation*}
\varphi=\varphi^{\prime} \pm \varphi^{\prime \prime} ; \varphi^{\prime} \text { and } \varphi^{\prime \prime} \text { are of the type (18a) or (18b) } \tag{18c}
\end{equation*}
$$

where e_{i} is the i-th member of the standard orthonormal base in R^{n} and χ_{M} is the characteristic function of the set M.
Choosing suitable initial functions from the class In we derive the inequality

$$
\begin{equation*}
\left\|W^{T}(s, \tau, \varrho)\right\| \leqq K_{3} \cdot n \quad \text { for } \quad s \leqq T ; \tau, \varrho \in\langle-h, 0\rangle \tag{17a}
\end{equation*}
$$

Substituting it into (16a) and (16b) we conclude that there exists a constant α such that for any T

$$
\begin{equation*}
\sup \left\{\left\|A^{T}(t, \tau)\right\|:(t, \tau) \in\left\langle t_{0}, T\right\rangle \times\langle-h, 0\rangle\right\} \leqq \alpha \tag{17b}
\end{equation*}
$$

Therefore for the solution x^{T} of (1) determined by (16c) and (16b) we have

$$
\begin{equation*}
\left\|x^{T}(t)\right\| \leqq K(\alpha,(t-s)) \cdot\|\varphi\|_{1} \quad \text { for } \quad t \leqq T \tag{17c}
\end{equation*}
$$

Considering once more suitable functions of the class In (cf. [1], [2]) we get that for any given $(s, \tau, \varrho) \in\left\langle t_{0}, \infty\right) \times\langle-h, 0\rangle \times\langle-h, 0\rangle$ there exists a limit

$$
\begin{equation*}
W(s, \tau, \varrho)=\lim _{T \rightarrow \infty} W^{T}(s, \tau, \varrho) \tag{19a}
\end{equation*}
$$

We show that this convergence is uniform on $\left\langle t_{0}, t_{1}\right\rangle \times\langle-h, 0\rangle \times\langle-h, 0\rangle$ for any $t_{1} \in\left\langle t_{0}, \infty\right)$. Put $t_{2}=t_{1}+h$. For any $\varepsilon>0$ there exists $T_{0}>t_{2}$ such that for $T_{0}<T_{1}<T_{2}$ the inequality
(19b) $\quad \iint\left\|W^{T_{2}}(t, \tau, \varrho)-W^{T_{1}}(t, \tau, \varrho)\right\| \mathrm{d} m_{0}(\tau) \mathrm{d} m_{0}(\varrho)<\varepsilon / n \cdot K^{2}(\alpha, d)$
holds.
Put $d=t_{2}-t_{0}$. For $i=1,2$ we consider the solution $x^{i}=x^{T_{t}}$ determined by (16c) and (16d). For $s \in\left\langle t_{0}, t_{1}\right\rangle$ we have

$$
\begin{aligned}
W_{(s)}^{T_{1}}(\varphi) & =\min _{u}\left\{\int_{s}^{t_{2}} c(t, x(t), u(t)) \mathrm{d} t+W_{\left(t_{2}\right)}^{T_{i}}\left(x_{t_{2}}\right)\right\}= \\
& =\int_{s}^{t_{2}!} c\left(t, x^{i}(t), u^{i}(t)\right) \mathrm{d} t+W_{\left(t_{2}\right)}^{T_{i}}\left(x_{t_{2}}^{i}\right)
\end{aligned}
$$

where $u^{i}=u^{T_{i}}$ is given by (16a) and (16c).
Therefore

$$
\begin{gathered}
0 \leqq W_{(s)}^{T_{2}}(\varphi)-W_{(s)}^{T_{1}}(\varphi)=\int_{s}^{t_{2}} c\left(t, x^{2}(t) ; u^{2}(t)\right) \mathrm{d} t+W_{\left(t_{2}\right)}^{T_{2}}\left(x_{t_{2}}^{2}\right)- \\
-\int_{s}^{t_{2}} c\left(t, x^{1}(t), u^{1}(t)\right) \mathrm{d} t-W_{\left(t_{2}\right)}^{T_{1}}\left(x_{t_{2}}^{1}\right) \leqq W_{\left(t_{2}\right)}^{T_{2}}\left(x_{t_{2}}^{1}\right)-W_{\left(t_{2}\right)}^{T_{1}}\left(x_{t_{2}}^{1}\right) \leqq \\
\leqq \iint\left\|x^{1}\left(t_{2}+\tau\right)\right\| \cdot\left\|W^{T_{2}}\left(t_{2}, \tau, \varrho\right)-W^{T_{1}}\left(t_{2}, \tau, \varrho\right)\right\| \cdot\left\|x^{1}\left(t_{2}+\varrho\right)\right\| \mathrm{d} m_{0}(\tau) \mathrm{d} m_{0}(\varrho) \leqq \\
\leqq K^{2}(\alpha, d) \cdot\|\varphi\|_{1}^{2} \cdot \varepsilon /\left(n \cdot K^{2}(\alpha, d)\right)=\varepsilon / n \cdot\|\varphi\|_{1}^{2} .
\end{gathered}
$$

Choosing suitable initial functions from In we derive

$$
\left\|W^{T_{2}}(s, \tau, \varrho)-W^{T_{1}}(s, \tau, \varrho)\right\| \leqq \varepsilon
$$

$$
\left\langle t_{0}, t_{1}\right\rangle \times\langle-h, 0\rangle \times\langle-h, 0\rangle .
$$

Thus the components $W_{0}(t), W_{1}(t, \tau), W_{2}(t, \tau, \varrho)$ of the limit function are continuous on their domains.
For a given t and $T \geqq t+h$ the triple $W_{0}^{T}(t), W_{1}^{T}(t, \tau), W_{2}^{T}(t, \tau, \varrho)$ is the solution of the system of integral equations which we obtain by the integration of the system (5):

$$
\begin{gather*}
W_{0}(t)=W_{0}(t+h)+\int_{t}^{t+h}\left[A_{0}^{\prime}(s) \cdot W_{0}(s)+W_{0}(s) A_{0}(s)+W_{1}(s, 0)+\right. \tag{20a}\\
\left.+W_{1}^{\prime}(s, 0)-W_{0}^{\prime}(s) \cdot B_{1} \cdot W_{0}(s)+Q_{1}(s)\right] \mathrm{d} s
\end{gather*}
$$

$$
\begin{equation*}
W_{1}(t, \tau)=W_{0}(t+\tau+h) \cdot A_{2}(t+\tau+h)+ \tag{20b}
\end{equation*}
$$

$$
+\int_{-h}^{\tau}\left[W_{0}(t+\tau-\varrho) \cdot A_{1}(t+\tau-\varrho ; \varrho)+A_{0}^{\prime}(t+\tau-\varrho) \cdot W_{1}(t+\tau-\varrho ; \varrho)+\right.
$$

$$
\left.+W_{2}(t+\tau-\varrho ; 0 ; \varrho)-W_{0}(t+\tau-\varrho) \cdot B_{1}(t+\tau-\varrho) \cdot W_{1}(t+\tau-\varrho ; \varrho)\right] \mathrm{d} \varrho
$$

$$
\begin{gather*}
W_{2}(t, \tau, \varrho)=A_{2}^{\prime}(t+\tau+h) \cdot W_{1}^{\prime}(t+\tau+h ; \varrho-\tau+h)+ \tag{20c}\\
+\int_{-h}^{\tau}\left[A_{1}^{\prime}(t+\tau-\xi, \xi) \cdot W_{1}(t+\tau-\xi, \varrho-\tau+\xi)+\right. \\
+W_{1}^{\prime}(t+\tau-\xi, \xi) \cdot A_{1}(t+\tau-\xi, \varrho-\tau+\xi)- \\
\left.-W_{1}^{\prime}(t+\tau-\xi, \xi) \cdot B_{1}(t+\tau-\xi) \cdot W_{1}(t+\tau-\xi, \varrho-\tau+\xi)\right] \mathrm{d} \xi \\
\text { for }-h \leqq \tau \leqq \varrho \leqq 0
\end{gather*}
$$

and

$$
\begin{equation*}
W_{2}(t, \tau, \varrho)=W_{2}^{\prime}(t, \varrho, \tau) \text { for }-h \leqq \varrho \leqq \tau \leqq 0 . \tag{20d}
\end{equation*}
$$

Taking the limits with respect to T we obtain that the triple $W_{0}(t), W_{1}(t, \tau), W_{2}(t, \tau, \varrho)$ is the solution of (20) and of (5) as well.

Theorem 2. Assume that the system (1) is stabilizable and W is the function constructed above. Then the following statements hold.
a) The control

$$
\begin{equation*}
u^{*}(t)=\int_{-h}^{0} L^{*}(t, \tau) x_{t}^{*}(\tau) \mathrm{d} m_{0}(\tau) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{*}(t, \tau)=-B^{\prime}(t) \cdot Q_{2}^{-1}(t) \cdot W(t, 0, \tau) \tag{21a}
\end{equation*}
$$

is the optimal control for (1) and the value of minimal cost is given by

$$
\begin{equation*}
C_{s}^{\infty}(u, \varphi)=W_{s}(\varphi) \tag{22}
\end{equation*}
$$

b) The function W is the smallest nonnegative bounded continuous solution of (5) on $\left\langle t_{0}, \infty\right.$) (in view of Definition 3).
c) Suppose that V is any nonnegative continuous solution of (5) on $\left\langle t_{0}, \infty\right)$. Then for any stabilizing feedback control

$$
u(t)=\int_{-h}^{0} L(t, \tau) \cdot x_{\mathrm{t}}(\tau) \mathrm{d} m_{0}(\tau)
$$

the inequality

$$
\begin{equation*}
C_{s}^{\infty}(u, \varphi) \geqq V_{(s)}(\varphi) \tag{23}
\end{equation*}
$$

holds for any $s \in\left\langle t_{0}, \infty\right)$ and $\varphi \in L_{1}^{n}\left(m_{0}\right)$.
d) Suppose that there exists a constant $\delta>0$ such that for any $t \in\left\langle t_{0}, \infty\right)$ and $x \in R^{n}$ the inequality

$$
\begin{equation*}
x^{\prime} \cdot Q \cdot x \geqq \delta \cdot\|x\|^{2} \tag{24}
\end{equation*}
$$

holds. Then $W(t)$ is the only nonnegative bounded continuous solution of the system (5) on $\left\langle t_{0}, \infty\right)$.

Proof. Let $t_{0} \leqq s \leqq T<\infty$. Suppose that $V(t)$ is the continuous nonnegative solution of (5) and that $x(t)$ is a solution of (1) for a control function $u(t)$ and initial condition $x_{s}=\varphi \in L_{1}^{n}\left(m_{0}\right)$. Calculating as in [1] or [2] we get

$$
\begin{gather*}
c(t, x(t), u(t))+\frac{\mathrm{d}\left[V_{(t)}\left(x_{t}\right)\right]}{\mathrm{d} t}=\left[u(t)-\int_{-h}^{0} U(t, \tau) x_{t}(\tau) \mathrm{d} m_{0}(\tau)\right]^{\prime} \tag{25}\\
\cdot Q_{2}(t)\left[u(t)-\int_{-h}^{0} U(t, \tau) x_{t}(\tau) \mathrm{d} m_{0}(\tau)\right] \geqq 0
\end{gather*}
$$

where

$$
U(t, \tau)=-B^{\prime}(t) \cdot Q_{2}^{-1}(t) \cdot V(t, 0, \tau)
$$

hence

$$
\begin{equation*}
C_{s}^{T}(u, x) \geqq V_{(s)}(\varphi)-V_{(T)}(\varphi) . \tag{26}
\end{equation*}
$$

If we suppose that $V(t)$ is bounded and u is a stabilizing feedback control we get that

$$
\lim _{t \rightarrow \infty} x(t)=0, \quad \lim _{T \rightarrow \infty} V_{(T)}\left(x_{T}\right)=0
$$

196 Hence the statement c) is proved.
Now we prove a). Let $x(t)$ be a solution of (1) for some control function u and initial condition $x_{s}=\varphi \in L_{1}^{n}\left(m_{0}\right)$ For any $T \geqq s$ we have

$$
C_{s}^{T}(u, x) \geqq W_{(s)}^{T}(\varphi)
$$

hence

$$
C_{s}^{\infty}(u, x) \geqq W_{(s)}(\varphi)
$$

From (25) we get

$$
C_{s}^{T}\left(u^{*}, \varphi\right)=W_{(s)}(\varphi)-W_{(T)}(\varphi) \leqq W_{(s)}(\varphi)
$$

and (22) is fulfiled.
b) For

$$
u(t)=\int_{-h}^{0} U(t, \tau) x_{t}(\tau) \mathrm{d} m_{0}(\tau)
$$

where U is as above, we have from (25)

$$
C_{s}^{T}(u, \varphi)=V_{(s)}(\varphi)-V_{(T)}\left(x_{T}\right) \leqq V_{(s)}(\varphi)
$$

But

$$
W_{(s)}^{T}(\varphi) \leqq C_{s}^{T}(u, \varphi) \leqq V_{(s)}(\varphi)
$$

Therefore

$$
\begin{equation*}
W_{(s)} \leqq V_{(s)} \tag{27}
\end{equation*}
$$

d) We show that (24) implies that the control $u^{*}(t)$ is stabilizable. For the solution $x^{*}(t)$ with $x_{s}^{*}=\varphi$ we have (making use of (18))

$$
\begin{gathered}
\int_{s}^{\infty}\left\|x^{*}(t)\right\|^{2} \mathrm{~d} t \leqq 1 / \delta \int_{s}^{\infty} x^{*^{\prime}}(t) \cdot Q_{1}(t) \cdot x^{*}(t) \mathrm{d} t \leqq \\
\leqq 1 / \delta \cdot \int_{s}^{\infty} c\left(t, x^{*}(t), u^{*}(t)\right) \mathrm{d} t=1 / \delta \cdot W_{(s)}(x) \leqq 1 / \delta \cdot K_{3} \cdot\|\varphi\|_{1}^{2} .
\end{gathered}
$$

According (23)

$$
W_{(s)}(x)=C_{s}^{\infty}\left(u^{*}, x\right) \geqq V_{(s)}(\varphi)
$$

Combining with (27) we get $V_{(s)}=W_{(s)}$.

Remark. a) If all the functions $A(t, \tau), B(t), Q_{1}(t), Q_{2}(t)$ are periodic in t with the same period d the functions $W^{T}(t)$ fulfil the equations

$$
W^{T+d}(t+d)=W^{T}(t)
$$

Therefore the functions $W(t, \tau, \varrho)$ and $L^{*}(t, \tau)$ are periodic in t with the period d
b) If all the functions A, B, Q_{1}, Q_{2} are constant in t then $W(t, \tau, \varrho)$ and $L^{*}(t, \tau)$ are constant in t. The function $W(\tau, \varrho): \tau, \varrho \in\langle-h, 0\rangle$ is the solution of the simplified system

$$
\begin{gather*}
A_{0}^{\prime} \cdot W_{0}+W_{0} \cdot A_{0}+W_{1}(0)+W_{1}^{\prime}(0)-W_{0} \cdot B_{1} \cdot W_{0}+Q_{1}=0 \tag{28a}\\
\frac{\mathrm{~d} W_{1}(\tau)}{\mathrm{d} \tau}=W_{0} \cdot A_{1}(\tau)+A_{0} \cdot W_{1}(\tau)+W_{2}(0, \tau)-W_{0} \cdot B_{1} \cdot W_{1}(\tau) \tag{28b}\\
\frac{\mathrm{d} W_{2}(\tau, d+\tau)}{\mathrm{d} \tau}=A_{1}^{\prime}(\tau) \cdot W_{1}(d+\tau)+W_{1}^{\prime}(\tau) \cdot A_{1}(d+\tau)- \\
-W_{1}^{\prime}(\tau) \cdot B_{1} \cdot W_{1}(d+\tau) \text { for }-h \leqq \tau \leqq \tau+d \leqq 0
\end{gather*}
$$

$$
\begin{equation*}
W_{1}(-h)=W_{0} \cdot A_{2} \tag{28d}
\end{equation*}
$$

$$
\begin{equation*}
W_{2}(-h, \tau)=A_{2}^{\prime} \cdot W_{1}(\tau) \tag{28e}
\end{equation*}
$$

The function W can be obtained in the form

$$
\begin{equation*}
W(\tau, \varrho)=\lim _{t \rightarrow-\infty} V(t, \tau, \varrho) \tag{29}
\end{equation*}
$$

where V is the solution of the system (5) on $\left\langle t_{0}, \infty\right)$ with the initial condition $V(0)=0$.
(Received May 5, 1979.)

REFERENCES

[1] Y. Alekal, P. Brunovsky, H. Ch. Dong, E. B. Lee: The Quadratic Problem for Systems with Time Delay. IEEE Trans. Autom. Control AC-16 (1971), 6, 673-687.
[2] V. B. Kolmanovskij, T. L. Majzenberg: Optimal'noje upravlenije stochastičeskimi sistemami s posledejstvijem. Avtomatika i telemechanika 34 (1973), 1, 47-60.
[3] V. Kučera: A Review of the Matrix Riccati Equation. Kybernetika 9 (1973), 1, 42-61.
[4] A. A. Lindquist: Theorem on Duality Between Estimation and Control for Linear Stochast c Systems with Time Delay. Journal of Math. Anal. and Appl. 37 (1972), 2, 516-536.
[5] V. J. Zubov: Lekcii po teoriji upravlenija. Nauka, Moskva 1976.
RNDr. Jozef Komornik, CSc., Katedra teórie pravdepodobnosti a matematickej štatistiky Prírodovedeckej fakulty Univerzity Komenského (Department of Probability Theory and Mathematical Statistics, Faculty of Science - Comenius University), Mlynská dolina, 81631 Bratislava. Czechoslovakia.

