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1. INTRODUCTION 

Probably every mathematician and, perhaps, also a great part of laymen would 
agree if we proclaimed the domain of theorem-proving to play the basic and central 
role in all mathematical activity;: Moreover, it is again theorem-proving when the 
creative, sophisticated and intelligent character of mathematician's work can be seen 
at the first sight and in the most persuasive way. A mathematical proof is something 
like a bridge enabling to transit from the domain of hypothesis, no matter how 
interesting and supported it may be, into the world of precisely formalized and 
mathematically verified truths, which can serve as a ground for a further reasoning, 
deciding, or acting. 

Hence, it is nothing strange or surprising in the fact that theorem-proving was 
likely one of the first fields, in which a human being — mathematician tried to compare 
his abilities with those of his spiritual child — a machine, computer. Even the first 
and, from contemporary point of view rather old-fashioned computers proved 
themselves to be much more effective than a man in the domain of mechanical, 
routine work dominanting in the area of numerical computations. The following 
questions (and other ones) naturally arose: Is a computer able, at least potentially, 
to replace his creator — mathematician also in looking for a proof of a formula 
or is this domain exclusively reserved for human intellectual activity proving, in this 
way, his eternal and decisive supremacy to machines? . . . "I propose the question: 



Can machines think?" expresses a similar idea A. M. Turing in his classical paper [7]. 
And even if, after all, a computer is able to prove theorems, are its abilities in this 
direction comparable with those of a mathematician? Can a computer at least help 
a mathematician in his theorem-proving effort? 

The idea of replacing theorem-proving by calculations was expressed for the 
first time by Descartes (Cartesius), the designer of the first mechanical computer, 
in [2]. It appeared again at the beginning of this century, when the necessity to solve 
the "crisis of mathematics" and namely, the "crisis of set theory" lead to the notion 
of formalized proof, based entirely on syntactic notions and operations and so much 
more adequate for a mechanical treatment. Important role in the direction toward 
a mechanized theorem proving was played also by various results and papers proving 
the algorithmical decidability or undecidability of various formalized theories starting 
from the most simple ones (e.g., propositional calculus), but including also some 
very complex and rich theories as, e.g., Presburger Arithmetics (cf. [4J). Even the 
well-known Hilbert program contained the idea of transforming all mathematics 
into calculation. 

Godel's famous results concerning the formalized arithmetic, in spite of their 
immense theoretical sense and importance discouraged, in a degree, further attempt 
to mechanize the mathematician's work, especially theorem proving. An activity 
in this direction has been renewed since the coming on scene of the first electronic 
computers. Thanks to their great effectivity in numerical and algorithmical operating 
even the semi-decision procedures, known to be only theoretically applicable for 
formalized theories in general, seemed to be "effective enough" to be worth of being 
implemented and applied. 

Most of the procedures for automated theorem proving proposed in those days were 
based on Herbrand's theorem which profits of the semantical completeness of the 
first-order predicate calculus and transforms theorem-proving in this predicate 
calculus into a sequence of theorem-provings in the prepositional calculus which 
is known to be decidable (cf. Chapter 3 or [1] for more details). An important step 
forward in this direction represents the well-known and already classical paper by 
J. A. Robinson [6] introducing the notion of resolution and resolution principle. 
This paper has been followed by a great number of other papers and books, examining 
the Robinson's basic ideas, modifying and improving them, dealing with implementa
tion or with various applications, etc. From the quantitative point of view the decade 
1965 — 1975 could be considered as the most successful in all the history of automated 
theorem-proving, however, taking into account also the qualitative aspects we 
ought to be more careful before claiming something like this. We shall come back 
to this question later. 

The already mentioned Turing's paper [7] with his suggestive question "can 
machines think?" is usually taken as the birthpoint of a new branch of applied science, 
called artificial intelligence. Theorem proving has been considered as an important 
part of this new science since its very origins. The aim of artificial intelligence has 



been, and still is, to build mathematical (in the broadest sense) formulations and theo
ries for many processes, procedures and activities which are usually considered as 
intelligent, if performed or executed by a human subject. As mathematical logic 
can be seen as a metatheory of formalized mathematical theories, it is nothing strange 
in noticing that many attempts have been done to apply means and tools of mathe
matical logic in various subdomains of artificial intelligence. Such an approach is 
naturally influenced by the fact, that various devices designed for realizing the 
artificial intelligence procedures, algorithms or heuristics, can work only at the 
syntactic level, i.e., various data, inputs or commands can be taken only as syntactic 
configurations of symbols, it is beyord the power of the device (computer, automa
ton, robot) in question to "understand" the inputs semantically. Mathematical 
logic deals with the relations between the syntax ard the semantic of formalized 
theories, hence, it has a wide range of applications in artificial intelligence. 

Also the proof theory has been used in this connection. The problem of verifying 
whether an operator is or is not applicable in the actual stage of a problem solving 
as well as the problem of verifying whether a goal has been already reached or not 
can be converted into that of proving or disproving appropriate formulas describing 
the applicability conditions of operators or the desired goal. Even apian itself for solv
ing a problem can be excerpted, urder some conditions, frcm the proof of an appro
priate formula (cf. Chapter 8 for more details). Also many questions concerning 
formal representations of the environment and subject's knowledge can be expressed 
in and solved by the means of proof theory; some of them will be also mentioned 
in Chapter 8. 

However, we can see at the first sight, that the role of formalized proofs in these 
applications is different frcm their role in the classical, pure mathematics. In pure 
mathematics the length of proof, time, effort ard other possible expenses necessary 
for obtaining the proof, etc. do not play any role, a hypothesis had simply remained 
to be a hypothesis until it was proved or disproved. In artificial intelligence systems 
the situation is quite different; a decision must be taken and an action executed 
in time, in a real time comparable with other changes taking place in the environment. 
Even the best decision taken too late is useless, as the situation may be already deci
sively changed. 

Hence, the necessity occured to investigate the theorem-provirg procedures and 
algorithms also from the point of view of their time and storage pretensions. Almost 
simultaneously with the artificial intelligence, and also as a consequence of the birth 
of computers a new field of mathematics emerged, the theory of computational com
plexity. Various computation ard decision procedures including theorem-proving 
algorithms became very soon the objects of investigation of this new theory and 
some interesting, but not too hopeful results have been achieved. Roughly speaking, 
theorem-proving algorithms have been proved to belong to the group of algorithms 
with the highest computational complexity, i.e. to those which are the most time and 
storage consuming. Expressed in a more detailed form: the theory of computational 



complexity does not investigate the complexity of particular computations but rather 
of whole classes of computations with the same program (algorithm), but various 
inputs. The complexity or extent of these inputs are measured (e.g., by the length of 
the input taken as a word in a formal alphabet) and the computation cmoplexity is 
expressed as a function of this input complexity. If this function is of polynomial 
type (can be majorized by a polynomial function) the procedure is usually considered 
as practically applicable (a hypothesis justified informally by the practice of specialists 
dealing with computers). If this is not the case, the computation (algorithm, pro
cedure) is called to be of exponential type and such procedures are usually taken as 
practically useless, even if, from the theoretical point of view they may be worth 
studying. This classification of computational procedures into those which are of 
polynomial type and the exponential ones has been proved to be very deep, sharp 
and stable in the sense that no scale or implementation change, no transformation 
of the formalism used for expressing the algorithm can transform an exponential 
procedure into a polynomial one, this difference lies very deeply in the internal 
character of the algorithm in question. On the other hand, the coefficients of the 
corresponding exponential or polynomial functions expressing or majorizing the 
quantitative computational complexity can be always modified by an approximate 
implementation. 

What is of the crucial importance for our further reasoning is the fact that all 
theorem-proving algorithms or semi-algorithms have been proved to be of exponen
tial type (in fact, many of them are of superexponential types) and, hence, not useful 
for a practical use in technical devices design with the intention to act in a real world 
and in a real time according to the dynamical character of the environment. Some 
experiments with robots using theorem-proving as theoretical basis of their decision 
making have proved this theoretical conclusion (cf. [3]). 

Hence, we can see, that any theorem-proving procedure possesses at least two 
aspects going against each other — the demand of mathematical correctness and 
absolute reliability and that of a practical applicability. It is not possible to maintain 
both the demands simultaneously, something must be abandoned. The classical, 
pure mathematics strictly preferred the logical rigorousness and correctness, leaving 
the question of feasibility opened; in other words, no storage or time savings can 
justify the replacing of a correct theorem-proving procedure by an unprecise one, 
no matter how small the probability of error may be. The basic idea of this work 
may be expressed as "choosing the other outcome" from the dilema mentioned 
above, in other words, we shall admit the possibility, that the result of a theorem-
proving procedure may be wrong, from time to time, but the probability of such 
a failure is "small enough" and if it is payed by a significant decrease of computational 
complexity, such a procedure may be admissible, even more admissible than another, 
precise, but too complicate one. In Chapter 4 we give a more detailed argumentation 
in favor of this approach. A much more general expression of the same idea by M. O. 
Rabin can be found in [5] in the form of a metamathematical hypothesis. 



Probably the first attempts to introduce probability theory and statistics into the 
domain of theorem-proving were made by A. Spacek in 1959 — 60, his ideas have 
been developed and modified later by the author of this work who has confronted 
them with the demands and problems of other branches of artificial intelligence, 
namely with automated problem-solving and robotics. Also some works of W. van 
Vestrhenen and his research group in the Netherlands as well as some papers by 
S. Ju. Maslov and E. D. Rusakov, Leningrad, U.S.S.R., are devoted to the same 
or similar subjects. A survey of all known works and approaches dealing with appli
cation of statistics and probability theory in the domain of automated theorem-
proving will be the main goal of this work. In order to facilitate the reading of what 
follows to a reader not familiar enough with mathematical logic and proof theory 
we explain some basic ideas and principles of these branches in Chapters 2 and 3. 
In Chapter 2 we describe, very briefly, the way of modern mathematics leading to the 
notion of formalized theory, the elementary stones necessary in order to build a for
malized theory, we define formalized proofs and theorems and compare these notions 
with the semantically based notions of satisfiability and truth. By investigating the 
relations between validity and provability we shall elucidate the powers, but also 
limits of formalization in modern mathematics. 

Chapter 3 explains the basic principles of the most developed methcd of automated 
theorem proving based on Robinson's resolution principle. We shall get familiar 
with the notion of semantical completeness of the first-order predicate calculus, 
with Herbrand's theorem and Herbrand's universum. We describe the resolution 
principle and resolution-based proving procedures, also some of their modifications 
and improvements are mentioned. 

Then we discuss, at the beginning of Chapter 4, the theoretical as well as the 
practical limitations of automated theorem-proving procedures. We proceed by 
explaining the notions necessary for constructing a general mcdel of statistical deci
sion making and by suggesting of such a model. Statistical methods of theorem-
proving are described as a special case of this general model, the statistical as well as 
the deterministic approaches to automated theorem proving are compared and 
confronted with each other from the theoretical and practical points of view. Some 
arguments are suggested favorizing the statistical methods of theorem proving 
when the applicational approach is considered as the dominating one. 

Chapter 5 describes the basic Spacek's model of theoremhood testing in at random 
sampled extensions of a given formalized theory and some other modifications and 
improvements of this basic idea. The testing problem is transformed into that of 
a parametric hypothesis testing. The theoretical conditions under which these tests 
work as well as their implementational possibilities are discussed. 

As a practical realization of a statistical theorem-proving method will not be limited 
by testing of one single formula, we may try to profit of the formulas already tested 
and proclaimed to be theorems or disproved as non-theorems, when testing another 
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formula. Some possibilities of such experience use and learning are discussed in 
Chapter 6. 

The next, seventh, chapter briefly introduces other methods of statistical theorem 
proving, e.g., random sampling in resolution-based procedures or stochastic genera
tion of formalized theories by random sampling of premises and deduction rules 
during the process of theorem-proving. 

Various applications of statistical theorem-proving methods are mentioned in 
Chapter 8, namely those which are close to artificial intelligence, automated problem 
solving and automated plan formation, especially for uncertain or incomplete plans. 

Chapter 9 deals with other conceptions how to introduce uncertainty into the 
formalized proofs (fuzzy logic, incorrect deduction rules), some more general con
siderations and results concerning the relations between the admission of a possibility 
that a procedure fails and significant time and storage savings (R. M. Karp, M. O. 
Rabin) are also discussed. The last Chapter 10 tries to evaluate the actual state of the 
surveyed branch of mathematics and outlines some possibilities for its further 
development. 

Let us emphasize our intention to conceive this work as a surveyal one, with the 
aim to sketch the outlines of this new field of science and to offer a first insight to 
anybody interested in this field of mathematics but not having any special pre
liminary knowledge about it. In no case we would like to dupplicate or replace 
special papers and other sources dealing with matters which will be mentioned below. 
It is also why proofs of various assertions stated in what follows will be often omitted 
or restricted, giving, at the same time, a reference when a detailed proof can be 
found. As a rule, we shall introduce here only those proofs or parts of proofs which 
are, because of their ideas, techniques or partial results, of a metodological or illu
strative value for the subsequent explanation. Precise formalizations of the given 
concepts and assertions will be offered only in case when the necessary effort and time 
and space expenses needed to this goal are proportional to the importance of the 
notion or statement in question in the used context. The same care as to formal 
preciseness will be devoted also to clearness and lucidity, the explanation will be 
enriched by illustrative examples, if possible. Preliminaries with which the reader 
is supposed to be familiar as well as the notation and symbolics used are mentioned 
by the occasion of their first occurence. 

As far as the references are concerned, we give at the end of each chapter the list 
of references mentioned for the first time in this chapter. Because of the character 
of this work (an appendix appearing through whole volume of Kybernetika) we 
prefer this way of references listing to the usually adopted one, introducing the list 
of all references at the very end. When referring to an item of the list of the present 
chapter we use the single enumeration, e.g., " . . . as shown in [ 6 ] . . . " , when mention
ing a reference of another, as a rule, one of the preceding chapters, we make profit 
of double enumeration, the first numeral referring to the chapter, e.g., " . . . as can 



be found in [ 6 . 2 ] . . . " refers to the second item of the reference list at the end of 
Chapter 6. Theorems, definitions, examples and relations are numbered by the usual 
double enumeration, the first numeral referring to the chapter in question. 
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2. FORMALIZED THEORIES 

Scientific theories are as old as the science itself. The very origins of science, usually 
dated to the times of antic Greece, are inseparably linked with the first attempts 
of human intellect to describe and systemize somehow one's experience based on the 
repeated observations of the surrounding world. From the most general point of 
view a scientific theory can be seen as a collection of sentences of a language, origin
ally the natural language used by the community in question; the sentences are to 
describe the environment or the universe, at least from some aspects and are, more 
or less, supported by observations as well as by conclusions driven from immediately 
observable facts to more abstract ones according to some rules of reasoning, generally 
adopted as sound and corresponding to the common sense. In this, broadest sense 
a scientific theory can be formalized by a pair <i?, ^">, where i ? is the used language 
considered as the set of all its sentences and ^ c SC is the subset of those sentences 
which are taken or claimed as the valid ones. However, at this stage of scientific 
development the collections J*f and 9~ of sentences are usually not sharply defined, 
so that such a set-theoretic formalization would be only of a limited value. 

This early period of science can be called descriptional and cummulative, as it 
describes the facts concerning the environment and these pieces of information are 
simply cummulated to each other. The further step in scientific development is to 
systemize somehow the knowledge according to some principles. First attempts in 
this direction were done, again, already in antic Greece by Euclides. His idea was 



simple and genial: to choose a small number of basic and immediately observable 
sentences from which all the other valid sentences could be derived by some rules 
of reasoning. Euclides was successful in applying this idea to geometry, he chose 
five elementary geometric assertions, usually called axioms or postulates and derived 
from them all valid geometric sentences known in his age. A mathematical, or, in 
general, scientific theory described in this way is called axiomatic theory, it can be 
formalized by a pair <Jz?, Ax), where $£ is a language and Ax c JS? is the set of axi
oms, this set is strictly defined and is decidable in the sense that for any sentence of i ? 
we can effectively decide whether it is or is not an axiom. 

Aristoteles axiomatized, in a similar way, also a part of mathematical logic and, 
for more than two thousand years, Euclidean geometry and Aristotelian logic served 
as ideal patterns to which all other branches of mathematics and other sciences 
should tend. Some successes in this direction have been really achieved the most 
important among them being, probably, the Newtonian mechanics. 

Since the end of 19th century the set theory has been considered as the basic 
branch of mathematics due to fundamental works of Cantor, Frege and Dedekind, 
who recognized the basic role of set theory in the process of logical and systematical 
building of modern mathematics. Flence, a remarkable effort has been put forward 
in order to axiomatize the set theory. The result was surprising and threated to 
destroy all grounds of mathematics — the paradoxes occured. 

Paradoxes were known already to old Greeks, but these paradoxes usually resolved 
from an illegal mixing of language and meta-language and could be explained after 
a short reasoning. Other paradoxes, as, e.g.. the Zenon's ones, were not paradoxal 
at all from the logical point of view, they were only hardly accessible to an intuitive 
imagination. However, the set-theoretic paradoxes (Russell's paradoxon, Buralli-Forti 
paradoxon, etc.) could not be removed from mathematics in a simple way and they 
proved the necessity to revise critically all the formal grounds of contemporary 
mathematics. 

This revision showed the inevitable necessity to formalize precisely the language 
of mathematics or, particularly, of a mathematical theory and to formalize, as well, 
the rules of "sound reasoning", i.e., the deduction rules, as the paradoxa showed 
that our belief in the "common sense" had failed. All this effort led to the notion 
of formalized theory which is the crucial one of modern mathematixal logic. A very 
general definition of this notion was given, under the title of simple type theory, 
by Whitehead and Russell in their monumental monography [12]. In our days this 
formalization is considered as rather old-fashioned and over-dimensioned, preference 
is given to restricted systems fitted for particular theories (propositional calculus, 
first-order or second-order predicate calculi, etc.). However, simple type theory copes 
with the generality level on which all our explanations in this work will be formulated 
and it is, moreover, appropriate from the methodological point of view for our 
introducing of the principles of formalized theories. 

Let us start with a formal explanation. 
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Definition. 2.1. Let * (), be formal symbols different from all other symbols occur-
ing below. 

(a) * is a logical type; 

(b) if n is a positive integer and c1, c2, . . . , c„ are logical types, then (cu c2, . . . , c„) 
is also a logical type; 

(c) there are no other types. The set of all logical types is denoted by T. 

Intuitively, logical types are ascribed to various mathematical objects, e.g., the 
elementary logical type * is that ascribed to individuals, type (*) belogs to set of 
individuals, (*, *) to binary relations between individuals, ((*), (*)) to binary relations 
between sets of individuals, etc. The definition of logical types can be generalized 
by admitting more than one elementary types, denoting them, e.g., * j , *2, . . . . 

The next definition describes the language of the simple type theory. 

Definition 2.2. Let T be the set of all logical types, let there be given, for each c e T, 

(aj) an infinite sequence x{, x2, . . . of logical indeterminates of the type c (we use 
the expression "indeterminate" instead of the more often used one "variable" 
in order to reserve the later term to be used in the context "random variable" 
below); 

(bj) a finite or infinite sequence Q\, Q2, ..., QC„, . . . of relational symbols of the 
type c (relational symbols of type * are called individual constants). 

Let c = (cj, . . . , cn) e T. Let tc', i -= 1, 2, . . . , « , be an indeterminate or relational 
symbol of the type c,-, then 0%^, f2, . . . , tc„") and xc

t(tl
l, f2, ..., f„"), i = 1,2, 

are elementary formulas. 

Let V(general or universal quantifier), 3 (existential quantifier), A (conjunction), 
v (disjunction), 1 (negation), -»(implication), = (equivalence) be auxiliary symbols. 

(a2) Each elementary formula is a well-formed formula (of the simple type theory). 

(b2) If A, B are well-formed formulas and xs is an indeterminate, then ~] (A), 
(A) A (B), (A) v (B), (A) - (B), (A) = (B), (Vx;) (A), (3xt) (A) are well-formed 
formulas (some pairs of brackets will be often omitted if no danger of confusion 
threats). 

(c2) There are no other well-formed formulas. The set of all well-formed formulas 
will be denoted by ££ and called the language of the simple type theory. 

In order to simplify the definition above we have omitted the function symbols 
using the fact that functions, being a special kind of relations, are not inevitable 
in logical formalisms. Nevertheless, in more simple formalized languages — frag
ments of the simple type theory language defined above — we distinguish among 
relations and functions and the later are used to generate terms (indeterminate and 
constants are terms, functions map terms into terms and terms of appropriate types 
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are connected with relational indeterminates or symbols to form elementary for
mulas). 

The most important and most often met fragments of the language of the simple 
type theory are propositional language, first-order predicate language and second-
order predicate language. Propositional language results from the simple type theory 
language by replacing elementary formulas by new, propositional indeterminates 
(denoted, as a rule, by p, q, r, pu qu ...) and by erasing of all occurences of (Vx;) 
and (3x,). I.e., well-formed propositional formulas are generated from propositional 
indeterminates by propositional connectives ~1, A , V , -», = . First-order pre
dicate language contains only one infinite sequence of indeterminates, namely those 
of type *, and a sequence of relational symbols QU Q2, ..., Qk, ..., each Qt being 
of the type * or (cu c2, . . . , c„(i)), c,- = *, j <a n(i), i <̂  k. As we have already men
tioned, sometimes a particular sequence of functional constants / . , / 2 , . . . , / , is 
considered, together with their arities kuk2, • • •, kt. Individual indeterminates and 
relation symbols of type * (individual constants) are terms. If tu t2, ..., tk(i) are 
terms, then/^f., . . . , f t ( i ))isalso a term. If Q{ is a relational symbol of type (cu c2, . . . 
. . . , c„(i)), Cj = * for all j <i n(i), and if tu t2, ..., r„(i) are terms, then Qt(tu t2, ... 
..., t„(i)) is an elementary formula. The construction of the first-order predicate 
language with functions is finished by closing the set of elementary formulas with 
respect to proposional connectives (functors) and quantifiers. 

Second-order predicate language contains indeterminates and relational symbols 
of type * as well as of all types (c l t c2, . . . , c„), n = 1, 2, . . . , c7- = *, j <J n, and 
finite or infinite sequences of relational symbols of all types in which the admitted 
indeterminates may immediately occur (if functions are treated separately, terms 
of different types must be defined). The creation of elementary formulas and well-
formed formulas runs as in Definition 2.2. 

It has been shown that, admitting as meaningful formulas of mathematics only 
those which are well-formed with respect to the rules of simple type theory language, 
we avoid from our formalism all the paradoxa known until now. E.g., the paradoxon 
based on the notion of "the set of all sets" cannot be obtained in simple type language 
as it inevitably requires to consider a formula of the form xc(xc), xc being an indeter
minate of the type c. However, such an expression cannot be well-formed in the 
simple type language, as in this language the logical type of the "head" of an ele
mentary formula always differs from the logical types of all arguments. 

Since now we always suppose that 5? is either the simple type,language or some 
of its fragments and we shall briefly say that JS? is a. formalized language. 

An occurence of an indeterminate x in a w.f.f. A e S£ is called bound, if it is a part 
of a subformula of A, beginning with (Vx) or (3x). An occurence of an indeterminate 
which is not bound is called free. A w.f.f. is called closed, if it does not contain any 
free occurence of any indeterminate, if a w.f.f. A contains free occurences of just 
the indeterminates xi(i), xi(2), . •., xi(n), then the w.f.f. (Vx,(1)) . . . (Vxi(n)) A is 
called the universal or general closure of A. 
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Having formalized the notion of acceptable formulas we may begin the next step 
of the process of creation of a formalized theory — the choosing of appropriate 
axioms. There are two kinds of axioms, the logical and the extralogical ones. The 
logical axioms are usually common to all formalized theories based on the same 
kind of language and express the most common patterns of reasoning formalizable 
in the language in question. In fact, there are many various formalization of these 
logical axioms for a given language, the word "common" used above should be 
understood in the sense that the sets of all logical consequences of these logical 
axioms are always the same. Various intuitionistic and other non-classical systems 
are not considered here. 

Let us adopt an infinite system of logical axioms described by the following finite 
set of axiom schemata. In any axiom schema symbols A, B, C, . . . are meta-language 
indeterminates; if they are replaced by particular w.f.f.s, particular axioms result 
(i.e., the set of all axioms is recursive, an inevitable condition which each axiomatic 
system is to satisfy). 

(Al) «4 -> (B -> A) 

(A2) (A -> (JJ - C)) » ((A - B) - (A -> C)) 

(A3) ( H A - > 1B)-*(B-+A) 

(A4) (A v B ) ^ ( n A ^ B ) 

(A5) ( l ^ S ) - > U v B ) 

(A6) (A A B) -> ~i(~\A v "IB) 

(A7) l(lA v ~\B)-+(A A B) 

(A8) ((A - B) A (B -» A)) ->(A = B) 

(A9) (A = B) -»((A - B) A (B -> A)) 

(AIO) ((Vac) (A -> B)) -> (A -> (Vx) B), if x is any indeterminate not occuring freely 
in A 

(All) (Vx) A -> S£A, where x is an indeterminate, fr is an indeterminate or relational 
symbol of the same type as x and no free occurence of x in A occurs in a sub-
formula of A which begins with (V6) or (3b). 

(A12) ((3x) A) = (~l((Vx) HA)), where x is an indeterminate. 

This system of logical axioms does not pretend to be minimal or logically indepen
dent. It is a well-known fact that even our system of prepositional connectives and 
quantifiers is superfluously rich, e.g., only ~1, -> and V suffice. In such a case just 
the axioms (Al) —(A3), (AIO) and (All) remain, the other axioms are either added as 
definitory axioms or the other connectives and the existential quantifier are taken as 
meta-language abbreviations for certain formulas. 

The extra-logical axioms differ from case to case and express the attributes of the 
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theory which we are to formalize. As the identity relation occurs in almost all mathe
matical theories, the three axiom schemata governing this relation cam be seen as 
very often used examples of extra-logical axioms: 

(11) for all c e - , j = 1, 2, . . . , (Vxc) (xc = xc) 

(12) for all c e T , j , k = 1, 2, . . ., (Vxc) (VxjQ ((xc = xc) - (xc = xc)) 

(13) for all cer, j , k, I = 1, 2, . . . 
(Vxc) (Vx^(Vx^) ((xc - xc) - ((xc = xl) - (xc = xc))). 

To be precise, we should express the identity relation by a systen {= (c), c e T} 
of binary relational symbols for various types, in ( I l ) - ( I3) we omit the index c. 
Identity axioms are sometimes included among the logical ones, but we do not 
follow this pattern here. As other examples of extra-logical axioms can serve axioms 
of groups or Boolean algebras, if group theory or Boolean algebra theory are to be 
formalized. 

Finally, we must formalize the deduction or reasoning rules enabling to derive 
new assertions from axioms and from the already derived ones. There are, again, 
several systems of such deduction rules equivalent from the point of view of the set 
of all deducible consequences. Let us introduce here, again in the form of deduction 
schemata, a simple system consisting of two deduction rules: 

(Rl) If A, B are w.f.f.s., then A -+ B and A yield B (modus ponens). 

(R2) If A is a w.f.f. and x is an indeterminate, then A yields (Vx) (A) (generalization). 

Hence, the basic notion of this chapter can be defined as follows. 

Definition 2.3. A formalized theory is a triple {^C, s4a>, 0t), where S£ is a for
malized language, stfcc c ££ is a recursive set of axioms and ^ is a recursive set 
of deduction rules (formally, M c {/: ^ / i n ( i f ) -> 5£ partially}, axioms can be seen 
as deduction rules with no premises). Namely, if J£? is the formalized language defined 
in Definition 2.2., j / a , = {(Al), (A2), . . . , (A12)}, 3t = {(Rl), (R2)}, the resulting 
formalized theory is called simple type theory (of course, this name is used also in 
case when equivalent systems of axioms and deduction rules are used). 

The following definition formalizes one of the principal notions of this work, 
that of a formalized proof. 

Definition 2.4. Let <JSf, s/a;, &} be a formalized theory. A finite sequence 
<«.., a2, ..., a„> of formulas from Z£ is called formalized proof, if for every; < n, a} 

either is an axiom or follows from some formulas al(1), a,(2), . . . , ahk), ;', < j for 
all / = 1,2, . . . , k, with respect to a deduction rule. A formalized proof <a1; a2, . . . 
. . . , a„> is called a proof of its last formula, i.e., of a„. A formula of if is called 
a theorem (of the formalized theory in question) if there exists a proof of this formula. 
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The set of all theorems will be denoted by 0~ = $"{&, six. 0t) a £?, the set of all 

formalized proofs will be denoted by 3) = 2>{se, six, 01) <= $5* = (J if1'. We write 
i = l 

sometimes <j5f, .^"> instead of(£f,six, 0/), if the set of theorems and not the specific 
way of its definition by six and 0t lies in the medium of our attention. 

Notice that all the notions defined above are of purely syntactic and combinatoric 
nature without any reference to semantics. The main problem of every mathematical 
theory, namely that of looking for valid assertions or deciding whether an assertion 
is or is not valid in the considered theory, is now converted into that of deciding 
whether a formula of a formalized theory is or is not a theorem, i.e., whether it is 
or is not deducible (provable). In which degree, under which conditions and by which 
means is this question decidable? 

In every case, this question is semi-decidable in the sense that the set 0~ of all 
theorems is recursively enumerable. This means that there exists an algorithmical 
procedure giving as its outputs one theorem after another and such that every theo
rem eventually occurs in this sequence — but the index of its first occurrence is not 
effectively computable. The set 3" is decidable, i.e., recursive, only in some cases of the 
most simplest (in a sense) theories, the propositional calculus being probably the 
best known case (propositional calculus is based on the propositional language, 
axioms (Al) —(A9) and deduction rule (Rl), it is decidable, for example, by the well-
known zero-one procedure). If 0" is decidable, the theory (J£, 0") itself is called 
decidable. 

On the other hand, the set £? of formalized proofs is always recursive, i.e., decidable. 
In fact, having a finite sequence of formulas of Sf we can effectively decide, for 
every formula in the sequence, whether it is or is not an axiom (the set of all axioms 
is recursive), In the negative case we can effectively examine all finite sets of formulas 
preceding the formula in question and try, whether they yield it or not with respect 
to a deduction rule (these rules are also supposed to be recursive, usually it suffices 
to consider just the rules (Rl) and (R2)). Using the notation borrowed from the recur
sion theory we may say that the set <2> of formalized proofs is always a I0-set (hence, 
at the same time, rj0-set), but the set 3~ of all theorems is, in general, a 2".-set. 

Mathematical logic aims not only to separate semantical notions from the syntactic 
ones and to translate the former into the later, but it also tries to formalize the seman
tical notions of satisfiability, validity, truth, etc. and to study their relations to the 
syntactical notions of proof, deducibility and theoremhood. As some assertions 
of this kind are important for the most known methods of automatic theorem-
proving, namely in the first-order predicate theories (cf. the next chapter), we in
troduce these notions and results here, limiting ourselves, for the sake of simplicity, 
by the first-order languages. 

Definition 2.5. Let 2 = <X, cu c2, . . . . <Pi(1), <p"<2>, • •-, eT a ) , Q2
(2), • • •> be 

a first-order predicate language, X = (xux2, . . -> is the sequence of individual 
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indeterminates (i.e., intdeterminates of type*), {cuc2, . . .> is a finite of infinite 
sequence of individual constants, {cp\w, <p2

(2), . . •> is a finite or infinite sequence 
of functional symbols, every <p"(i) being of the arity nh <e?(1), QT2\ • • •> is a finite 
or infinite sequence of relational symbols, every o™U) being of the type (cu c2, ... 
..., cm(i)>, Cj = *, j ^ m(i) (having separated individual constants we may suppose 
that n(i) > 0, m(i) > 0, i = 1, 2, . . . ) . 

Relational structure or model Jt = <M, au a2, . . . , j j ' , j2
2 , . . ., r*1, r2

2, . . .> is 
a mathematical object such that M is a nonempty set, <a., a2, . . .> is a finite or 
infinite sequence of elements of M, <ji(1), j 2

( 2 ) , • . . > is a finite or infinite sequence 
of functions over M, in general, partial with arities hh i.e., every j ; is defined in MHi) 

and takes its values in M, <r*(1), r2
(2), . . . > is a finite or infinite sequence of relations 

over M with arities kh i.e., every r ; is a subset of Ml,(i). The model Jt is called to be 
of the same signature as the language £?, if the number of individual constants is 
the same as the number of separated elements a., a2, . . . , the number of functional 
symbols in Sf is the same as the number of relations in Jt and if, moreover, for all 
j = 1, 2, . . . , rij = hj, mj = kj. 

Let JS? and Jt be of the same signature. An evaluation / of the language _>? in the 
model Jt is a mapping defined o n Z u { c „ c 2 , . . . } u {<?!, <p2, . . . } u {QU Q2, . . . } , 
taking its values in M u [au a2, ...} u {j,,j2, . . . } u {ru r2, ...} and such that 
J(c;) = a;, J(<p;) = j ; , /(e ;) = r ; for all i = 1, 2, Two evaluations, 7 t and /2 , 
of .S? in ^ are called equivalent, It t» 72 in symbols, if L(.y) = ^2(>') for all y $X, 
i.e., if they differ, at most, in the way in which indeterminates are evaluated. 

Let i f and Jt be of the same signature, let J be an evaluation of ££ in Jt. Define 
the set "fj cz Sf of formulas which are valid in the evaluation / in the following 
inductive way: 

(a) the mapping / is extended to a mapping of terms into M by setting 

I(<pt(tu t2,..., tnU))) = (I(p,) (Itu lt2, .. .,ItMi)), 

where tu t2, ..., t„U) are terms; 

(b) let tu t2, ..., tm(i) be terms, then the atomic formula Qi(tu t2, ..., tmii)) is valid 
in / iff (IQ{) (Itu It2, . ..,Itm(i)) holds, i.e., iff 

<Jtult2, ...,Itm{i)}eri=I(Qi); 

(c) a formula (Vx) A(x) is valid in / , iff A(x) is valid in all evaluations lx of S? in Jt 
such that Ix x I, 

(d) HA is valid in /, iff A is not valid in / ; 

(e) A v B is valid in / , iff either A is valid in J, or B is valid in / ; 

(f) (3x) A(x) is valid in I, iff n((Vx) HA ) is valid in J; 
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(g) A -*• B is valid in I, iff (1 A) v B is valid in 7; 

(h) A A B is valid in 7, iff ~l((~lA) v (~1B)) is valid in 7; 

(i) A = B is valid in 7, iff (A -> 5) A (73 ->• A) is valid in 7. 

Clearly, x is an equivalence relation in the set of all evaluations of JSf in J{. 
Any equivalence class with respect to x, is called an interpretation of JSf in J(, hence, 
an interpretation J is uniquely defined by restriction of an evaluation to objects 
which are not indeterminates. A formula A of Jzf is called valid or true in an inter
pretation (of JSf in Jl), iff A is valid in all evaluations belonging to J. A formula A 
of JSf is called invalid or false in an interpretation J (of JSf in J/), iff A is valid in 
no evaluation belonging to J. The set of all formulas valid in J will be denoted 
by r(J). 

Corollary 2.1. Let Z£, Ji, J be as in Definition 2.5. Then every closed formula 
of JSf is either true or false in J. 

Proof. An immediate consequence of Definition 2-5. When ascribing, in what 
follows, the adjective "true", "valid", "false", "invalid" also to formulas containing 
free occurences of indeterminates, we refer them always to the universal closures of 
the formulas in question. 

Notice, that the set •V(J) of valid formulas is neither effectively decidable, nor 
recursively enumerable, e.g., to verify a formula beginning with a general quantifier 
requests to examine an infinite number of evaluations. The aim of a formalized theory 
is to replace, in the best possible way, this undecidable set ~f~(J) by a set 9~ of theo
rems, which is, in general, recursively enumerable. 

A model Jl is called a model of a theory <JSf, 3"} in the interpretation J, iff 
5~ c; 'f(J), i.e., iff every theorem is valid in J. If the deduction rules are truth-
preserving, this means, if they lead from valid premises to valid conclusions, then 
the necessary and sufficient condition for the theory <jSf, 3"} = <JSf, six, {%} to be 
valid in (or: to have) a model J{ in the interpretation J is that six a •f(J), i.e., 
all axioms are valid formulas. Namely, the deduction rules (Rl) and (R2) can be 
easily proved to be truth-preserving and logical axioms can be proved to be valid 
in all models of a first-order language JSf. 

A formalized theory is called consistent, iff ST 4= ££, it is equivalent with the con
dition that, for each A e JSf, [A A (HA)] e JSf — ST, i.e., no contradiction can be 
proved, a theory is called inconsistent in the opposite case. 

Let <J5f, JT> = <jSf, six, 0f} be a consistent formalized theory. This theory is 
called syntactically complete, if for each x e JSf - 3~ the theory (£C, six u {x}, 0ty 
is consistent, in other words, if enriching the set of axioms by any non-theorem 
enables to prove everythirg. The theory <J27, &") is called semantically complete, 
if each formula, which is valid in all models in which ail axioms are valid, is also 
provable, i.e., belongs to 2T (hence, in such a case the formalization of the theory 
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in the form <if, 5"> = <if, $4a>, 0fy describes and expresses precisely the set of 
valid formulas). As an example of syntactically complete theories we can mention 
the propositional calculus, in fact, joining any non-deducible formula of the pro-
positional language to (Al) —(A9) as a new axiom would make the theory inconsis
tent. As an example of a semantically complete theory we can introduce the pure 
first-order predicate calculus (this theory is based on a first-order language with 
relational of functional constants, its axioms are just the logical ones (Al) —(A12), 
deduction rules are (Rl), (R2)). Because of the importance of this fact in what follows, 
namely in the next chapter, let us formalize it in the form of the following theorem. 

Theorem 2.1. A formula of the pure first-order predicate calculus is valid in all 
interpretations of this theory iff it is a theorem of this theory (Godel's Completeness 
Theorem for the first-order predicate calculus). 

P roo f can be found, e.g., in [1] as well as in many other textbooks on mathema
tical logic some of them being referred below. 

This theorem enables to convert the syntactic problems (deducibility testing) into 
semantical ones (validity checking) and vice versa and this transformation plays 
an important role in resolution-based theorem-proving. As Theorem 2.1 holds, in 
this strict sense, only for the pure first-order predicate theory we need a tool to trans
form the deducibility problem for a general first-order theory (with extra-logical 
symbols) into the deducibility problem for the pure first-order theory. Such a possi
bility is offered by the following theorem, often called Deduction Theorem, we present 
here a formulation adequate for the first-order theories. 

Theorem 2.2. Let <•§?, sfa>, M} be a first-order formalized theory, let A» 0 <= sfa; 
be the logical axioms, let ^ = {(Rl), (R2)}. Write s/x V A, if a formula A e & 
is deducible from axioms by the deduction rules. Let Au A2, .. .,A„ be formulas 
from JS? then 

S/CCQ v {Au A2, . . . , A„} i- A yields s/a;0 u {A1( . . . , A„-i} 1" A„ —> A • 

P roof can be found, e.g., in [1] as well as in many other textbooks on mathematical 
logic, some of them being referred below. 

Hence, having a first-order predicate theory with a finite number of extra-logical 
axioms A., A2, . . . , A„, we may replace the theoremhood testing of a formula A 
by the similar problem for the formula 

A, ->(A2 - > . . . -*(A.->A)...) 

in the pure first-order predicate calculus (extra-logical axioms are supposed to be 
closed formulas). This way of reasoning will be, again, of great importance in what 
follows. 

All the notions which we have formulated here for the case of first-order theories 
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can be generalized also for higher-order theories as well as for the simple type theory 
in whole. On the other hand, the completeness theorem as formulated above (Theo
rem 2.1) expresses a specific feature of the first-order predicate calculus and has no 
counterpart in higher-order theories. The famous Godel's Incompleteness Theorem 
sounds that any consistent formalized theory, rich enough to enable to formalize 
the arithmetic, is necessarily semantically incomplete and cannot be completed by 
enriching the set of axioms (as far as this set of axioms remains recursive, as the 
metatheory of formalized theories requests). However, the higher-order analogies 
of the notions introduced above for the first-order case will not be necessary in what 
follows. 

The fact that we close this chapter, dealing with some preliminaries from the domain 
of mathematical logic, just now in no case means that we have already exhausted 
all the notions and statements of this branch which will be necessary or useful in the 
rest of this work. Many notions and assertions will be introduced or mentioned at 
appropriate places, as a rule, immediately before their application. Here we have 
concerned only the most basic notions of mathematical logic which can be and 
need to be explained in a systematic way in order to illuminate and emphasize their 
interna] connections and dependences. 

As far as the references are concerned, we introduce below several well-known 
textbook on mathematical logic in which all the notions and assertions mentioned 
above can be found together with proofs and with more detailed explanations. We 
have concentrated our attention to textbooks available, sometimes in translations, 
in our country and to textbooks which have already proved their pedagogical qualities. 
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3. RESOLUTION-BASED THEOREM-PROVING 

The aim of this work is to survey various statistical approaches and methods 
of proof theory and theorem-proving. As will be shown later, most of these methods 
contain a "usual", i.e., deterministic theorem-proving algorithm as an integral part 
and the qualities of this part influence very strongly the quality of the resulting 
statistical procedure. Moreover, an appropriate deterministic theorem-proving 
algorithm should play also the role of a "pre-selector", submitting to the subsequent 
statistical theorem-proving procedure only those formulas which are not decidable 
by the algorithm in question. It is why we have decided to devote this chapter to 
a brief explanation of the basic principles of automated theorem-proving, at the same 
time we have concentrated our attention to the so called resolution-based methods, 
as most of the modern theorem-proving procedures belong to this group. 

Finding a general decision procedure to verify the validity of a formula was 
considered long ago. It was first tried by Leibniz and further revived by Peano 
around the turn of the century and by Hilbert's school in the 1920s. It was not until 
1936 that this was proved impossible. Church [1] and Turing [4] independently 
showed that there was no general decision procedure to check the validity of formulas 
of first-order predicate theories. However, there are proof procedures which can 
verify that a formula is valid if indeed it is valid. For invalid formulas these procedu
res, in general, will never terminate. In view of the result of Church and Turing, 
this is the best we can expect to get from a deterministic proof procedure. 

In 1930, Herbrand developed an algorithm to find an interpretation that can 
falsify a given formula, if it is not valid. Herbrand's method is the basis for all resolu
tion-based proof procedures. Gilmore in [3] was one of the first persons to imple
ment Herbrand's procedure on a computer. Since a formula is valid iff its negation 
is invalid (inconsistent), his program was designed to detect the invalidity of the 
negation of the given formula. If this negation is invalid, his program will eventually 
detect this fact. Gilmore's method was improved by Davis and Putnam in [2], how
ever, their improvement was still not enough to overcome the inefficiency of the 
original procedure. Many valid and rather simple formulas of first-order predicate 
theories still could not be proved by computers in a reasonable amount of time. 

A major breakthrough was made by Robinson in 1965, cf. [1.6], who introduced 
the resolution principle. Since the introduction of this principle several refinements 
have been suggested in attempts further to increase its efficiency. Some of them will, 
be, in a very brief way, mentioned below. 

Since now, the object of our interest in this chapter will be the pure first-order 
predicate theory, also called first-order logic. Only the formulas which are in the so 
called prenex normal form with matrices in the so called conjunctive normal form 
will be tested for theoremhood, as will be immediately shown, there is no loss of 
generality in this assumption. 
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Definition 3.1. 

(a) A literal is an atomic formula of the negation of an atomic formula. 

(b) A finite disjuction of literals is called a clause. 

(c) A formula E which contains no occurrences of a quantifier is said to be in the 
conjunctive normal form iff E has the form E, A E2 A . . . A F„, n ^ 1, where 
each Fh i ^ n, is a clause. 

(d) A formula E is said to be in a prenex normal form iff F has the form (Q , x , ) . 
• (62*2) • • • (Qn*n)(M), where every (Q.x.) is either (Vx,) or (3x,), and M is 
a formula containing no quantifiers. (<2i*i) • • • (QrV) is c a " e d the pre/ix and 
M is called the matrix of the formula E. 

Theorem 3.1. 

(a) Let E be a formula of the first-order logic, let there be no occurrences of a quan
tifier in E. Then there is a formula E, in the conjunctive normal form such that 
E = E, is provable in the first-order logic. 

(b) Let E be a formula of the first-order logic, then there is a formula E2 in the 
prenex normal form such that E = E2 is provable in the first-order logic. 

(c) Let E be a formula of the first-order logic, then there is a formula E3 in the 
prenex normal form and with matrix in the conjunctive normal form such that 
E = F3 is provable in the first-order logic. 

Proof. The proofs of the assertions (a) and (b) as well as algorithms for finding 
the appropriate formulas E,, E2 can be found in [1.1] and in some textbooks on 
mathematical logic among them referred in Chapter 2. The assertion (c) immediately 
follows from the previous ones and justifies our idea to limit ourselves, in what 
follows, by formulas of this type. 

Having already transformed a formula E in a prenex normal form(Q,x,) (22*2) • • • 
. . . (Q„x„) (M), where M is in a conjunctive normal form, the existential quantifiers 
in the prefix can be eliminated by using Skolem functions, without affecting the 
inconsistency property. 

Suppose Qr, 1 < r < n, is an existential quantifier in the prefix (Q,*,) . . . (Q„x„). 
If no universal quantifier appears before Qr, we choose a new constant c, different 
from other constants occuring in M, replace all xr appearing in M by c, and delete 
(Qrxr) from the prefix. If QS(U, ..., Qs(m) are all the universal quantifiers appearing 
before Qr, 1 < s(l) < s(2) < . . . < s(m) < r, we choose a new m-ary function 
symboljdifferent from other function symbols, replace all xr in M by/(x. ( J ) , xs(2), . .. 
.. ., xs(m)), and delete (Qrxr) from the prefix. After the above process is applied to all 
the existential quantifiers in the prefix, the last formula we obtain is a (Skolem) 
standard form of the formula E. The constants and functions used to replace the 
existential indeterminates are called Skolem functions. 
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Example 3.1. Obtain a standard form of the formula 

(3x) (Vy) (Vz) (3u) (Vt>) (3W) P(X, y, z, u, v, w). 

Here (3x) is preceded by no universal quantifiers, (3M) is preceded by (Vy) and (Vz), 
and (3w) by (Vy), (Vz) and (Vi>). Therefore, we replace x by a new individual constant 
c, u by a binary function symbol j(y, z), and w by a ternary function symbol g(y, z, v). 
Thus, we obtain the following standard form of the formula 

(Vy) (Vz) O ) P(a, y, z , /(y, z), t>, «(y, z, i>)). 

Example 3.2. Obtain a standard form of the formula 

(Vx) (3y) (3z) ((~lP(x, y) A Q(x, Z)) V R(X, y, z)). 

First, the matrix is transformed into a conjunctive normal form 

(Vx) (3y) (3z) ((- |P(x, y) v R(x, y, z)) A (Q(x, Z) V R(x, y, z))). 

Then, since (3y) and (3z) are both preceded by (Vx), the indeterminates y and z are 
replaced, respectively, by unary function symbols j(x) and g(x). Thus, we obtain 
the following standard form of the formula. 

(Vx)((nP(x,j(x)) v R(x,f(x),g(x))) A (Q(X, g(x)) v R(x, f(x), g(x)))), 

When it is convenient, we shall regard a set of literals as synonymous with a clause. 
A clause consisting of r literals is called an r-literal clause. A one-literal clause is 
called a unit clause. When a clause contains no literal, we call it the empty clause 
and denote by • . Since the empty clause has no literals that can be satisfied by an 
interpretation, the empty clause is always false. A set S of clauses is regarded as 
a conjunction of all clauses in S, where every indeterminate in 5 is considered to be 
governed by a universal quantifier. By this convention, a standard form can be simply 
represented by a set of clauses. E.g., the standard form of Example 3.2. can be repre
sented by the set of clauses 

{{-lP(x,f(x)), R(x,f(x), g(x))}, {Q(x, g(x)), R(x,f(x), g(x))}} . 

Theorem 3.2. Let S be a set of clauses that represents a standard form of a formula 
F. Then F is invalid (inconsistent), iff S is invalid (inconsistent). , 

Proof. Cf. [1.1], p. 48, Theorem 4.1 and its proof. 
Before examining how to solve the problem of invalidity (inconsistency, i.e., 

unsatisfiability) of a set S of clauses let us resume all the process of transformation 
of the original problem into the current one. First of all, we have a first-order for
malized theory (£?, 3"} with extralogical axioms Ax, A2, ..., A„, we have a formula 
Ae JzP and we ask, whether A e 2T, i.e., whether Au A2, .. ., A„ \- A or not. Using 
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deduction theorem we replace this problem by that whether Ax -* (A2 -+ . . . 
. . . (A„ -* A) ...), hence, (A t A A2 A . . . A A„) -> A, is provable in the pure 
first-order predicate calculus. Completeness theorem converts this question to the 
question, whether (A1 A . . . A A„) -» A is valid, in other formulation, whether 
""((A. A . . . A A„) -» A) and so also At A . . . A A„ A ~~|A, is invalid. Denoting 
by S = S(A) the set of clauses representing the formula Ax A ... A An A ~]A, 
we obtain, due to Theorem 3.2., the problem whether S is unsatisfiable (hence, A<= 3T) 
or not (hence, A e -Sf — 9~). It is why we restrict ourselves, since now, to the problem 
of unsatisfiability of sets of clauses. 

By definition, a set S of clauses is unsatisfiable iff it is false under all interpreta
tions over all domains. Since it is inconvenient and impossible to consider all inter
pretations over all domains, it would be nice if we could fix on one special domain H 
such that S is unsatisfiable iff S is false under all the interpretations over this domain. 
Fortunately, there does exist such a domain, which is called the Herbrand universe 
of S and defined as follows. 

Definition 3.2. Let S be a set of clauses, let H0 be the set of individual constants 

appearing in S. If no constant, appears in S, then H0 is to consist of a single constant, 

say H 0 = {a}. For i = 0 ,1 , 2, . . . let Hi+1 be the union of Ht and the set of all terms of 

theformj(?1; . . .,/„)forall n-aryfunctionsymbolsoccuringin^wheretj, t2, .. .,tnbe

long to H(. Then each Hi is called the i-level constant set ofS, and H = (J Ht is called 

the Herbrand universe of S. '~° 

Example 3.3. Let S = {{P(f(x), a, g(y), b)}}. Then H0 = {a, b}, H, = {a, b,f(a), 
f(b), g(a), g(b)}, H2 = {a, b,f(a),f(b), g(a), g(b), f(f(a)), f(f(b)), f(g(a)),f(g(b)), 
g(f(a)), g(f(b)), g(g(a)), g(g(b))}, H3 = .... 

In the sequel, by expression we mean a term, a set of terms, an atom, a set of atoms, 
a literal, a clause or a set of clauses. When no indeterminate appears in an expression, 
we call this expression a groud expression to emphasize this fact. A subexpression 
of an expression E is an expression that occurs in E. 

Definition 3.3. Let S be a set of clauses. The set of ground atoms of the form 
P(tt, ..., t„) for all n-ary predicate symbols P occurring in S, where tu ..., t„ are 
elements of the Herbrand universe of S, is called the atom set, or the Herbrand base 
of S. A ground instance of a clause C of a set S of clauses is a clause obtained by 
replacing indeterminates in C by members of the Herbrand universe of S. 

Definition 3.4. Let S be a set of clauses, H = H(S) the Herbrand universe of S, 
and y an interpretation of S over H. J is said to be an H-interpretation of S if it 
satisfies the following conditions 

(a) $ maps all constants in S to themselves. 
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(b) Let / b e an n-ary function symbol and hu h2 ,..., hn be elements of H. J assigns 
to / a function that maps <Jtix, . . . , / .„> e H" to / ( . , . . . , hn) e H. 

Example 3.4. Consider the set S = {{P(x), Q(x)}, (R(/(v))}}. H = H(S) = 
= {a, f(a), f((a)), f(f(f(a))), ...}. There are three predicate symbols: P, Q, and R. 
Hence, the atom set of S is A = {P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), ...}. 
Some H-interpretations for S are as follows: 

St = {P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), . . . } , 

J2 = {~lP(a), ~]Q(a), lR(a), lP(f(a)), lQ(f(a)), lR(f(a)), . . . } , 

S3 = {P(a), Q(a), ~\R(a), P(f(a)), Q(f(a)), lR(f(a)), . . . } . 

Theorem 3.3. A set S of clauses is unsatisfiable iff S is false under all the H-inter
pretations of S. 

Proof. Cf. [ IT ] , p. 55, Theorem 4.2 and its proof. 

An important consequence of this theorem sounds as follows: 

Theorem 3.4. (A version of the so called Herbrand's Theorem) A set S of clauses 
is unsatisfiable iff there is a finite unsatisfiable set S' of ground instances of clauses 
of S. 

Proof. Cf. [ IT ] , p. 61, Theorem 4.4 and its proof. 

Finding a proof for a set of clauses can be described in the form of a semantic 
tree. The nodes correspond to ground instances of literals of the set of clauses and the 
two vertices leaving each node correspond to the two possible H-interpretations 
of this literal. Each branch of the tree is developed until an inconsistency occurs, 
in such a case this branch is closed and another, not yet closed branch is followed. 
Having closed all the branches, we come to the conclusion that the set of clauses is 
unsatisfiable and we may read, from the nodes, the finite unsatisfiable set S' of ground 
instances the existence of which is asserted in the Herbrand's Theorem above. Cf. [ IT ] 
for details. 

The first computer implementation of this procedure was proposed and executed 
by Gilmore in 1960 [3], as mentioned above. Davis and Putnam introduced (cf. [IT]) 
four additional rules enabling to restrict the quantity of finite sets of ground instances 
of clauses of S which should be tested for unsatisfiability (cf. [1.1], p. 63). However, 
even under these conditions the method remained to be very inefficient; already for 
rather simple theorems the extent of the set of all ground instances was too high to be 
storaged in a computer, not to mention test its unsatisfiability. 

As already mentioned, an important improvement in this direction was realized 
by J. A. Robinson's resolution principle [1.6]. It is based on the following idea: 
if there were, in a set S of clauses, the empty clause • , then S' = {•} is, clearly, 
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a finite unsatisfiable set of ground instances, requested by the Herbrand's Theorem 
in order to prove the unsatisfiability of 5. Hence, in such a case the testing of S could 
be reduced to the looking for • in S. Suppose to have at your disposal a procedure 
enabling to enrich the set S by new clauses without affecting the original problem 
of satisfiability or unsatisfiability of S. So to obtain, by this procedure, the empty 
clause • proves the unsatisfiability of 5. In fact, resolution principle is nothing 
else than such a rule of looking for the empty clause. First, let us to explain this 
principle on the propositional level. 

Consider two clauses, C : = {P}, C2 - {~P, Q} (i.e., C2 = {~\P v Q}). Suppose 
that there is an interpretation $ such that C± and C2 are valid in , / . Hence, P is valid 
in . / , ~\P is not valid in £, so Q must be valid in J in order to assure the validity 
of I P v Q in J. This means that we may add a new clause, C3 = {Q}, to Cu C2 

without affecting the original problem of unsatisfiability of {Cu C2}. Extending the 
above rule and applying it to any pair of clauses (not necessarily unit ones) we have 
the following rule, which is called the resolution principle. 

Definition 3.5. For any two clauses Ct and C2, if there is a literal L t in Ct that is 
complementary to a literal L2 in C2 (i.e., either Lt is the negation of L2 or vice versa), 
then delete Lj from Ct and L2 from C2, and construct the disjunction of the remain
ing clauses. The constructed clause is called a resolvent of Ct and C2. 

Example 3.5. 

(a) Consider clauses {P, Q} and {~\P, R}, their resolvent is {R, Q}. 

(b) Consider clauses [~\P, Q, R} and {iQ, S}, their resolvent is {~\P, R, S}. 

Theorem 3.5. Given two clauses, C : and C2, a resolvent C of C t and C2 is a logical 
consequence of C t and C2. 

Proof. Cf. [ IT ] , p. 72, Theorem 5.1 and its proof. 

Let us extend the resolution principle to the first-order logic. The most important 
part of applying this principle is to find a literal in a clause that is complementary 
to a literal in another clause. For clauses containing no indeterminates, this is very 
simple. However, for clauses containing indeterminates, the problem is more com
plicated. For example, consider the clauses Cx : {P(x), Q(x)}, C2 : {1 P(f(x)), 
R(x)}. There is no literal in Cx that is complementary to a literal in C2. However, 
if we substitute/(a) for x in Ct and a for x in C2, we obtain C. :{P(f(a)), Q(f(a))}, 
C2 : {~]P(f(a)), R(a)}, Now, we can obtain a resolvent C3 : {Q(f(a)), R(a)}. This 
new clause can be added to Cx and C2 without affecting the consistency problem for 
{C,, C2}. Or, remember that indeterminates in clauses are supposed to be bound 
by universal quantifiers, i.e., if {Cu C2} is a consistent set, it must be consistent also 
for all possible instances of Cx and C2. This means that finding an inconsistent pair 
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of instances proves the inconsistency of the original set. Immediately follows, that 
we are allowed, looking for the empty clause, to add to the set of clauses also those 
obtained by resolution from possible instances of other clauses. As can be easily seen, 
resolution principle for first-order predicate theories is nothing else than a combina
tion of the two deduction rules (Rl) and (R2). 

Definition 3.6. A substitution is a finite set of the form {f./f.. t2\v2, . .., t„jv„}, 
where every v; is an indeterminate, every tt is a term different from v;, and no two 
elements in the set have the same indeterminate after the stroke symbol. When ( . , . . . 
. . . , / „ are ground terms, the substitution is called ground substitution. The empty 
substitution E consists of no elements. Let 9 = {ty\vx, ..., tnjvn} be a substitution 
and E be an expression. Then E9 is an expression obtained from E by replacing 
simultaneously each occurrence of the indeterminate vt in E by the term t,. E6 is 
called an instance of E. Let 9 = {i1\x1, . . . , t„jx„} and X = {u1\y1, ..., um\ym} 
be two substitutions. Then their composition 9 o X is the substitution that is obtained 
from the set {^A/xj, . . . , t„X\x„, u^yu . . . , um\ym} by deleting any element tjX\xj 
for which tjX = Xj, and any element Ui\yt such that yt is among {xit x2, ..., x„}. 
A substitution 9 is called a unifier for a set {Elt . . . , £ „ } of expressions iff Et9 = 
= E29 = ... = E„9. The set {E1; . . . , E„} is said to be unifiable iff there is a unifier 
for it. A unifier a for a set of expressions is a most general unifier iff for each unifier 0 
for this set there is a substitution X such that 9 = a ° X. 

There exists a unification algorithm for finding a most general unifier for a finite 
unifiable set of nonempty expressions. When the set is not unifiable, the algorithm 
will also detect this fact. Let us sketch briefly such an algorithm, again borrowed 
from [1.1]. 

Definition 3.7. The disagreement set of a nonempty set Wof expressions is obtai
ned by locating the first symbol (counting from the left) at which not all the expres
sions in W have exactly the same symbol, and then extracting from each expression 
in Wthe subexpression that begins with the symbol occupying that position. The set 
of these respective subexpressions is the disagreement set of W. 

Unification Algorithm. 

Step 1. Set k = 0, Wk = W, ak = s. 

Step 2. If Wk is a singleton, stop; ak is a most general unifier for W. Otherwise, 
find the disagreement set Dk of Wk. 

Step 3. If there exist elements vk and tk in Dk such that vk is an indeterminate that 
does not occur in tk, go to Step 4. Otherwise, stop; Wis not unifiable. 

Step 4. Let ak+1 = ako{tk\vk} and Wk+1 = Wk{tkjvk}, hence, Wk+1 = Wak+1. 

Step 5. Set k = k + 1 and go to Step 2. 
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Theorem 3.6. (Unification Theorem) If W is a finite nonempty unifiable set of 

expressions, then the unification algorithm will always terminate at Step 2, and the 

last ak is a most general unifier for W. 

Proof. Cf. Theorem 5.2 in [1.1], and its proof. 

Having introduced the unification algorithm, we can now consider the resolution 

principle for the first-order logic. 

Definition 3.8. If two or more literals (with the same sign) of a clause C have 

a most general unifier a, then Ca is called a factor of C. If Ca is a unit clause, it is 

called a unit factor of C. Let Cx and C 2 be two clauses (called parent clauses) with 

no indeterminates in common. Let Lx and L 2 be two literals in Cx and C 2, respectively. 

If L t and ~lL2 have a most general unifier a, then the clause {Cxa — Lxa} u {C2a — 

— L2a} is called a binary resolvent of Cx and C 2 . The literals Lx and L 2 are called 

the literals resolved upon. A resolvent of (parent) clauses Cx and C 2 is one of the 

following binary resolvents. 

a binary resolvent of C, and C 2, 

a binary resolvent of Cx and a factor of C 2, 

a binary resolvent of a factor of Cx and C 2 , 

a binary resolvent of a factor of Cx and a factor of C 2 . 

Example 3.6. Let C. = (P(x), P(/(y)), «(>(»)}, e2 = {HP(/(a(a))), Q(ft)}. A fac

tor of Cx is C; = {P(f(y)), R(g(y))}- A binary resolvent of C'x and C 2 is {R(g(g(a))), 

Q(b)}. Therefore, {R(g(g(a))), Q(b)} is a resolvent of Cx and C 2 . 

The resolution principle, or resolution for short, is an inference rule that generates 

resolvents from a set of clauses. It is more efficient than the earlier procedures as 

those by Gilmore and Davis and Putnam mentioned above. Furthermore, resolution 

is complete in the sense that it will always generate the empty clause • from an un-

satisfiable set of clauses, as the next theorem shows. 

Theorem 3.7. (Completeness of the Resolution Principle) A set S of clauses is 

unsatisfiable iff there is a deduction of the empty clause • from S. 

Proof. C.f. Theorem 5.3, in [1.1], and its proof. 

Example 3.7. Consider the following set of formulas: 

(Vx)(C(x)-*(W(x)лR(x))), 

(Бx)(C(x)лO(x)), 

(Зx)(0(x)лR(x)). 
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Our problem is to show that F3 is a logical consequence of Ft and F2. We trans
form Fu F2, and ~]F3 into standard form and obtain the following five clauses. 

(1) {lC(x),W(x)}, 

(2) {lC(x),R(x)}, (1) and (2) from Fu 

(3) {C(a)} , 

(4) {0(a)}, (3) and (4) from F2 , 

(5) {~]0(x), ~]R(x)} , from ~]F3. 

Let us add some new clauses derived by the resolution principle. 

(6) {R(a)}, a resolvent of (3) and (2), 

(7) {HR(a)}, a resolvent of (5) and (4), 

(8) • , a resolvent of (7) and (6). 

Hence, the original set of clauses is unsatisfiable, therefore, F2 is a logical consequence 
of Ei and F2. 

In spite of its great effectivity, an uncontrolled application of resolution principle 
leads to a "population explosion" of possible resolvents which must be, at least 
potentially, taken into consideration. In examples, usually introduced in papers or 
books in order to illustrate the resolution principle, this danger is avoided by a sophis
ticated and goal-oriented choosing of appropriate parent clauses to be resolved. 
Some improvements have been suggested, how to minimize the number of resolvents 
to be generated under the condition that the completeness of the modified method 
(in the sense of Theorem 3.7) is preserved. 

So, e.g., deletion strategy offers some rules enabling to delete, without any loss 
of generality, some clauses from the set of potential parent clauses for further resolu
tion. The so called set of support strategy divides the clauses into two groups in such 
a way that only those resolvents, whose parent clauses belong to different groups 
need to be generated. Linear resolution implements an ordering into the set of 
clauses with the aim to minimize the number of necessary resolutions when the resol
ved clause are chosen according to this ordering. As other examples can serve hyper-
resolution, Lock resolution, etc. Because of the limited extent of this chapter we refer 
to [1.1] for more details on various improvements of the resolution principle. As 
a rule, for each modification there exist some inputs, for which it runs very well and 
effectively, however, there are also input data for which the same modification runs 
very ineffectively. Some quantitative estimates of the quality of various improvements 
from the point of view of computational complexity exist only in very few special 
cases. 

As a rule, let us close this chapter by mentioning some references. There is a great 
number of items dealing with resolution-based theorem-proving, however, most 
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of them are special papers devoted to particular problems and requiring rather large 
preliminary knowledge. Among the monographies of surveyal character we can 
sincerely recommend [1.1], which we used throughout all this chapter and from 
which we have borrowed all the assertions, most of the definitions and many other 
formulations. This book is written in a very clear and concise way, the necessary 
preliminaries are reduced as possible and all the methods and assertions are illustrated 
by many examples of various difficulty. In [1.1] also a large list of further references 
can be found for those wishing to study the resolution-based theorem-proving in more 
details. 
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4. A GENERAL MODEL OF STATISTICAL THEOREM PROVING 

Logic and statistics . . . From the first sight this connection seems to be, if not 
paradoxical, then at least rather strange and courageous. Since more than two 
thousand years, since Aristotelian times, logic is considered to be the most perfect 
and most genial image of precisity and correctness, which cannot be reached by other 
sciences. And statistics? The layman's opinion in which statistics are "the precise 
sums of items which are far from being precise", or "using statistics everything can 
be proved" are, as we believe, too spread to be negligible. 

In this chapter we follow the two main goals. First, to introduce the basic ideas 
of statistical decision making, on which all particular methods explained below are 
based. Second, to show that our resignation from the logical precisity and our 
introducing to logic an "uncertainty" or "doubts" is not a step backward, a resigna
tion in general, a return to a pre-logical state of mathematics. We would like to prove, 
that connections between statistics and logic represents a new, higher state of deve
lopment of mathematical logic, enabling to overcome some limitations which are 
own to the classical logic and which do not allow to apply the methods of mathema
tical logic and formalized theories in all the possible and sometimes very perspective 
cases. 

Let us consider a formalized theory <-S?, ^~>; let us recall that J? is the set of all 
well-formed formulas of a formalized language and &~ <= jgf is the set of all theorems. 
Usually, ST is defined as the smallest set of formulas from j£f which contains some 
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special formulas, called axioms or postulates and which is closed with respect to some 
deduction rules (also the expression "inference rules" is used). 

Now, imagine a mathematician investigating such a theory. His work, has, of 
course, many various aspects, but most of them can be reduced to a simple thing: 
the mathematician chooses or is given sentences of the theory <J§?, STy and he is 
to decide, whether a sentence is or is not a theorem, i.e., whether it belongs to ST 
or to Z£ — ST. Which are the possible answers to this question? From the theoretic 
point of view there are just two, namely 

(1) "the sentence is a theorem", 

(2) "the sentence is not a theorem". 

In case the investigated theory were decidable, we could limit ourselves to these two 
answers also from the practical point of view supposing we knew an algorithm how 
to solve the deducibility problem for the considered theory. However, only the most 
simple theories are algorithmically decidable in an a priori given number of steps. 
In other cases some heuristic effort of the mathematician will be necessary to come 
to the correct decision. And in this case it is possible that our poor mathematician 
will not be able to solve the problem and, after some effort, he gives up and says: 

(3) "I do not know", or "I cannot decide", 

or something like this, the verbal form is not important. 
The necessity to introduce into our model also this third possible answer will 

become much more clear if we modify slightly the question posed to the mathemati
cian and instead of "is the tested sentence a theorem of the considered theory or not" 
we ask him "decide, within a given time interval (five minutes, one month, ten years) 
whether the tested formula is a theorem or not". Now it is clear, that after finishing 
this time period one of the possible answers may be "I am sorry, but it is beyond 
my powers to decide". Moreover, we can easily see that if the problem is formulated 
in this modified way we are not allowed to avoid this third possible answer neither 
in the case of decidable theories. 

In the following we try to describe, which is the approach of classical, it means 
non-statistical and pure mathematics toward these three possible answers. 

The main goal of mathematical effort is to receive the decisive and correct answer 
to the question about the tested formula, as introduced above. Supposing such an 
answer is obtained it is considered as some positive contribution to the sum of the 
mathematician's knowledge (or to the knowledge of all mankind'in general). Even 
the negative answer, i.e., "the tested formula is not a theorem" can be interpreted 
in such a way, because it is equivalent to the positive answer to the question whether 
the metasentence "the tested formula is not a theorem of the theory in question" 
is or is not a metatheorem of a metatheory over the theory <=S?, ^">. So it is under
stood that some positive profit has been reached. This profit is considered to be 
independent from the circumstances under which it has been reached, it is also 
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considered to be time-independent. This means that in the pure and classical mathe
matics we do not suppose that a sentence may be very useful in one instant but less 
useful in other instant. Moreover, in this case we do not consider the expenses, the 
costs, the time necessary to obtain the desired result and the question "is the value 
of the obtained result great enough to justify the expenses? is not admitted at all. 

The possibility that the answer would be a decisive one, i.e., of the type (l) or (2) 
above, but wrong is taken for the worst evil which can happen to an unhappy mathe
matician. In this case the profit is considered to be zero, of course, and the loss is 
taken to be infinitely large. This agrees with the usual practice according to which 
no mathematician can defend his error by saying that he has proved or that he will 
prove many good results. The only way to eliminate the eventually loss is to revoke 
the wrong decision and to replace it by the correct one. 

The third possibility, the answer "I cannot decide" is considered as a neutral one, 
not giving any profit, but also not connected with any loss as the expenses of the 
investigation, which has been useless and in vain, are not taken into account. 

This simple survey immediately shows that in the pure and classical mathematics 
there is no reason to accept some decision about the tested formulas supposing that 
these decisions are connected with a possibility of error, no matter how small the 
probability of this error may be. It is always better to say "I cannot decide" and to 
expect that sometimes in future the correct decision will be found, than to risk by 
accepting some not quite sure decision immediately. This is substantially caused 
by the fact that in pure mathematics the decisions about formulas are supposed 
to be the final ones in the sense that no further decisions depend on them. However, 
in what follows, we shall describe some situations when the evaluation of answers 
given above is not more adequate and justifiable. Hence, also our way of reasoning 
when searching for a decision must be modified. 

Let us consider the situation which is, in general, described and investigated in the 
so called automaton-environment systems theory. The expression "automaton" 
is not taken here in its purely theoretical sense, for our purposes it will be sufficient 
to take for an automaton every system which has some degree of autonomy according 
to the surrounding it world-environment, which has some possibility to receive 
pieces of information from the environment as well as some possibilities to influence 
or to change somehow the state of the environment. E.g., a robot may serve as an 
example of such an automaton. The more simple automata are given some goal 
and a series of instructions (a program) enabling to reach this goal. Here goal means 
a concrete state of the environment or a class of such states connected by some 
common property or properties and the aim is to change the present state of the 
environment into the (or into a) goal one. More sophisticated automata are given 
only the goal and they are able themselves to find a sequence of operations leading 
to this goal. 

Let us concern our attention just to this type of automata. How does such an 
automaton work? Not penetrating into details we can say: 
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First, the automaton, being equipped by necessary equipment, receives some 
information from the enviroment. The automaton observes the environment, me
asures some physical values (temperature, light, radiation), detects the positions of 
various objects, etc. Second, the automaton works out the obtained data in such 
way as to transform in into a sequence of formulas (sentences) of an appropriate 
formalized language (usually a first order formalized language is used for this purpose). 
The aim is, of course, that these formulas should describe the situation of the en
vironment "good enough" in the sense that every assertion on the environment 
(or at least every assertion "important" in a sense) which is valid in the environment, 
i.e., for which the environment can serve as a model, should be also derivable from 
the data. The number and complexity of the formulas expressing those input data 
is limited, of course, by parameters of the automaton equipment, hence, the situation 
described above is just the ideal one and usually we must be satisfied if the set of 
obtained formulas can serve only as an approximation of an actually exhaustive 
axiomatic system describing the state of the environment, but it is not the goal of 
this chapter to study this problem in more details (cf. [1], [2]). 

The third stage consists in transforming the given goal into, a formula of the used 
language in such a way that the goal is reached iff this formula is valid in the en
vironment. The problem how to find an appropriate sequence of operations leading 
to the desired goal can be, roughly speaking, transformed into the question whether 
a formula (or formulas) of the used language is (or are) derivable from the axioms 
describing the present state of the environment. Because of the importance of this 
application we shall study it in more details in Chapter 8 where also some references 
will be given. 

And now, what happens if the automaton is not able to prove the corresponding 
formula. The analogy with the case of pure mathematics would be: to stop the auto
maton, to interrupt his activity and, perhaps, to print out "I cannot decide". However, 
would this solution be the most reasonable one? To do nothing, it is also an action 
with which some profit or loss is connected, this profit or loss being optimal if the 
goal is reached as soon as possible and using operations which are as cheap as possible. 
From this point of view it might be better to risk and to sample the sequence of 
operations (or some members of this sequence) at random. If the probability of ran
dom sampling of a correct decision is greater than the probability that the passive 
expecting is a correct decision in the actual situation, then our risk approach is quite 
justifiable from the statistical point of view. However, according to what we have 
said the random decision about the operations can be formalized as taking at random 
a decision concerning the corresponding formula or formulas. Hence, this way 
of reasoning can serve as a justification of our effort to develop a statistical method 
of deducibility testing. 

As example of another kind we can consider the controlling of random processes. 
Roughly speaking, random (stochastic) process is any process the developing of which 
is not deterministic, being influenced by some random aspects. The designer or the 
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user can obtain a profit which depends either on the value taken by the random 
process in a fixed future instant or on the whole behaviour of the process in question 
till this instant. The user has some possibilities to intervene into the process with the 
aim to maximize his profit. Hence, the user observes and measures various aspects 
of the random process and in some instants, when it is possible or appropriate, he 
decides how to intervene. He chooses the optimal decision according to the actual 
situation, i.e., according to the fact whether some conditions are or are not satisfied 
in the time instant when a decision is to be taken. As can be easily seen, from the 
theoretical point of view the decision which intervention is to be applied can be 
transformed to the decision whether some formula (or formulas) is (are) valid or not. 
Hence, the problem of optimal decision choosing can be reduced to that of deduci
bility testing for adequate formulas. And we can see, again, that in case we are not 
able to decide about some formula it may be better to apply the statistical point of 
view, to risk and to try the decision at random, than to do nothing and to let the 
process without any control. And this leads, again, to the problem of statistical 
deducibility testing. 

We have mentioned only two possible applications justifying the investigation 
of statistical methods in automated theorem-proving, but it is possible to give a 
number of another ones, because their common feature is very clear and expresses 
the well-known idea of everyday life: Not knowing exactly what to do in a situation 
one would better to apply a decision being only with some (great enough) probability 
the optimal one than to sit down, to give up any activity and to do nothing. 

Let us introduce an abstract model of statistical decision making abstract enough 
to cover all particular deducibility testing procedures which will be explained in the 
following chapters. 

Definition 4.1. Let Q be a nonempty set. A nonempty system Sf of subsets of Q is 
called a a-field, if 

(1) for all A e Sf also Q - A e Sf, 

(2) HA^Sf, i = 1,2, . . . , then \)AteSf. 
i = l 

The pair <(2, Sf) is called a measurable space. Let (Qu Sf S), <£22, Sf2) be two 
measurable spaces. A mapping / , defined in Q1 and taking values in Q2 is called 
measurable, if 

{{<o:coeQ1J((o)eA} : Ae Sf2} e Sf ^ . 

Definition 4.2. Let <0, Sf) be a measurable space. A real-valued function P 
defined on Sf and taking its values in the interval <0, 1> or reals is called probability 
measure or simply probability, if 

(1) P(Q)=l, 
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(2) for each sequence {Au A2, . . . } of mutually disjoint elements from y, 

K U At) = t P(Ai) • 
i = i i = i 

In such a case the triple <£2, &, P> is called a probability space, elements of Q are 
elementary events and elements of £f are random events. For each Ae £f, the 
real number P(A) is called the probability of A. 

Definition 4.3. Statistical decision problem is the quadruple 

A = « X , if, Ai>,<y, / , {vx}), <2>, •?>, w> . 

where <X, 3", p> is a probability space over the parameter space X, every <Y vx}, 
x e Z , i s a probability space over the observation space Y, <D, ©> is a measurable 
space over the space of decision D, and w is the weight or loss function defined on 
the Cartesian product X x D and taking non-negative reals as its values, here w 
is supposed to be a measurable mapping of the measurable space <X x D, 3C x 3} 
into the Borel line <£,, £#>. 

The intuition behind this formalization is as follows. Values x of X represent 
possible states of the environment or Nature and they are not accessible to an im
mediate observation. In our case of statistical deducibility testing there are just 
two values of parameter, t and f, the first corresponding to the situation when the 
tested formula is a theorem, the other corresponds to the case of non-theorem. 
The a priori probability f.i on this two-element parameter space expresses our 
knowledge with which probability theorems (non-theorems, resp.) come to the input 
of our statistical decision procedure. 

The only values which we are able to observe are those of Y They are connected 
with the values of parameters in a stochastic way, namely, for each xeX and each 
Be f the value ^ (5 ) is the probability that the observed value belongs to B under 
the condition that the actual parameter value is x. An appropriate choose of the 
observational space will be rather sophisticated and will be given in the next chapter 
(e.g. we observe the relative frequency of at random sampled extensions in which 
the tested formula can be proved, etc.). 

Decision space D consists of the possible decisions which can be taken on the ground 
of observation of the value or values from Y. In our case, the decisions about the 
deducibility of the tested formula can be taken in the form of (l) and (2) above, 
hence, from the formal point of view, the decision space can be identified with the 
parameter space X = {t, f}. It is also possible to include (3) in D, this decision can 
be interpreted either as a resignation and giving up, or as a decision to make some 
additive observation enabling to decide with a more certainly. This approach leads 
to the sequential decision making, as explained in [4] or [5]. 
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Finally, the loss function w expresses the consequences of various decision in va
rious situations, namely w(x, d), x e X, d e D, is the loss suffered when the decision d 
has been taken and the actual parameter value is x. Very often the most simple 
case of loss function is used, i.e., w(x, d) = 0, if the decision d is "appropriate" or 
"the best" which respect to x, and w(x, d) = 1 otherwise. Also in our case, when 
X = D = {t, f} we shall often use this type of loss function, setting w(t, t) = w(f, f) = 
= 0, w(t,f) = w(f,t) = l. 

A solution to a statistical decision problem can be formalized in the form of the 
so called decision function, it is a measurable mapping ascribing to each observation 
from Ya decision from D. Of course, not every decision function is of the same quality 
with respect to the statistical decision problem in question. We prefer such decision 
functions which minimize the loss in a sense, i.e. which minimize either the expected 
loss or the maximal loss. 

A formal definition sounds: 

Definition 4.4. Consider the statistical decision problem A from Definition 4.3. 
Decision function 8 is a measurable mapping from <Y <3t> into <D, 3>}. The value: 

r(x, 8) = (w(x, 8(y)) d\ 

is called the risk connected with A and 8 under the condition that the value of para
meter is x. Set 

rB(A, 8) = fr(x, 8) d^ = |Tw(x, 8(y)) dvx d^i , 

rM(A,8) = sup {r(x, 8) :xeX}, 

then rB(A, 5) is called the Bayes risk and rM(A, 8) the minimax risk connected with 
the problem A and decision function 8. A decision function 80 is called a Bayes 
solution (a minimax solution, resp.) to the statistical decision problem A, if 
rB(A, 80) ^ rB(A, 8) (rM(A, 80) gl rM(A, 8), resp., for all decision functions 8. 

In case of the zero-one loss function the Bayes risk reduces to the probability of 
error weighted with respect to the apriori distribution and the minimax risk reduces 
to the maximum of probabilities of error of both types. For the sake of simplicity 
we do not take into consideration the randomized decision functions, when to each 
observation from Ya probability measure on the space <D, £>} is ascribed; the actual 
decision is then obtained by a random experiment organized with respect to the 
ascribed probability on (D, &}. 
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5. STATISTICAL DEDUCIBILITY TESTING 
IN RANDOM EXTENSIONS 

The first idea coming into mind if one is to propose a statistical test of deducibility 
is to connect somehow the decision about the tested formula with the result of an 
appropriate random experiment. Let us start this chapter by an extremely primitive 
example which, nevertheless, shows some problems of automated deducibility testing 
from quite another and strange point of view. 

Consider the random sample consisting in the tossing of a regular coin together 
with the following very simple decision rule: if "head" occurs, the tested formula 
is proclaimed to be a theorem, if "tail" occurs, it is proclaimed to be a non-theorem. 
Such a decision rule is very trivial, of course, and in no case we pledge for replacing 
theorem proving by coin tossing, however, it offers at least one great advantage if 
compared with deterministic deducibility testing procedures. Namely, every formula 
is given a positive probability (which equals to 0-5) to be decided correctly. No algo
rithmic decision procedure possesses this property supposing the theory in question 
is undecidable. For, in such a case, there exists always a nonempty (and, as a matter 
of fact, infinite) set of formulas for which the decision will not be the right one, hence, 
these formulas are always decided wrongly not having been given any change to be 
decided, at least sometimes, correctly. 

However, there is a simple reason for which coin tossing cannot be seriously 
considered as a statistical deducibility testing procedure, namely, the decision about 
the tested formula is statistically independent from the actual state of world, i.e. 
from the fact whether the tested formula actually is or is not a theorem. Considering 
a probability space (Q, SP, P> and defining on it two random variables c (represent
ing the tossing of a regular coin with results H (head) and T(tail)) and x (representing 
the random sampling of the tested formula) the mentioned statistical independence 
can be formally described as follows: 

P({co :coeQ, c(co) = H}l{co :coeQ, x(co) e &}) = 

= P({co :coeQ, c(co) = T}j{co :coeQ, x(co) e S"}) = 

= P({co :coeQ, c(co) = H}j{co :coeQ, x(co) e £C - ST}) = 

= P({co :coeQ, c(co) = T}j{co : co e Q, x(co) e £ - ST}) = 1/2 , 
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where <if, JF> is the formalized theory in question. It is why the coin tossing pro
cedure cannot be considered to be "intelligent" or "sophisticated" enough and it 
seems quite natural to impose our requests for a statistical deducibility testing pro
cedure by the following two conditions: 

P({co :coeQ, x(co) is proclaimed to be a theorem}\{co : co e Q, x(co) e ST}) < 

< P({co :coeQ, x(co) is proclaimed to be a theorem} \{co : cos Q, x(co) e i f — F}) , 

P({co : coe Q, x(co) is proclaimed to be a non-theorem} : 

:{co:coeQ, x(co) e JSP - 3T}) > 

> P({co : coe Q, x(co)is proclaimed to be a non-theorem] j {co : co e Q, x(co) e &~}) . 

This means that the probability of decision about the tested formula is greater under 
the condition that this decision is right than under the condition that it is wrong. 

As far as the author knows, the first who submitted a non-trivial (in the sense 
just mentioned) statistical test of deducibility was A. Spacek in 1959, cf. [16] and [17]. 
Let us briefly describe and consider his basic model. 

We are not able to decide immediately whether a tested closed formula x e SC is 
a theorem or not, i.e. whether x e J o r x e i f - ST. Suppose, however, that there 

exists a sequence <[AU A2, . . .> of subsets of £C such that f) <4< = ST. If we were 
i = i 

able to decide for each i = 1, 2, . . . whether x e At or not, we should also decide 
the original problem. Of course, this way is not effective (with the exception of the 

no 

trivial case when ST = f) Ai for an appropriate n0). If x e i f - 3T, we can find, 
i = l 

eventually, an index n0 such that x e i f - A„0 and we can proclaim x to be a non-
theorem without any danger of error, however, such an n0 is, in general, not effectively 
computable or at least majorizable a priori. If x e ST, then x e Ax for all i = 1,2, . . . , 

but no matter how large n is, the fact that x e f i ^ i does not logically imply that 
00 f = l 

Happy enough, in the last case the situation is not so hopeless from the statistical 

point of view. We feel that the fact that xef] A{ supports somehow our belief that 
i = l 

x e f and this conviction is the greater, the greater n is. So we can propose such 
a testing procedure: "Sample at random n elements Atl, Ah, ..., Ain of the sequence 

{^i}i=i- If x e D Atj, proclaim x to be a theorem, in the other case proclaim x to be 

a non-theorem". 

This is the Spacek's basic idea and, as for as we have seen till now, this idea can be 
expressed in a purely set-theoretic sense not using any notions or assertions of mathe-
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matical logic. To apply this idea to our theory <.S?, .T> we have to find an appro
priate sequence {Af}fml of sets. 

Definition 5.1. A formalized theory <.2", .T'> is called an extension of a formalized 
theory <J5?, .T>, if .S? = JS?' and .T' => .T. The extension is called proper, if 3" * 9~. 

An extension of the theory <.S?, JT> can be obtained by joining one or more new 
formulas to the set of axioms as new axions. If the joined axioms are derivable from 
the former ones, the obtained extension is not proper, as the set of all theorems 
has not been changed. If at least one among the new axioms is not derivable from 
the former ones, the obtained extension is proper. 

Trivially, 

ST = f]{.r ' : <•£?, .T'> is an extension of <-§?, 3")}. 

Moreover, Spacek proved: 

Theorem. 5.1. The relation 

•T = n{-T' : <.S?, ST'y is a proper extension of <.S?, 3"y} 

holds iff the conjunction of all axioms of the theory <.S?, .T> is not an atom of the 
Boolean algebra (so called Lindenbaum-Tarski algebra) over <.S?, .T>. 

Proof. Cf. [16], p. 611, more arguments can be found in [2.6] or [15]. 
Now, let us suppose to have at our disposal a random mechanism enabling to 

sample at random proper, but consistent extensions of the formalized theory in 
question. It is equivalent to a random generator of closed formulas from Jz?, which 
are neither theorems nor negations of theorems of <.S?, .T>. Having sampled an 
extension we investigate, whether the tested formula is a theorem of this extension 
or not. If not, we proclaim the tested formula to be a non-theorem (of the original 
theory <.S?, .T>), this decision is always right with no possibility of error. If it is 
a theorem of the extension in question, we sample another extension and repeat 
our investigation. Spacek supposes the proper extension to be decidable. i.e. this step 
of his procedure to be always realizable. Finally, having sampled an a priori given 
number of proper consistent extensions and having found that the tested formula 
is valid in all of them we proclaim this formula to be a theorem of the theory <.S?, .T>. 

The main properties of this testing procedure can be expressed as follows. 

Theorem 5.2. Let <Jz?, .T> be a consistent formalized theory, let <fl, £f, P> be 
a probability space, let x, au a2, ... be random variables defined on <£2, £f, P>, 
taking their values in the set J§?0 of all closed formulas, for aua2, . . . mutually 
independent and equally distributed, and such, that for all closed non-theorems x 
which are not negations of theorems: 

(5.1) P({co :coeQ, a^co) = x}) > 0 . 
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Denote, for each set A of formulas, by Cn(A) the set of all logical consequences 
of formulas from A, then 

JV 

(1) P({co :coeQ, x(co) e f\ Cn(Sr u {a ,(co)})} j{co :coeQ, x(co) e <£ - &}) -* 0 . 
i = 1 

if JV -* oo. 

(Verbally: any non-theorem will be, eventually, with probability 1 proclaimed 
to be a non-theorem supposing the number of random extensions increases.) 

N 

(2) P({co :coeQ, x(co) e ST}\{m :coeQ, x(co) e f) Cn(ST u {a,(a>)})}) - 1 , 
i = i 

if At -> oo. 

(Verbally: the probability of error connected with proclaiming a formula to be 
a theorem on the ground of its validity in all the first N random extensions 
tends to zero with N increasing.) 

(3) P({co :coeQ, x(co)e <£ - ST}\{co :coeQ, x(co)eSe - f) Cn(sr u {a,(w)})})= 1 

i = 1 

for all TV = 1,2, . . . 

(Verbally: if the tested formula is proclaimed to be a non-theorem, then with 
probability one it actually is a non-theorem.) 

Proof. Let x be a non-theorem, then there exists at least one extension of the type 
described above such that x is not provable in it. Let 3P x a <g denote the nonempty 
set of all formulas, which are neither theorems nor negations of theorems and which 
posses the property that x e i f - Cn(ST u {>>}) for each y e !F x. Sampling a formula 
from &x by an a, implies the refutation of x, i.e. proclaiming x to be a non-theorem. 
Hence, according to the supposed statistical independence of the corresponding 
random variables, 

N 

P({co :coeQ, x e f) Cn(3T u {a((a))})}) ^ 

£ P({co :coeQ, a{co) e <£ - &x, i = 1, 2, . . . , TV}) = 
N 

= 1 7 ( 1 — P({ta : to e Q. a,(cy) e .<F x})) -> 0 for TV -> oo. 

P({co :coeQ, at(co) e 3^x}) = ^ P ( ( w : « » e Q> « i H = >'}) > ° . 
ye&x 

according to (5.1) and the fact that 3*x is nonempty. This reasoning immediately 
implies (l) and (2) of Theorem 5.2, assertion (3) is obvious. Q.E.D. 
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The original Spacek's proof is more complicated than our and it is based on the 
so called Neymann-Pearson theorem, well-known to everybody familiar with the 
foundations of statistical hypothesis testing theory. Besides the presented results 
concerning the limit values of probabilities of errors Neymann-Pearson theorem 
proves also the suggested test to be the optimal (from the point of view of minimiza
tion of probabilities of error) among all other tests (decision functions) based on 
the results of deducibility testing of the tested formula in a finite number of random 
extensions. However, this fact can be seen almost obviously, as proclaiming the 
tested formula to be a theorem also in case it is not valid in some random extension 
clearly makes the probability of error greater. The only alternative decision rule 
which can eventually compete that explained above is the trivial rule proclaiming 
any formula to be a non-theorem without a further testing. If the probability of 
sampling a theorem to be tested is small enough and if the number N of investigated 
random extensions is fixed, the trivial test may appear to have a smaller probability 
of error than that based on those random extensions. On the other hand, if the a priori 
probability of sampling a theorem is positive (and it is the real situation, as in the 
opposite case no deducibility testing procedure is needed), then we can always choose 
the parameter N large enough for the original test in random extensions to be the 
best one from the point of view of minimization of probabilities of error. 

Spacek's basic idea of deducibility testing in random extensions has proved (as the 
following parts of this work show) to be very fruithful, however, his original formula
tion, as explained above, suffers from a certain inconsistency of assumptions. First, 
the problem of realization of a random extension generator with the requested pro
perties arises. We have already said that such a generator is equivalent to a random 
generator of formulas which are neither theorems nor negations of theorems. But, such 
a set of formulas, is, in general, neither recursive nor recursively enumerable — and 
only such types of sets can serve as sets of possible outcomes of an effective sampling 
procedure. Hence, every random extension generator coping with Spacek's demands 
must contain a subalgorithm deciding for any sampled formula, whether it is a the
orem or the negation of a theorem and, in case of the positive answer, preventing 
these formulas from entering the output. But this subalgorithm would solve the deci
dability problem for the theory in question, and such an algorithm is supposed 
not to exist or at least not to be available - it is just why we try to propose a statisti
cal deducibility testing procedure for this theory. Hence, a contradiction occurs. 

Another problem is hidden in Spacek's assumption that each extension of the 
given type is decidable. Either the formalized theory <if, $") is complete in the sense 
that joining any non-theorem to the set of axioms makes the theory inconsistent, 
i.e. for each x e JSf — 3T, Cn(3~ u {*}) = Z£'. However, in this case no extension 
exists which would satisfy Spacek's conditions, hence, his testing procedure cannot, 
be realized. Or, there is such a formula x that neither x e f nor ~]x 6 $~, hence, 
both the extensions 2T u {x} as well as 2T u {~lx} satisfy Spacek's conditions and 
they are, in such a case, decidable. However, having an algorithm deciding the set 
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Cn(3~ u {x}) and another algorithm deciding the set Cn(9~ u {~lx}) we would be 
able to propose an algorithm deciding the set 27~ itself, hence, again a contradiction 
arises. 

In what follows, we propose another formulation of a statistical deducibility testing 
procedure based on weakened assumptions. Namely, the random generator will be 
supposed simply to offer extensions of the considered theory (not excluding those 
which are not proper or those which are inconsistent) and each formula will be 
supposed only with a positive probability to be decidable in the at random sampled 
extension. Our further explanation will be based mainly on [11], where also other 
details and proofs can be found. 

Let <.&?, !7"y be a consistent formalized theory, i.e. W 4= £g. Suppose to have at 
our disposal an effective and deterministic theorem-prover T e.g. an appropriate 
resolution-based theorem-proving computer program with some space and time 
limitations. Formally, Tis a mapping defined on i f and taking its values in the three-
element set {1, x0, 0}; T(x) = 1 is interpreted, for x e if, as „x is proclaimed to be 
a theorem", or briefly, "x e ST", T(x) = 0 is interpreted as "x e i f - S~" and T(x) = 
= x0 as "we cannot decide about x". Very often this last decision is joined with "x e 
e <£ — ST" so that Tmaps S£ into {0, l} , but in this case we must keep in mind the 
different qualitative character of the two remaining decisions. The mapping T is 
supposed to be recursive in order to assure the effectiveness of the corresponding 
testing procedure. This means that Tenables to deduce certain theorems, let us denote 
their set by 2T0, hence, ^"0 = {x : x e if, T(x) = 1}, giving the negative and, clearly, 
for x e 3" — 3~0 the wrong, answer for other formulas. In other words, if Tproclaims 
a formula to be a theorem we can be sure about it, but not every theorem can be 
discovered using the theorem-prover T. 

Starting from these assumptions we meet immediately the problem which causes 
most of the difficulties during a mathematical formalization and investigation of sta
tistical deducibility testing procedures. There are, as we have seen, at least two 
structures by which the set of well-formed formulas is equipped, namely the pro
babilistic (statistical) and the meta-theoretic (logical) ones, and they are hardly 
compatible with each other. To be more concrete, probabilistic structures are those 
generated by random variables, a, xu x2, . . . which sample the tested formula and 
the auxiliary axioms, logical structures are those generated by the deducibility rules, 
axioms or by the theorem-prover T. So, for an a, 0 < a. < 1, the set 

(5.2) {y : y e <e, P({co :coeQ, a^co) = y}) = a} 

of formulas is a subset of JF, which can be easily defined in this "probabilistic" 
way, i.e. using the terms of probability space, probability measure and random 
variables, but it would be hardly possible to describe it in "logical" way, e.g., to find 
a small and recursive set of axioms such that (5.2) would be just the set of all logical 
consequences of those axioms. On the other hand, the sets ST, ST"0 of theorems can 
be easily defined in terms of mathematical logic or T but the probabilities P({co : co e 
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eQ, a^cojef}), P({co:coeQ, a^co) e ST0}), P({co : coe Q, a^co)-+x(co)e ST0}), 
etc., are very difficult and often practically impossible to compute. It is why we 
often have to be satisfied only with some rather rough lower or upper bounds for 
these values. 

A model of statistical deducibility testing based on Spacek's ideas but not suffer
ing from the disadvantages of Spacek's original formulation was suggested and stu
died in [8] and [9]. The explanations in [6] are given in more abstract algebraic 
terms and they do not limit themselves only to the problem of logical deducibility, 
in [9] the formulations are more specific. Technical difficulties connected with the 
incompatibility of the two structures mentioned above force to introduce too extent 
and complicate formal apparatus,-so we do not consider this model for the most 
appropriate one to be introduced here. As we promised, we shall explain here the 
model from [11] which we believe to be more open for an intuitive imagination 
and to be more close to the general model of parametric statistical hypothesis 
testing as known by statisticians. 

Let x, ax, a2, . . . be the same random variables as in Theorem 5.2 with the only 
exception that (5.1) is now supposed to be valid for all closed formulas xeSC. 
Consider the following conditional probabilities. 

(5.3) Pl = P({co :coeQ, T(at(co) -+ x(co)) = 1}/{CO : co e Q, x(co) e ST}) , 

(5.4) p2 = P({co :coeQ, T^^co) -> x(co)) = l}\{co :coeQ, x(co) e & - ST}), 

and suppose that p1 > p2. Hence, p1 is the probability that Ax u {at(co)} \~ x(co) 
can be proved by T under the condition that x(co) is a theorem, p2 is the conditional 
probability of the same random event under the condition that x(co) is not a theorem. 
However, the occurrences of the random event just described can be observed using 
the theorem-prover T so we have transformed the deducibility problem (whether 
x(co) e ST or not) into a classical parametric test of a simple hypothesis (probability 
of a certain random event is Pl) again a simple alternative (that this probability 
equals to p2, say p2 < Pl). It is a well-known fact that this testing problem can be 
decided, within an a priori given probability of error, on the base of a sufficiently 
large number of statistically independent repeated observations of the random event 
in question. 

As far as the assumption Pl > Pl is concerned, the following theorem can serve 
as its justification. 

» 
Theorem. 5.3. Let the notations and conditions of Theorem 5.2 hold with the 

exception that (5.1) is supposed to be valid for all x e JS?0. Let T be a theorem-prover 
such that, for all x, y e ££0, T(y) = 1 ot T(lx) = 1 imply T(x -»•}>) = 1. Let Pl, Pl 

be the conditional probabilities defined by (5.3), (5.4). Let 

P = P({co :coeQ, T(x(co)) = \}\{co:coeQ, x(co) e ST}), 
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p' - P({co :coeQ, T^a^co)) = 1} | {co : co e Q, a^(co)<a <£ - ST}), 

Pa(T) = P({co :coeQ, a^co) e ST}). 

Then 

(5.5) ( l - p , ( ^ ) ( l - p ' ) 

l-(l-ptt(3T))p-

implies Pl > Pl. 

Proof. Let x(co) e 2T, then a sufficient (but not necessary) condition for T(a^(co) -* 
-> x(coj) = 1 is that either T(x(co)) = 1, or T(x(co)) = 0 and, at the same time, 
at(co) e S£ - 2T, T(~\av(cof) = 1. These two random events are disjoint, first of them 
occurs with probability P, the other with probability (l — p) (l — Pa(^~)) • P' because 
of the supposed statistical independence of corresponding random variables. Hence, 

(5.6) Pi = P({co :coeQ, T(ax(co) -> x(co)) = \}\{co : co e Q, x(co) e 9~}) = 

= p + (l ~p)(l - pa(9~))p'. 

Let x(co) 6 i f - 9~, then a necessary (but not sufficient) condition for T(aY(co) -> 
-* x(co)) — 1 is that al(co)e ^ — ZT, and this random event occurs with probability 
1 - Pa(&~)- Hence, p2 = 1 - pX^~), and for P satisfying the inequality (5.5) the 
relation Pl > Pl holds. Q.E.D. 

Expressed more intuitively, Theorem 5.3 claims that if the theorem-prover T is 
"clever" of "able" enough, i.e. if the ratio P of theorems which it is able to prove is 
"high enough", then the assumption Pl > p2 is valid. The intuitive idea that stays 
behind all the procedure of statistical deducibility testing using the random extensions, 
i.e., the idea that there is a greater probability that the auxiliary axioms help us to 
prove a theorem than to "prove" a non-theorem, is in this way, by Theorem 5.3, 
quantitatively expressed and, under some conditions, also justified. In fact, the 
difference between Pl and Pl is greater than that computed in the proof of Theorem 
5.3, as there are always some theorems which can help us to prove a theorem not 
provable by T. On the other hand, not every non-theorem possesses the property 
that enables to "prove" some other non-theorem. A more strong, but simpler suffi
cient condition for the inequality Pl > Pl to hold is that p > 1 — Pa(9~), as can be 
easily derived from (5.6). 

Supposing, for a while, that we know the values Pl, Pl, and that Pl > Pl, let us 
introduce some most elementary decision functions for testing the problem whether 
the probability of T(at(co) -» x(co)) — 1 is pt or Pl, i.e. whether x(co) is a theorem 
or not. 

Theorem 5.4. Let the notations and conditions of Theorem 5.3 hold, let pt > P2, 
let JV = 1 be an integer, let t, f be two abstract symbols, let D = D(N, x, {a.}f=i) be 
a random variable, defined on the probability space <[Q, y, P>, taking its values 
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in {t, f} and such that 

D(JV,x,{a;}f=1,a>) = t , 
if 

(5.7) | - . - ( I T(a{co) -> x(co)))N~-| < \p2 - ( I T(at(co) - x(co)))N^\, 
i = i i = i 

D(N, x, {a,}f=i, w) = f otherwise. Then 

(5.8) P({co : D(N, x, {a ;}f=i, co) = f}/{© i toe f i , a(w) e ?T}) g 

^(N^-Pal2)-1. 
(5.9) . P({w:D(N,x,{a^N

=i,co) = t}\{co:coeQ,a((o)e<e - 3T}) = 

s(N\Pl-P2\r
i. 

Remark. In spite of its rather complicated formalized form the intuitive idea behind 
this assertion is rather simple. We sample at random formulas a^co), a2(co), ..., aN(co) 
and test, for each i = N, whether T(a,(co) -+ x(co)) = 1 or 0. Moreover, we compute 
the relative frequency of the cases when this value equals to 1, i.e., when a^co) -> x(co) 
is provable by T If this relative frequency is not closer to p2 than to pit then we 
accept the hypothesis p . , i.e., we proclaim x(co) to be a theorem (using the decision 
function D we write this decision formally as D(N, x, {a,}f=1, co) = t). In other case 
we accept the alternative p2 and proclaim x(co) to be a non-theorem (formally, 
D(N, x, {a,-}f=1, co) = f). There are two possibilities of error, their probabilities are 
estimated by (5.8) and (5.9). 

P roo f of T h e o r e m 5.4. Let x(co) e ST, in this case T(a,(.) -+ x(.)) is a random 
variable with the expected value pt and with dispersion not exceeding 1/4. For 
different i, j , these random variables are mutually independent and equally distributed, 
hence, the well-known Tchebyshev inequality gives 

(5.10) P({co :cosQ, \N~\Y, T«<°) - *(«>))) - J»i|>«}) £ (We2)'1 . 

In case D(N, x, {ai}N
=1, co) = f necessarily the value N J( £ T(a,(ca) -> x(co))) must 

> = i 

differ from pt by more than $\pt - p2\; replacing in (5A0) £ by this value we obtain 
(5.8). (5.9) can be proved in a similar way. Q.E.D. 

The decision function D defined above can be easily rewritten in such a way that 
JV 

D(N,x,{at}
N

=l,co) = t iff ^ r(a;(ffl) - x(a>)) S M with M = N being easily 
> = i 

computable from (5.7). We shall not perform the computation for this case, but 
for a more general, one, when the both probabilities of error are not taken as compar
able. This situation is common in general statistical hypothesis testing theory and it 
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is solved as follows. The "more dangerous" probability of error is strictly requested 
to be kept below an a priori given treshold value, say a > 0, and the second proba
bility of error is minimized under this condition. In our case, according to the view
point accepted in other works dealing with statistical deducibility testing, we consider 
the error consisting in proclaiming a non-theorem to be a theorem for the more 
dangerous (because this event may cause the set of formulas proclaimed to be theo
rems to become inconsistent and so, in a sense, useless for a further use, see the next 
chapter for more details and references). Hence, having got N, our aim is to find 
an appropriate M ^ W a s the following theorem precises. 

Theorem 5.5. Let the notations and conditions of Theorem 5.4 hold with the ex
ception that the random variable D is defined as follows. For a given M, M <, N, 

N 

D(M, N, x, {a£}?_«, co) = t, if £ T(a,(co) - x(co)) £ M, D(M, N, x, {at}?=1, co) = f 
;=i 

otherwise. Let a > 0, let ux be the a-quantile of the normal distribution N(0, 1), let 

Mt - [N . (Wl_a VfjV-1 p2(l - p2)) + p2] + 1 . 
Then 

(5.11) P({co :coeQ, D(MU N, x, {at}
N

=1, co) = t}j{co : x(co) e <£ - ST}) ^ a , 

(5.12) P({co :coeQ, D(MU N, x, {a^=1, co) = f}/{co : x(co) e &}) = 
N 

= min {P({co :coeQ, D(M, N, x, {a,-}f=., co) = f}/{cu : co e Q, x(co) e ST})} . 
M = M, 

Remark. Remember that the notion of a-quantile for N(0, 1) is defined in the follow
ing way: let X be a random variable defined on the probability space <[Q, y, P}, 
taking its values in the Borel line <E, 38} and obeying the normal N(0, 1) distribution, 
i.e., such that for each real y e E, 

4>(y) = P({co :coeQ, X(co) < y}) = | exp (- - \ df . 

Then wa is uniquely defined by the equality 

P({co :coeQ, X(co) ^ „ J ) = a . 

P roo f of T h e o r e m 5.5. Consider the classical statistical hypothesis testing 
problem with hypothesis p = px against the alternative p = p2 < px. We want to 
choose M <; N such that the probability of at least M events of the type T(flj(co) -* 
~» x(co)) = l,i <; N were majorized by a supposing that p = p2. Moreover, we look 
for the minimal M possessing this property in order to minimize the other pro
bability of error. Hence, we look for the minimal M such that 

(5.13) |Hp2(l-p2r^l-a. 

45 



Denote p = p(N, co) = JV_1 _] T(aJ(co) -> x(co)). The well-known Central Limit 
i = i 

Theorem of probability theory then sounds that p has, approximately, the normal 
N(fj., a2) distribution with n = p2, a2 = iV_1p2(l — p2) (under the condition that 
P — P2% i.e., the distribution function of p is of the form 

x - p2 

(N^p^l - p2)\ 

where <P is the distribution function of the normal distribution N(0,1) defined above. 
Now, (5.13) can be transformed into the form 

( " / " ) - - » - \ ± l - a , 

^ - i - „ 

vV(N-V2(i - p2)\ 
hence 

(MJN) - p2 

V(N"1p2(l - p2)) 

and an easy calculation gives the value M. as stated above. (5.H) and (5.12) follow 
immediately from the way in which Mt has been chosen. The values of a-quantiles 
of the normal distribution N(0, 1) are tabeled and can be found in statistical tabels 
(e.g., [5]). Q.E.D. 

The problem can be solved also in a non-asymptotic way using the notion of ins 
complete ^-function. 

The methods explained above have one common feature, namely, their length 
is fixed, i.e., the number N of random samples which are to be made before a decision 
is taken is given a priori. As an alternative to these procedures, the general hypotheses 
testing theory offers the so called sequential tests. In this case the number of random 
samples necessary to take a decision is a random variable and only its expected 
value, moments or other statistical characteristics can be computed or estimated. 
Let us limit ourselves by describing a simple variant of the sequential test procedure 
for our case, when hypothesis is p = pt and alternative p = p2. This procedure is 
described in [1], the underlying theoretical results can be found in [4.4] or [4.5]. 

Let r > 0 be such a real number that we want the sum of both the probabilities 
of errors not to exceed r. Set 

k_ \og((l - p2)j(l - PX)) • 

log(Pi/p2) + l o g ( ( l - p 2 ) / ( l - J > i ) ) ' 

l o g ( ( l - r ) / r ) 

log (Pi/p2) +log ( ( 1 - ^ / ( 1 - P O ) ' 

For each m = 1, 2, . . . set 

Lt(m) = km + q , L2(m) = km — q . 

46 

4 = 



Now, sample at(co) and compute T(a,(a)) -> x(cy)). If 

L2(m) < | T(at(co) -> x(co)) < L i H , 

sample xm+1(co) and continue as above. If 

X T(a;(co) -> x(co)) < L2(m), 
i = i 

stop the sampling and take the decision that p = p2, i.e., proclaim x(co) to be a non-
theorem. If 

i T ( a ( ( c o ) - > x ( r o ) ) ^ L 1 ( m ) , 

stop the sampling and take p = pu i.e., proclaim x(a>) to be a theorem. Under 
some very general conditions a decision will be eventually taken with the probability 
one. 

In the considerations and constructions above we have proceeded as if the values 
p, p', pa(2T), resp. pu p2 of the corresponding probabilities were perfectly known. 
We have already mentioned before that this was not usually the case, however, we 
might again turn ourselves to mathematical statistics to offer us a partial (and rela
tive, as will be shown later) remedy. These probabilities can be statistically estimated 
on the ground of random samples, i.e., by an appropriate corresponding relative fre
quencies. We know very well that the only assertions which we are justified to claim 
on the base of a finite sample are of the form 

(5A4) P({co :coeQ, pa,n(3T, co) - <5 < pa(ST) < pat„(3T, co) + <5}) < 1 - e , 

taking pa(&~) as an example and denoting by pa>n(Sr, co) the relative frequency of 
theorems among n formulas sampled at random and independently by random 
variables au a2, ..., a„ (and similarly for p, p', pu p2). Positive reals <5 and e serve as 
parameters in (5.14) and can be diminished when n increases. In this way we can 
obtain (either by an immediate statistical estimation or by a computation starting 
from estimates of p, p', and pa(Sf) two values pn,i(co), p„a(co) such that, for i = 1, 2, 

(515) P({co :coeQ, p> e <pnJ(co) - <5, pnJ(co) + 5}}) < 1 - e 

Increasing appropriately the value of n we may choose <5 in such a way that pn<\(co) — 
— o > Pn^fo) + 6. Clearly, replacing in our hypothesis testing problem the hypo
thesis H: 

P ~ Pi by H' : p = pt = pnA(co) - 5 and the alternative A: 

P = Pz by A' : p = p2 = p„a(co) + 5 , we have made A' and H' 
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"more close" to each other than A and H had been. I.e., it will be more difficult to 
distinguish between them. In other words, taking the number of random samples 
made by random variables x,'s large enough to assure the distinguishing between A' 
and H' within a priori majorized probabilities of error we can rely (with probability 
at least 1 — e) that this test distinguishes also between H and A with the same or 
smaller probabilities of errors. Considering the probabilities of errors with respect 
to the original testing problem (x(co) e ST or x(co) e i f - 5~?) we must enlarge the 
probabilities of errors connected with H' and A' by the probability with which (5.15) 
does not hold for at least one i ^ 2. However, this probability is a continuous 
function of s and can be diminished when e decreases, i.e., when n increases. Hence, 
improving the used statistical estimates, we may replace the original statistical 
hypothesis testing problem by a similar one with probabilistic parameters replaced 
by values obtained by statistical estimations or computed from extimates. A more 
detailed description can be found in [11]. 

As we have already mentioned, the solution consisting in replacing the probability 
values by corresponding relative frequencies is only a relative outcome. Consider 
again, as an example, the value pa(ST). In order to obtain the relative frequency 
PaA^*03) w e m u s t t a k e a n "-tuple aua2, ...,a„ of mutually independent and 
equally distributed random variables, then realize the random sample giving a se
quence ax(co), a2(co), ..., a„(co) of formulas from S£ and then, finally, decide, for each 
i g n, whether at(co) e ST or not and compute the relative frequency pat„(&~, co) 
of the positive answers. Hence, the original decision problem arises again! 

It is why our estimate pat„(Sr, co) as well as other estimates mentioned above can 
be and must be called relative. Or, after all, we need some other theorem-prover T', 
better than Tin the sense that, for all xeST, T(x) = 1 implies T'(x) = 1 and that there 
is at least one y e ST such that T(y) = 0 and T'(y) = 1 (of course, T'(x) = T(x) = 0 
for all x 6 J§? - 2T). So, computing pai„(£T, co), we set in fact, 

(5A6) pa,n(3T, co) - i £ T(a{a>)). 
n i = i 

It is necessary to estimate the values pJyS7'), p, p', resp. pu p2, only once for 
a formalized theory the formulas of which are to be statistically tested, not particularly 
for each tested formula. Moreover, this estimation need not be performed in a real 
time, i.e. simultaneously with a real physical process, as the statistical deducibility 
testing is expected to do (e.g., if used as a part of robot plan formation procedure, 
cf. Chapter 4 and Chapter 8). Hence, we may assume that the theorem-prover V 
used in the process of an a priori calibration of T is of a better quality than T. E. g. 
if T' and T are both resolution-based theorem-provers, then T' executes a greater 
number of possibly more complex or difficult resolutions or substitutions than T. 
In this case the estimates of probability values obtained in the same way as in (5.16) 
can be used in the process of statistical deducibility testing and this test brings a posi
tive information concerning the original decision problem whether x(co) e !T or not. 
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We do not intend to go into more details as far as this and similar statistical 
deducibility testing procedures are concerned and we refer the reader to the following 
chapters of this work and to references. Nevertheless, still one problem rests, which 
is worth mentioning, namely, how to realize the random sampling of well-formed 
formulas of a formalized theory. We have used the phrase "sample at random a for
mula a^co) or x(a>)" without any further explanation how to do it an in the same 
way Spacek proceeds in his papers. The demand of computer implementability 
of statistical deducibility testing procedures necessitates, however, to propose an 
effective random generator of well-formed formulas. This can be done in several 
ways, let us suggest one which is rather simple and, as practical experiments have 
proved, very quick (see [7] for more details). 

First of all, we shall profit of the well-known fact of mathematical logic according 
to which functors and quantifiers used in a formalized theory can be reduced to, e.g., 
implication, negation and general quantifier, the others being definable by them. 
For example, if A, B e Sf, then 

A A B = (df)(lA)-*B, 

A A B = (df) 1((~\A) v (IB)), 

(3x)A = ( d f ) n ( V x ) ( - l A ) . 

Moreover, introducing a new propositional constant F (falsehood), i.e., an identically 
false formula, we may eliminate also negation, setting 

H A = ( d f ) A - F. 

Now, having at our disposal just one functor (-*) and just one quantifier (V) we may 
omit special symbols for them writing simply [A ] [£] for A -> B and [x[A]] for 
(Vx) A. Let us denote by Sf* the formalized language resulting from Sf by this mo
dification and reduction. We may limit ourselves to the construction of a random 
generator which samples formulas from Sf*, as their reformulation in if is a matter 
of quick and easily programmable routine. 

Let all elementary symbols of Sf*, i.e., [ , ] , F and individual indeterminates, as 
well as elementary formulas of Sf * (which are the same as in Sf) be numbered (enu
merated). Different objects are supposed to have different numbers ascribed, on the 
other hand, the possibility that to an object more than one index is ascribed is not 
excluded, in fact, this possibility can be operatively used in order to control the 
statistical parameters of the resulting random generator. 

Let G be a random number generator such that G produces positive integers and 
only those corresponding to elementary symbols or formulas of Sf* in the sense 
of the assumed enumeration. This can be easily achieved by a simple modulation. 
In this way any finite sequence produced by G can be understood as a sequence 
of elementary objects of Sf*, hence, G can be converted into a random generator 
of formulas from Sf*, if enriched by a procedure transforming each sequence of 
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elementary objects (i.e., symbols or elementary formulas) of JS?* into a well-formed 
formula of JS?*. Such a procedure can run as follows. 

Let <xu <x2, . . . , a„ be the sequence of random numbers sampled by G and under
stood as a sequence of elementary objects of JS?*. 

(I) If there is at least one occurence of F or of an elementary formula, go to (II), 
othervise replace ax by an elementary formula, say, by this one with the smallest 
index. 

Remark. This step may be omitted, but in this case the possibility of sampling the 
empty formula is not excluded. Under some circumstances this possibility may be 
desirable, as it enables to sample formulas without any a priori restriction of their 
lengths (c.f. [4.2] for details). 

(II) Put all occurences of elementary formulas and Finto brackets, i.e., if <Xj,j ^ n, 

is an elementary formula or F, replace ocj by [a/]. 

(III) Put the left bracket before all occurences of an indeterminate, i.e., if <Xj is an 
indeterminate, replace <x} by [a,-. 

(IV) Take an auxiliary variable S, put S = 0. Pass through the sequence obtained 
from <xu <x2, • • -, a„ by (i) —(III), from the left to the right and replace S by S + 1, 
when an occurence of [is met, replace S by S — 1, when an occurence o f ] is met. 
If S = — 1, inscribe [ at the very beginning of the sequence, put S = 0 and go on. 
If the final value of S is positive, put S occurences of ] at the very end of the sequence. 

(V) Pass again through the vector obtained by (IV) from the left to the right. 
Meeting with the left bracket, start with the procedure described in (IV). The right 
bracket by which, for the first time, S = 0, corresponds to the initial left bracket 
and these two brackets form a pair. If there is a pair of brackets not containing any 
occurence of elementary formulas of F, all the symbols between these brackets in
cluding the brackets themselves are erased. 

(VI) Any occurence of an indeterminate preceded by the left bracket and not 
occuring in the scope of the general quantifier formed by these two symbols is erased. 

(VII) If a pair of brackets occurs inside another pair of brackets and if there is no 
symbol between the two left brackets and no symbol between the two right brackets, 
one pair of brackets is erased (to avoid superfluous double bracketing). 

This procedure is based on a reformulation of the notion of well-formed formula 
suggested in [3] and [14], a more detailed description of the procedure as well as 
proofs of the following assertions expressing the most important properties of the 
random generator resulting when G combined with (I)—(VII). 

Theorem 5.6. (a) For each finite sequence of random numbers sampled by G, 
the result of application of (I)—(VII) to this sequence is a well-formed formula of the 
language .£?*. (b) Let A be a formula of JS?* such that, for each elementary object 
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occuring in A at least one of the indices ascribed to this elementary object is sampled 
by G with positive probability. Then the corresponding random generator of formulas 
samples A with a positive probability. 

Because of the limited extent of this work and its surveyal character we do not 
describe here other variants of the basic model for statistical deducibility testing as 
explained above. Some experience-based modifications of these tests considering 
also a rather sophisticated way of their repetitive use are studied in the next chapter. 
In no way this is to mean that the idea of at random sampled auxiliary axioms 
proposed by Spacek is the only way how to introduce and use probability and 
statistics in the deducibility testing. After all, theorem-proving can be always under
stood as a searching procedure in a non-empty space, in general, an infinite one. 
In the case of a classical proof we are looking for appropriate premises which are 
derivable from the theorems already proved and which enable to derive the tested 
formula. In the case of resolution-based theorem-proving we are looking for an 
appropriate substitution enabling to match two clauses, and for an appropriate pair 
of clauses to be resolved with the aim to obtain, if possible and as soon as possible, 
the empty clause. When other forms of application of Herbrand theorem are con
sidered (we recall that this theorem lies in the grounds of the resolution-based as well 
as many other theorem-provers), the searching process consists in looking for a useful 
element (or a finite set of elements) of the Herbrand universum of terms. In all these 
cases each deterministic searching procedure can be proved to be very useful and 
economic in some cases, being at the same time very impractical and stupid in other 
cases, also easily demonstrable (cf. various refinements of resolution-based theorem-
proving as mentioned in Chapter 3 and studied in more details, e.g., in [1.1]). It is 
why nondeterministic and heuristic decision theories together with statistics may serve 
at least as one of several alternative tools how to describe and effectively handle this 
indeterminism (random sampling of premises in proofs, cf. [10], candidate clauses 
for resolution, elements of Herbrand universum, etc.). 

The notions and assertions used in this chapter and belonging to the domain 
of probability theory and mathematical statistics are of a very elementary level and 
can be found in each undergraduate textbook of these branches of mathematics. In 
the references below we introduce some more advanced textbooks on probability 
theory which cover not only this chapter but also all the probabilistic and statistical 
notions and assertions which will be used in the rest of this work. 
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6. THE ROLE OF EXPERIENCE IN STATISTICAL DEDUCIBILITY 
TESTING 

There is a common feature of all the deterministic as well as stochastic theorem-
proving or deducibility testing methods explained in this work or in references 
mentioned above. Namely, this feature consists in the fact that these procedures are 
proposed to test one particular formula. If this formula is tested and another one is 
to be investigated the mentioned procedures are not able to take a profit of the in
formation obtained during the testing of the first formula and from the result of 
this test. This information is neglected even in the case of a very simple logical 
dependence between the two successively tested formulas, so the later formula will 
be tested in the same way as the former one. However, in all actual applications of 
a theorem-proving or deducibility testing procedure we must suppose that a sequence 
of formulas will enter the input of the procedure to be tested, hence, a sophisticated 
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way how to use the already tested formula to help us when testing the subsequent 
ones may be of a great importance. 

This fact implies the necessity to change the criteria used in the procedures which 
are of stochastic character in order to classify the statistical qualities of these proce
dures. There were two principal criteria, namely, probabilities of errors: probability 
of proclaiming a formula to be a theorem under the condition that it is a non-theorem 
and the probability of proclaiming a formula to be a non-theorem under the condition 
that it is a theorem (the tested formula is supposed to be sampled at random and both 
the probabilities are supposed to be defined). Now, other criteria will be used: (1) the 
probability that an a priori given formula will be found among the formulas pro
claimed to be theorems under the conditions that this formula is a non-theorem and 
that just n formulas were tested, (2) the probability that an a priori given formula 
will be found among the formulas proclaimed to be non-theorems under the condi
tions that this formula is a theorem and that just n formulas were tested, (3) expected 
values and limit values of the probabilities mentioned in (l) and (2). In this chapter 
a method will be proposed how to take into consideration at least the most simple 
connections and logical dependences among the tested formulas. 

Consider a formalized theory <J5?, J r>, say, a first-order one. When describing 
a statistical deducibility testing procedure we tacitly assumed that the formula, sub
mitted to this procedure, had been submited, before, to a deterministic theorem-
proving or deducibility testing procedure, but without any success, in other words 
deducibility testing of each formula consists of two stages — the deterministic and 
the stochastic ones. We may use symbols + 2 and —2 in order to denote the positive 
(negative, resp.) deterministic decision about the theoremhood of the tested formula, 
in the same way we may use symbols + 1 and —1 in order to denote the positive 
(negative, resp.) statistical decision about the tested formula. Formally, we suppose 
to have at our disposition random variables T(N0, p, •) defined, for each N0 — 
= 1, 2, ... and each p e S£, on a probability space (Q, Sf', P>, taking their values in 
the set { — 2, —1, 1, 2} of integers and satisfying the following properties: 

(1) For each N0 > 1 and each p e <£, if T(N0, p, co) = 2, then p e ST (i.e., p is 
a theorem). 

(2) For each N0 ^ 1 and each p e <£, if T(N0,p,co) = - 2 , then p e S£ - 9~ 
(i.e. p is a non-theorem). 

(3) For each e > 0 there exists an N0(e) such that for each N > N0(e) and each 
non-theorem p 
P({co :coeQ, T(N, p, co) = 1}) < a. 

(4) For each N0 S; 1 and each non-theorem p 
P({co :coeQ, T(N0, p, co) = 2}) = 0. 

(5) For each JV0 _ 1 and each theorem p 
P({co :coeQ, T(N0, p, co) = - 2 } ) = 0. 
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(6) If for some N0 g> 1 and for some coe Q, T(N0, p, co) = 2 (or T(N0, p, co) = - 2 , 
resp.), then for all N0 _• 1 and a// co e .Q, T(JV0, p, co) = 2 (or T(N0, p, co) = 
= — 2, resp.). 

(7) Let p be such a formula that there is no occurence of the existential quantifier 
followed by an occurence of the universal quantifier in the prenex normal form 
of p. If p € & - &*, then T(N0, p, co) = - 2 for all iV0 k 1 and all o> e Q, if 
p e : J , then T(N0, p, co) = 2 for all N0 ^ 1 and all coeQ. 

The tested formula p is proclaimed to be a theorem, if T(N0, p, co) > 0, and it is 
proclaimed to be a non-theorem, if T(N0, p, co) < 0. (6) states that all formulas 
from S£, which are of the so called A —E form (i.e., in the prenex normal form of 
which universal quantifiers, if any, preceed to existential ones, if any) are algo-
rithmically decidable. This assumption agrees with the fact that this class of formulas 
actually is decidable, c.f., e.g., [2.12] for more details. 

Lemma 6.1. Let <JS?, &") be a first-order predicate theory, let T be the random 
variable defined above, let p be the result of a substitution into a propositional 
tautology. 

Denote 

Rt = {p : p e Se, T(N0, p, co) = 2} , R2 = {p : p e <£, T(N0, p, co) = - 2 } , 

R = Rj u i?2 . 
Then peRt = Rn F. 

Proof. Cf. Lemma 1, in [ l ] , and its proof. 

Lemma 6.2. Let <JSf, ST) and T be the same as above, let x, y, z be formulas 
without free indeterminates, not belonging to Rt u R2. If x ~> y as well as y -> z 
belong to Rx, then also x -* z belongs to JRX. 

Proof. Cf. Lemma 2, in [1], and its proof. 
Let us consider a probability space <£>, Sf, P> with a sequence at, a2,... of random 

variables taking their values in the set of all well-formed formulas of the investigated 
theory, mutually independent and equally distributed, with the property 

(6.1) P({co :coeQ, ax(co) = p}) > 0 

for each p e if. Such a sequence of random variables can be approximated by an 
independent repeating of the algorithm for random sampling of well-formed 
formulas, explained at the end of the last chapter (see more details in [4.2] or [5.7]). 

Define, for every set D c ££ of formulas and every p e &, a function S(D, p) as 
follows: 

S(D, p) = 1, if p has the form (Vxf) A -> A*, where 4* is the result of the sub
stitution of an indeterminate or term for xt in A, or if p has the form (A -* J3) ~> 
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-» (A -» (Vx,) B), where the indeterminate xt does not occur freely in A, or if p has the 
form (Vx,-) A for some A E D, or if p has the form A A (A -* B) for some A, B e 
e D . S(D, p) = 0 otherwise, (intuitively speaking, S(D, p) = 1, iff p is either a pre
dicate calculus axiom or an immediate logical consequence of one or two formulas 
from D with respect to generalization rule or modus ponens rule). Denote, for each 
p 6 L, by p the universal closure of p (namely, p = p if no free indeterminates occur 
in p). 

Now, let us describe the decision procedure. Here we do so in a verbal form, 
a flowchart can be found in [ l j . First of all, we have to initialize the input values. 

Set n = 0, D\ = A\ =<D (the empty set), D2 = {AXU AX2, ..., AXS}, A\ = 
= {~\AXU ~\AX2, ..., ~\AXS}. Here AXU ..., AXS are the specific axioms of the 
investigated theory. 

(a) Put n = n + \, put p = a„(co). 
Is T(p) = 2? If yes, put D 2

+ 1 = D„2 u {p}, A„2
+1 = A2 u {~\p}, and return to (a). 

Is T(p) = - 2 ? If yes, put A2
+1 = A2„ u {p}, and return to (a). 

Is S(D2,p) = 1? If yes, put D„2
+1 = D2 u {p}, Dx

n+1 = Dx„ - {p, Hp}, A„2
+1 = 

= A2 u {~\p}, Ax
n+1 = Ax

n - {p, ~\p}, and return to (a). 

Set p = p (i.e., bound all free indeterminates in p by universal quantifiers. 

Is there any q e D2 such that T(q -»p) «= 2? If yes, put D 2
+ 1 = D2 u {p}, Dx

n + 1 = 
= Dx„ - {p, ~\p}, A2

+1 = A2 u {~lp}, A*+1 = Ai - {p, Hp}, and return to (a). 
Is there any q e A2 such that T(p -» cj) = 2? If yes, put Dx„+1 = Dx„ - {p} , A2

+1 = 
= A2 u {p}, A^+1 = A„' - {p, n p } , and return to (a). 

(b) Is there any q e Dx
n such that T(q -* p) = 2? If yes, put D^+1 = D„' u {p}, 

A^+1 = Ax„ u { n p } , and return to (a). 

Is there any q e Ax„ such that T(p -» <j) = 2? If yes, put A)l+ x = Ax„ u {p}, and return 
to (a). 

Now, finish the computation of T(N0, p, co) in order to decide whether this value 
is + 1 , or - 1 (i.e., apply the statistical deducibility testing procedure in order to 
decide about the deducibility of p). 

Is T(iV0, p, ca) = 1? If yes, put Dx
+1 = D,| u {p}, Ax

n+1 = Ax
n u {~\p}, and return 

to (a). 

Put A^+1 = A,' u {p} and return to (a). 

Hence, the procedure samples at random formulas fli(ca), ..., a„(a>) and classifies 
them into four classes. If a formula is sampled once more, it can be re-classified. 
The set D,J u D2 represents the set of formulas which are stated to be theorems under 
the condition that just n formulas were sampled and tested, A,' u A2 contains the 
formulas which are, at the same instant, stated to be non-theorems. 

It follows immediately from the algorithm, that Dx„, D2, Ax„ and A2 are random 
variables, defined on the probability space (Q, &", P) and taking their values in the 
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set of all finite subsets of formulas of the theory in question. Countability of the 
set S£ of formulas implies the countability of the set of all its finite subsets and this 
fact proves the measurability of the random variables Dl

n, A„, i = 1, 2, n = 1, 2, ... . 

Theorem 6.1. For all n ^ 0 and for all co e Q the following assertions hold: 

(I) D2(a>) c D2
+1(co), A2(co) c A2

+1(co). 

(ii) D2„(w) c sr, A2(CO) c JS? - g-. 

(III) There are no x, y, z such that x e D2, y e $S', z e A2 and that the relations 
x ~+ y e SS~, y -> z e ?r would hold simultaneously. 

(IV) There are no x, y, z such that x e Dl„, y e Se - \RX u R2), z e A„ and that the 
relations x -* y e R1} y -+ z e Rt would hold simultaneously. 

(V) The sets D\, D2, Al
n, A

2 are mutually pairwise disjoint. 

Proof. Cf. Theorem 1, in [1], and its proof. 

This theorem shows the basic properties of the proposed algorithm and its content 
can be intuitively explained as follows. In a given time instant n each of the formulas 
sampled until this instant to be tested is classified and it is classified uniquely, i.e. 
it belongs to just one of the four classes. This classification, of course, need not be 
the original one and, on the other hand, it is subjected to the possibility of an eventual 
re-classification in the future. Only formulas from D2 and A2 are classified definitely 
and they cannot be replaced into another class. Assertions (III) and (IV) express the 
fact that the classification is, in a sense, self-consistent, namely, no formula exists, 
which would be derivable from formulas proclaimed to be theorems and which would, 
at the same time, imply a formula proclaimed to be a non-theorem. Finally, the 
classification is "partially correct": in the sense that the formulas classified into A2 

or D2 are decided correctly, i.e., non-theorems as non-theorems, theorems as 
theorems. 

The last sentence, expressing verbally assertion (II) of Theorem 6.1, evoques the 
idea of the ideal classification of the sequence a^co), a2(co), ..., a„(co) of the tested 
formulas which would consist in classifying all theorems into D2„ and all non-theorems 
into A2 leaving the sets DJ, and D2 empty. As the following theorem states, this ideal 
state can be reached only partially and asymptotically. 

Theorem 6.2. Consider the formalized theory <if, &") and' the classification 
algorithm as above. For every p e 9~, and every q such that ~\q e 3~, 

(6.2) lim P({co :COEQ, pe D2
n(co)}) = 1 , 

(6.3) lim P({(0 :(oeQ, qe A2„(a>)}) = 1 . 
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Remark. As D„(co) c ST, A2(co) c 3? — &~, the assertion of this theorem can be 
expressed in the following way: every theorem will be, sooner or later, proclaimed 
to be a theorem, every negation of a theorem will be, sooner or later, proclaimed 
to be a non-theorem. 

Proof. Cf. Theorem 2, in [1], and its proof. 

It follows immediately from Theorem 6.2 that for each theorem p of the con
sidered theory <J$f, , r> 

(6.4) P({co :COEQ, pe (A,',(co) U A2(a>) U Dl
n(co))}) -» 0 , n -* <x> , 

which answers the question contained in the first criterion introduced above in order 
to judge the quality of the proposed test. The following theorems will provide an 
information about the connections between the test and the other criteria mentioned 
above. 

Let the sets E^p), E2(p) of formulas and real numbers e.(p), e2(p), be defined for 
each formula p, p e S£ — (R U ST), in the following way: 

Ei(p) - {x : x e Se - (R u 9~), x -> p e R,} , 

E2(p) = {y:ye<e - ( R u f ) , p-^yeR,}, 

ex(p) = P({co :coeQ, at(co) e £ . ( » } ) , 

e2(p) = P({co : co e fi, fl,(o)) e E2(p)}). 

Then we can assert 

Theorem 6.3. Consider the formalized theory <J5P, y > and the classification 
algorithm as above. For every formula p, p e if, the inequality 

(6.5) P({co : co e Q, - e U A2
n(co)}) > 0 

n = l 

holds iff there exist an index m and formulas Cjf0, qu ..., q,„ from if such that 

qt -* { j . + ^ R j , i = 0, 1,2, ..., m - 1 , q0 = p, qme R2 = R r\(£? -F). 
If it is the case, the following holds: 

(6.6) P({c» : co e Q, pe\J A2(co)}) = 1 . 
n = l 

Proof. Cf. Lemma 3, in [1], and its proof. 

Theorem 6.3 can serve as a lemma in order to prove the following. 

57 



Theorem 6.4. Consider the formalized theory (&, ^"> and the classification 
algorithm as above. Let p be a non-theorem not belonging to R, i.e., pe S£ — 
- (2T u R), then the following assertions hold: 

(I) Supposing there exist an index m and formulas q0, qlt ..., qm, q0 = p, qme R2, 

1i -* fli + i e^i> i = 0, 1, ..., m - 1, then 

n - l 

(6.7) P({co :coeQ, pe Dl(co)}j{ca : coe Q, p e \J {at(co)}}) -> 0 , n -» oo , 
i = i 

(6.8) P({w:o;ef2, peD„1(co)})->0, n -» oo . 

(II) Supposing that m and a^ q2, •••, q,„ with the properties mentioned in (I) do not 
exist, then for all indices n 

n - l 

(6.9) P({co : co e Q, p e Dl
n(co)}j{co : p e (J {«.(<»)}}) ^ 

i = l 

C l ( l ? ) e ~ (1 ~ (1 - e,(p) e - e2(p) (1 - e ) ) - )̂ 
eДp) є + e2(р) (1 - є) 

n - 1 

(6.10) lim P({co :coєQ, pє Dl

n(co)}l{co :coєQ, pє\J {«;(«)}}) ^ 
n-*oo i = l 

_ g i (p)e f 

Єj(p) Є + e 2 ( p ) (1 - £) ' 

(6.11) P({co :coєQ, pє Dl

n(co)}) S 

_ ^ ( p ) є ( 1 _ ( 1 _ g _ j _ ^ 

e.(p) є + e2(p) (1 - є) 

(6.12) lim P({co :coєQ,pє Dn(co)}) g *&)* , 
eДp)є + e 2 (p)(l - є) 

where 

є = sup [P({co :coєQ, T(N0, p, co) = 1})] . 
peSЄ-Г 

Proof. Cf. Theorem 3, in [1], and its proof. 

When realizing the investigated classification algorithm we must, of course, stop 

the running after a finite number of steps, say n, proclaiming formulas from Dl

n u Dn 

to be theorems. The possibility that a non-theorem enters Dn is exluded, as we already 

know, however, for Dl

n it is, in general, possible. The theorem above estimates the 

probability that a non-theorem can be found in Dj, either under the condition that 

this non-theorem has been already sampled and tested, or in the absolute (uncon

ditioned) sense. As can be seen, in all cases this probability of error can be majorized 

by a linear function of e, where e majorizes the probability of proclaiming a non-
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theorem to be a theorem by the original statistical deducibility testing procedure T. 
In some particular cases even the probability for a non-theorem to belong to D\ 
tends to zero. 

Theorem 6.4 immediately gives, that 
n - l 

P({co :coeQ, pe Dl
n(co)}j{co :coeQ, pe(J {a;(co)}}) -> 0 , e -> 0 , 

i = l 

hence, because of the property (3) of the statistical deducibility testing procedure T 
it follows, that for each e0 > 0 such an £j > 0 exists, that 

et(p) fii < F 

«iG») Ei + e2(p) (1 - e.) 

hence, if T(N0(e1), p, co) is used, 
B - l 

P({co :coeQ, pe Dn(co)}\{co :coeQ, pe{J {at(co)}}) < s0 . 
•=i 

Such an et and also N0(fi.) depend, of course, on p. The aim of the following 
theorem is to state the existence of an "average" N0 depending only on e and "good 
enough" from the point of view of the quality of our classification procedure. 

Theorem 6.5. There exists, for each e > 0, such an index N0(E) that for each Nt >. 
^ N0(E) the random variable T(Nt) satisfies the following: 

n - l 

(6.13) V. [P({co :coeQ, pe D„(co)}l{co :coeQ, pe\J {a.(t»)}}). 
petf-r i=l 

. P({co :coeQ, a,(<o) = p}) < e . 

Proof. Cf. Theorem 4, in [1], and its proof. 

It can be easily seen that the results presented in this chapter until now will hold 
also in case the random variable T is substituted by another random variable T 
satisfying the demands ( l ) - ( 6 ) and such that the set R\, defined by T analoguously 
to R,, satisfies Lemma 6.2. There is also another possibility of generalization, namely 
in such a way that the implications p, -> p (p -> p2, resp.) are not investigated for 
all p2 e Dn u Dn(p2 e An <u An, resp.), but only for some of them, say, chosen at 
random. Such a model would better describe, in our opinion, the heuristic feature 
in one's behaviour, when trying to derive a tested formulas from some already known 
theorems. Let us briefly investigate such a model in the rest of this chapter. 

Consider the pretentions of our original classification procedure seen, e.g., from the 
point of view of the time spare necessary for its performing or from the point of view 
of the number of some unit operations needed in order to decide about the tested 
formula (said in other word, the time and space complexity). We can see that these 
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pretentions increase when the number of the decided formulas increases. If this 
number is "small enough", the classification procedure may be more appropriate 
than the simple statistical decision procedure even from the point of view of its 
pretentions, as the statistical deducibility testing procedure may be rather difficult 
and the use of the former results may enable to avoid it, at least in some cases. But, 
when the number of decided formulas increases, the use of all of them begins to be 
rather impracticable. Let us suggest a solution which would avoid, at least in a degree, 
this difficulty and let us investigate which of the results stated above and proved in 
[1] remain to be valid. 

Let us modify the classification procedure described above as follows. Before 
starting with the n-th formula an = an(a>) = p to be tested we choose a subset M'„, 

(6.14) - Mn<= Mn = Dl
n u D2

n u An u A2 => (J {«•(«)} . 
> = i 

such that card M'n <j Lt, where L t is a priori given integer. Let 

(6.15) D'Un = Dl n M'n, D'2>n = D2
n n M'n, 

A'Un = A„ nM'n, A'2_„ = A2 n M'„ 

and apply the classification procedure from above with the only modification — 
when looking for an appropriate auxiliary formula q (q', resp.) such that q -> p 
(p -* q', resp.) is a decidable theorem we do not range over all the formulas from 
Dn u D2 (Al

n U A2, resp.) but only over the sets D'lt„ u D'2n (Ai „ u A2n, resp.) which 
play the role of "representants" of the original larger sets. This modification implies 
that the pretentions of the modified decision procedure are limited and their upper 
bound is, roughly speaking, a linear function of the parameter Lx. If such an ap
propriate auxiliary formula is not found inside the set M'n, the investigated formula p 
is tested by the statistical deducibility testing procedure. The sets Dn+1, Dn+1, 
A^+1,A

2
+1, are constructed according to the result of this decision in the same 

way as above, but the instructions consisting in erasing some formula or formulas 
from Dl or Ax

n are omitted. Also the step (b) is omitted for the reasons which will 
be shown later. 

It can be immediately seen that the properties of such a procedure depend, in 
a substantial manner, on the way in which the phrase "We choose a subset M'„ c M„" 
will be interpreted. There exist two principial approaches, here, the deterministic one 
and the statistical one. 

The deterministic approach can be formally described by the mean of a mapping G 
ascribing to every natural n and to every n + 1 formulas ax,a2,..., an, p, some subset 

containing at most Lx elements from the set \J {at}. In general, M'n may depend on p, 
; = i 
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but it is necessary lest this dependence should be too complicated. As an example we 
can give two mappings Gt and G2 defined as follows. 

(6.16) G1({aua2,...,an,p}) = \j{ai}, s = min (n, L . ) , 
i = l 

G2({alta2, ...,a„,p}) = U {a,} , R = max(l , n - Lx + 1) . 
i = R 

This means that we use only the first or the last L : formulas among a,, a2, ..., a„. 
The statistical approach can be formally described in such a way that the elements 

of the set M'n are sampled at random from M„. The probability space <[Q, £f, P) 
is considered together with a system {p;j}, i = 1, 2, ..., j = 1, 2 , . . . , Lx of random 
variables which are mutually independent and such that every p^ takes its values in 
the set {1 ,2 , . . . , i} of integers. Now, we set 

(6.17) M'n = M'n(co) = J {a*(Pn-j(co)} , 
J = I 

M„ = {a*(l), fl*(2), ..., a*(n)} , 

clearly, card M'„ g Lx. In general, the random variables {pti} need not to be in
dependent of the random variables {a_,-} (sampling the sequence in which formulas 
are to be tested) or of the random variables T(N0, p, •) (representing the used sta
tistical deducibility testing procedure) but we shall suppose, in the rest of this 
chapter, that both of these types of statistical independence take places. Moreover, 
we suppose the random variables alt a2,... to be independent, equally distributed, 
and such that 

P({co :coeQ, at(co) = p}) > 0 

iff p is a closed formula (sentence) of the formalized theory <if, &") in question. The 
random variables {pfj} will be also supposed to be mutually independent, and, 
for a fixed j , equally distributed, i.e., 

(6.18) P({co :coeQ, pki(co) = j}) = \\k , 

k = \, 2, ..., j=l,2,...,k, i = l,2,...,L1. 

In what follows we shall profit of the explanation in [2], where there are two cases 
of the modified classification procedure investigated separately. In the first case 
(called Algorithm I) we test, first of all, whether a sampled formula has been already 
tested, i.e., whether a„(co) e M„ or not, and if the answer is positive, we find the 
corresponding one of the four sets £>*, D2

n, A\, A2, in which an(co) is situated and we 
put an(co) again in this set without any further testing. The two or more occurences 
of the same formula are treated separately, they possess two indices and this makes 
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the probability of sampling of such a formula into M'„ larger (what is substantial 
in what follows). In the other case (Algorithm II) we omit this step and every formula 
is tested in the given way and classified with respect to the result of this test no matter 
whether it has been or has not been already tested and with which result. Of course, 
in this case the possibility of finding a formula in two different classes in the same 
time is not excluded. In [2], the sequence M„ is called the universal memory at the 
step n, the sequence M'n c M„ is called the instantaneous memory at the step n. 
Let us denote 

w =(uo,>((uW - 4,)) - (\JA2)), 
n = l n = l n = l 

JF = (IJ A„2)u(YlJ (4, - A,)) - (UD„ 2 ) ) , 
n = l n = l n = l 

3 = U (D2 u Dl u A\ u A2„) . 
n = l 

Theorem 6.6. Consider Algorithm I, then 

(a) (6.19) . T n . / F = 0 , Fu JT = 3 

(b) D'nczDn+t, AnczAn+l, j = 1,2, n t . 1 ,2 , . . . , 

(c) U D2 <= 2T , U A2
n c S£ - F. 

n = l n = l 

Proof. Cf. Lemma 2, in [2], and its proof. 

Corollary. For the universal memory M„ + 1 the inequality n* :g card (Mn+l) S 

^ 2n* holds (in the case of Algorithm I as well as Algorithm II), n* = n + the 

number of specific axioms set into Do-

Proof. In every step at least one and at most two formulas are joined to one or 

two classes, i.e., to M„. Here M„ is taken as a set of occurences of formulas rather 

than as a set of formulas. Cf. Lemma 3, in [2], and its proof for more details. 

Let p e i f be a closed formula, let n0, n, n0 ^ n be integers. Let a.(p, n0, n) denote 

the relative frequency of the occurences of p among ano(co), ano+l(co),..., an(co), i.e., 

<x(p, n0, n) = a(p, n0, n, co) = card ({i : n0 ^ i — n, a,(ca) = p}). 

Denote, moreover, 

n(p) = P({co :coeQ, a^co) = p}). 

Lemma 6.3. For every closed formula pe Z£ and every integer n0 ^ 1 

(6.20) P({co :coeQ, lim n~la{p, n0, n) = n(p)}) = 1 . 
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Proof. The independence and equal distribution of the random variables fl., fl2> ••• 
imply that the well-known Borel theorem (cf. [5.4] or [5.13]) can be applied. Cf. 
Lemma 4, in [2] and its proof for more details. 

Theorem 6.7. Consider Algorithm I, then 

(6.21) P({co :u>eQ, ST = U D;(co)}) = 1 . 

Proof. Cf. Theorem 1, in [2], and its proof. 

Corollary. When Algorithm I applied, then every theorem will be, eventually, with 
the probability 1 proclaimed to be a theorem. 

When discussing about the basic motives leading to the modification of the clas
sification procedure investigated at the beginning of this chapter we mentioned 
namely the impracticably increasing time and space pretentions of this procedure. 
Considering our Algorithm I from this point of view we must admit that this dif
ficulty has not been completely avoided. Or, the decision instructions of Algorithm I 
ask to find, whether the tested formula has or has not been tested and classified 
before, and in the case of the positive answer, to classify this new occurence of the 
same formula in the same way. Hence, Algorithm I requests, again, to handle with 
all the formulas which have been already tested and decided — and it is just what 
we wanted to avoid. It is why we have proposed also Algorithm II to be studied 
separately; Algorithm II results from the Algorithm I by omitting these decision 
steps. All other notions and notations keep their former meanings. 

Lemma 6.4. Consider Algorithm II, let q e ST be a theorem. Then there exist an 
integer N0(q) ^ 1 and a positive real c(q) such that for each i jg N0(q) 

(6.22) P({co :coeQ, at(co) e D2
+l(co)}l{co :coeQ, a^co) = q}) ^ c(q). 

Proof. Cf. Lemma 5, in [2], and its proof. 

Verbally, this lemma claims that there is, in each case when a theorem is sampled 
to be tested, a positive and only on the theorem in question depending probability 
that this theorem will be put into D2

+1, i.e., that it will be classified as theorem 
without any danger of error. From Lemma 6.4 almost immediately the following 
assertion and its corollary can be deduced. 

Theorem 6.8. Consider Algorithm II, then 

(6.23) P({co : co e Q, P = U D2(co)}) = 1 . 

Proof. Cf. Theorem 2, in [2], and its proof. 
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Corollary. When Algorithm II applied, then every theorem will be, eventually, 
with the probability 1 proclaimed to be a theorem. 

Let q be a theorem, let qu q2, •••, q„ = q be a formalized proof of q. Analyzing 
the proof of Lemma 5 in [2] we can say that the assertion of this Lemma will hold if 

(6.24) c(q) = (nn(qir)(^-i(i- e)'hd', 
; = i 

where e > 0 is defined in Theorem 6.4 and dL is a positive integer showing how many 
times the formula qt is used as an antecedent in order to deduce some qj, j > i. Of 
course, the value c(q) depends not only on q but also on the proof qu q2,..., q„. 

When analyzing the proof of Theorem 1 in [2] we obtain that in the case of 
Algorithm I an assertion analogous to that of Lemma 6.4 would hold if 

c{q) = ^n(qi)n(qJ)(l-~ey, 

in case q followed from q„ qj by the modus ponens rule, or 

c(q) = $n(qt)(l-e), 

in case qt -> q is a theorem decidable by the deterministic theorem prover being at 
our disposal and serving as a part of statistical theorem prover T(N0, p, .), see con
dition (7) at the beginning of this chapter. 

The value (n{q) c(q))~l can serve as an upper bound for the conditional expected 
value of the number of steps, which are necessary for joining the theorem q with 

U T>\. We can say that in the case of Algorithm I this value is given by the inverse 
n = l 

value of the probability of sampling the premise necessary for the immediate deriving 
of q (or by the inverse value of the product of these probabilities if there are two 
premises). The length and complexity of the proof qu q2, ...', q„ in its whole do not 
play any role. However, when considering Algorithm II, this conditional expected 
value is given by the inverse value of the product of the probabilities of sampling for 
all the formulas occuring in the considered proof. It follows immediately that this 
later expected value is much more greater than the former one and depends on the 
complexity and length of the considered proof in its whole. This greater speed of 
Algorithm I is caused by the fact that this procedure tries whether a formula sub
mitted for testing has been already tested or not and in the positive case uses this 
information. Algorithm II is not endowed with this ability because of the reasons 
explained above. 

Hence, we can say that even Algorithm II provides that every theorem will be, 
eventually, with the probability 1 proclaimed to be a theorem, of course, with the 
average number of steps much more greater than in the case of Algorithm I. This 
fact is caused by a common feature of both these Algorithms, namely by the fact 
that each formula is given, in each step, a positive probability to be sampled for 



testing and tested, no matter whether this formula has been already tested or has not 
been tested yet. This repeating of testing seems to be quite natural supposing the 
tested formula was joined with Dl

n or An. Such a decision is not necessarily correct, 
there is a probability of error, so it is quite reasonable to have a possibility of revoking 
our former decision by joining this formula with some Dm or Am, m > n. 

We shall see, however, that even to repeat a decision on a formula having been 
already correctly decided and joined with D2 or A2 is of some worth. In the following 
theorem the situation is investigated, when a formula, having been once tested and 
joined with D2 or A2

n is no more sampled and tested again. This theorem shows that 
in such a case neither Algorithm I nor Algorithm II assures that every theorem will 
be, eventually, proclaimed to be a theorem. An upper bound for the probability of 
this event, introduced below, tends to 0 if the number of applications of the modus 
ponens rule, necessary for deduction of a considered theorem increases. Or, when 
a formula may be joined with D\ or A\ only once, i.e., there is at most one occurence 
of this formula in the universal memory, then the probability of sampling this formula 
into the instantaneous memory tends to zero in a linear proportion to the increasing 
number of sampled and tested formulas. However, in an application of the modus 
ponens rule is necessary to deduce a conclusion, both the necessary premises have to 
meet each other in the instantaneous memory and the probability of such an event 
tends to zero in a quadratic proportion to the increasing number of sampled and 
tested formulas, hence, there is a positive probability that this random event will 
never occur. 

Theorem 6.9. Consider Algorithm I or Algorithm II. Let the random variables 
au a2,... satisfy the following condition 

P({m:meQ, a{m) = p}) = 0 , if p e D2 u A2 , 

P({m : m e Q, at(ca) = p}) > 0 , if pe £ - (D2 u A2), 

p is a closed formula. Let q be a theorem, let k be such an integer that there are at 
least 7c applications of the modus ponens rule in every proof of q from axioms and 
those theorems which are deterministically decidable (i.e., for which T(N0, p, m) = 2). 
Then 

(6.25) P({m :meQ, qe\J D2(m)}) £ 

(6.26) P({m :meQ, q e (J D2(m)}) g 
n = l 

=g min jl, iLi(Ll - iff-MWt* . _ ! _ . . (i(Ll _ i) Ll)!J . 
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These two upper bounds are not, in general, mutually comparable. Let us recall 
that Lj denotes the upper bound for the cardinality of the instantaneous memory 
and let us emphasize the fact that in this case the random variables au a2, ... are 
neither statistically independent nor equally distributed. 

Proof. Cf. Theorem 3, in [2], its corollary and the corresponding proofs. 
The theorems introduced above were dealing rather with the asymptotic properties 

OO 00 

of the two investigated algorithms, i.e., properties given by the sets U Dn, (J Ax
n, etc. 

n = l n = l 

However, each actual realization of Algorithm I or Algorithm II should be stopped 
after a finite number of steps. The following theorem, the last in this chapter, offers 
an upper bound for the probability of proclaiming a non-theorem to be a theorem 
when classifying all formulas from 2T as theorems. 

Theorem 6.10. Consider Algorithm I or Algorithm II. Let a real e > 0 and an in
teger N0 > 1 satisfy the condition 

P({co :coeQ, T(N0, q, to) = 1}) g e 

uniformly for all non-theorems q. Then 

(6.27) P({co :coeQ, q e ^\co)}) S s 

uniformly for all non-theorems. If, moreover, for a non-theorem q such an integer n 
and non-theorems qu q2, ...,qn exist, that q„ = q, T(N0, q{ -> qi+1, co) = 2, i = 
= I, 2, ..., n - 1, T(Af0, 0], co) = - 2 , then 

(6.28) P({ca :coeQ, qe F(co)}) = 0 . 

Proof. Cf. Theorem 4, in [2], and its proof. 

This theorem gives an answer to the question which could perhaps arise when the 
two algorithms are investigated, namely, why the formulas from D\ „ are not used as 
premises when testing a formula p = a„(to), i.e., why we do not investigate, whether 
there exists or does not exist a formula q e D\ „ such that T(N0, q —> p, to) = 2. 
But, if we looked for such a formula and if we joined p with Dt „+ 1 if this was the 
case, then the probability of error connected with this decision would be, in general, 
greater than the probability of error connected with the simple statistical deducibility 
testing of q and this probability of error could cummulate in such a way that no ac
ceptable function of E could serve as an upper bound for this probability. In this 
feature our last algorithms differ from the classification procedure investigated at the 
beginning of this chapter where such an upper bound existed. It is why we have 
omitted this case and we add a formula to Dn only in case the statistical deducibility 
testing procedure decides in this way, i.e., proclaims the tested formula to be 
a theorem. 
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7. OTHER STATISTICAL APPROACHES TO DEDUCIBILITY TESTING 

Having presented, in the two foregoing chapters, one possibility how to apply 
probability theory and mathematical statistics in the domain of theorem proving, 
we would not like to claim that this approach is the only possible or the best one. 
From time to time we can meet some ideas or propositions which concern the un
certainty and approximations in deduction processes or at least can be understood 
in such a way. This chapter is devoted to an overview of those among such ideas 
which have been already formalized on mathematical level comparable with that 
accepted here. Let us start with the concept of probabilistic cannonical systems 
(or calculi) introduced by S. Ju. Maslov and E. D. Rusakov in [7]. 

The problem solving for a large class of creative tasks can be converted into 
deducibility testing in an appropriate, general enough, system (cf. [6] and the next 
chapter of this work). As a system of a general type we can take, e.g., the well-known 
Post system (cf. [9] or [3]); this system has arisen as a straightforward generalization 
of the notion of formalized theory and its basic features should be clear from what 
follows; at least in the extent necessary for our purposes. 

When searching for a proof in a relatively complicated system, the main difficulty 
is connected with the necessity how to organize a sufficiently exhaustive search 
in a large space of possible proofs. In order to restrict this searching complexity 
we can adopt some reglementations, i.e., searching strategies. Another possibility, 
which will be discussed below, consists in resignation to completeness, i.e., we give 
up the request that in all cases when a proof of desired type exists it should be, 
eventually, discovered and we would be satisfied, if the desired proof were discovered, 
under the condition that it exists, with at least such and such apriori given pro
bability. The methods and results explained below are, in a sense, close to that used 
and proved in the theory of probabilistic algorithms (cf. [10] or [8] for more details). 
The restriction of our considerations to the case of one-premise deduction rules is 
not so strong as it may seem; remember the so called First Reduction in [9] or § 3 
in [6]. 

Let ,5f be a canonical system over an alphabet A (words in A are called A-words), 
with m one-premise (or unary) deduction schemas Ttun2, ...,nm and n axioms 
au a2, ..., an, let the result of application of each schema to each axiom be defined 
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and be defined unambiguously (this is just a matter of technical convenience, see 
the normal systems in [9]). bu b2, ..., b„(n) h b means that b is the result of the 
application of n to bu • .., b„; bu b2, ..., b„ h b means that there exists nj such 
that bu ...,b„(nj)h b. 

Definition 7.1. A sequence 

(7A) aua2, ...,a„, a„ + l(ku s^, . . ., fl„ + r<fcr, sr> 

is called an analyzed proof in X, if r >: 0, au a2, . .., a„ + r are A-words, and 

(1) for all i, 1 «S i = r implies 1 ^ s; ^ m, and 1 ^ /cr < n + /, 

(2) aj.,(7r5.)l- a„ + ; (i.e., an+; = afc|, if ns. is not applicable, 
in the usual sense, to aki). 

The sequence au a2, ..., a„, a„+s, ..., a„ + r is called dual to the analyzed proof 
in question and its length will be denoted by d(£) (letters £, n, etc. serve to denote 
analyzed proofs). 

Let us ascribe, to each i, 1 <, i <, k, and to each j , 1 = ;' ^ m, non-negative real 
fc m m fc 

numbers qh pj, ru, such that ]T £ r y = 1 , J] r y = a;, J] rfj = p,- for all < g fc, 
i = l j = l ; = 1 ; = i 

j g m. The number r y can be interpreted as the probability of sampling of a pair 
<a;, 7tj>, cjj as the probability of sampling of a;, and p,- as the probability of sampling 
of Kj. These numbers can be ordered in an (k + l) x (m + 1) - tabel T, it is why 
we shall write sometimes {T}y instead of r;y. 

Definition 7.2. Probabilistic system is an ordered pair <Jf, j / > , where Jf is 
a canonical system of the type described above and s& is an algorithm applicable to 
each analyzed proof £ of X and ascribing to £ a tabel T as defined above with au 

a2, ••-,ak being the sequence dual to £,. Let 2. = <Jf, •»/> be a probabilistic 
system, let us define, for each analyzed proofs in X its probability p[Q as follows. 

(1) if £ — au a2, ..., a„, then p[£] = 1; 

(2) if £ = rj, a(k, .s>, then p[£] = p[n] . {#2(n)}ks. For each proof B in X set 

(3) MB = {£ : £ is an analyzed proof for which B is its dual sequence}; 

(4) P[B] = I -[{]. 

For each A-word a and each /c >: n d;note by M^a) the set of all proofs in X 
of the length k which contain a; denote by Mk the set of all proofs of the length k 
in X. If M c M", set p[M] = j ] p[B\ If £ is a proof of the length / in X, denote 

BeM 

by HB, fe 2: 0, the set of all proofs of the length I + k which begin with B. 
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Theorem 7.1. 

(1) Let Mi, M2 be sets of proofs (in Jf) of the same length, let M, n M2 = 0, then 
p [ M j + j>[M2] = p[M, u M 2 ] . 

(2) For each fc = 0 and each B, p[.H£] = p[B]; p[M" + k~\ = L 

(3) For each fc ^ n and each A-word a, p[Mk+1(a)~\ S: p[Mk(a)~\. 

Proof. The assertions follow immediately from the definitions above. 

Denote, for each 5 real, 

(7.2) Jfs = [a : a is A-word and there exists a fc = n such that p[Mk(a)~\ > 5} . 

The following assertion is an analogy of the corresponding theorem for probabilistic 
Turing Machines (cf. [5], where also a proof can be found). 

Theorem 7.2. The set J/5 is enumerable for each real 5. 

Definition 7.3. Let 3. = <Jf, sfy be a probabilistic system, let !P be a total recurs
ive function such that, for all fc > 0, W(k + 1) = !P(fc), let f(fc) -* oo, if fc -> oo. 
Algorithm .R/ is called T-regular, if for each analyzed proof £, of the form (7.1) and 
for each k, s, 1 = k = min{!P(d(<J)), d(£)} 1 < s = m, the following holds: if 
{s/(^)}ks = 0, then there exists fc', 1 ^ f c ' ^ d(£,), such that either ak, = ak and 
{.«/(£)}*,,« > 0, or ak(ns) h ak,. If, moreover, for each /, W(l) = 1, then the algorithm 
s/ is called correct (a correct algorithm is f-correct for all *P). 

Theorem 7.3. Let SL = <Jf, ,«/> be a probabilistic system, let ^ be a *P-regular 
algorithm. If a is derivable in Jf, then there exists k>. n such that p[Mk(a)] > 0 
(hence, J(0 is identical with the set of all words derivable in Jf). 

Proof. The assertion is an immediate consequence of Definition 7.3. 

Definition 7.4. Let SL = <Jf, stf} be a probabilistic system, let (p be a non-negative 
real-valued function defined for each natural /. We say, that the algorithm stf has 
the minorant <p, iffor each analyzed proof { ofthe length / and for each fc, s, 1 = k ^ 
<_ d(«J), 1 < s <m, the following holds: if {j*(f)} t>, > 0, then {A(£)}*,s >= <p(l). 

k 

The minorant 9) is called substantial, if J] <p(i) —> 00 for fc -> 00. 
i = l 

Theorem 7.4. Let J = <jf, J?/> be a probabilistic system, let si be a "P-correct 
algorithm with a substantial minorant <p, then for each word a, derivable in Jf, 
p[M*(a)] -> 1, if fc -> 00. I.e., for each b < 1, Jts is identical with the set of words 
derivable in jf . 
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Proof. Cf. the proof of Theorem 3 and the corresponding lemma in [7]. 
The algorithm si is called equiprobable, if for each analyzed proof £ and each 

fc1; fe2, s l s s2, 1 S feu fe2 = ^(4)« - — ' n s2 = mi the following holds: 

Theorem 7.5. (Corollary of Theorem 7.4). Let 3 = <jf, .«/> be a probabilistic 
system, let ^ be a correct equiprobable algorithm, then for all a derivable in Of, 
p\M\a)~\ -* 1, if fc -> oo (as an equiprobable algorithm has always the substantial 
minorant <p(m) = (/cm)-1). 

Let us introduce some special types of probabilistic systems. Let 3 = <JT, si} 
be a probabilistic system. If for each £ of the type (7.1.) and for each i,j ^ d(^), 
{.«/(£)}ij = 0 holds iff the schema 7rSj is not applicable to aki (in the usual sense), 
then 3 is called context-free. If each element of si(£) is positive, then 3 is called 
strongly context-free. If {si(£)}tj = 0 just in the cases when there is i' < i such 
that a,- = ai„ then J is called conservative. If (l) for all i, 1 < i = r, {sf(£)}k,,Si = 0 
and, moreover, all elements from sf(£), which are not subjected to (1), satisfy the 
condition for conservative systems, then 3 is called (conservative) system with 
memory. All these four types of probabilistic systems have correct algorithms and 
can bs easily generalized in the case of probabilistic systems with !P-correct algo
rithms. 

Let 3 = (Jf, s/y be such a probabilistic system that for each tj of the type (7.1) 
and each pair <af, nf) the probability ascribed to this pair by si(£) equals the product 
of the probability of sampling a ; in si(^) by the probability of sampling jr. in si(£). 
Then 3 is called system with independent probabilities. Moreover, such a system is 
called schema-constant, if the probability distribution on schemas is the same in all 
tables. Algorithm si of a probabilistic system 3 = {jf, si} is called word-constant, 
if for each £,, n such that the number of positive elements in s/(£) and s/(n) is the 
same, the following condition holds: for each i,;', 1 ^ i < min (d(£), d(n)), 1 :g j < 

= m, if {si(Z)}ij > 0 and {si(n)}u > 0, then {a/({)}M = M>/)} . j -
Algorithm si of a probabilistic system <Jf", .s/> is called failure-stabile, if for 

each £ of the type n, a(k, s>, for which the probability of sampling a in si(£) equals 0 
and for all i,j, X ^ i = d(n), 1 < j < m, {.«•(£)}.j = {^(f/)}(,y 

Let Jf" be a Post canonical system, let a be a word derivable in JT. Denote S.'a = 
= {fe : there exists a proof of b in JT, not containing a}, Jf*fl = {6: there exists 
a proof of b in Jf such that for all fr' from this proof ~~\ (b' \- a) holds}. 

Let Jf be a canonical system, let a be a word derivable in Jf-, which is not an 
axiom, let e be a positive real. Consider the problem, whether it is possible to con
struct probabilistic systems 3 = <JT, si} such that, for all k = n, p[Mk(a)~\ ^ e. 

Theorem 7.6. Let there exist i0 and fr such that 1 ^ i0 <| n, a»0 {• &, 6 =f= a, then 
it is possible to construct 

(1) a context-free .2 with word-constant and failure-stabile algorithm, 
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(2) a strongly context-free St with the same algorithm, 

(3) conservative St. 

If, moreover, aio h a does not hold, then all these probabilistic systems can be con
structed as systems with independent probabilities. Under the supplementary condi
tion that 2£a is infinite, we can construct (1) context-free St, (2) strongly context-free 
St, (3) conservative St, and (4) St with memory, in all these cases the algorithms can 
be chosen to be word-constant and failure-stabile. If Xa is infinite, then the first 
three algorithms can be construct in such a way that the corresponding probabilistic 
systems are, moreover, systems with independent probabilities. 

Proof. Cf. Theorem 4 in [7]. Algorithms of the systems with independent pro
babilities mentioned in Theorem 7.6. are schema-constant and the probability distri
bution on schemas can be given a priori. All the conditions can be proved to be 
necessary. 

The model explained above can be generalized to the case with many-premise 
deduction schemas. Consider a canonical system X with axioms a1,a2, ...,an 

and deduction schemas ni, n2, ..., nm such that 7t; requests <5; premises. Let us begin 
with the situation when the result of application of each schema to each ordered 
sequence of premises (of appropriate length) is uniquely defined. 

Each sequence £ of the form 

(7.3) aua2, ...,a„, 

a„+l < fcl.l' • • •> kl.1,5 Sl>> • • •> °n+r <k r , i , • - -, K.lr\ sr> , 

where r ^ 0, a., a2, ..., ar are A-words and 

(1) for each i,j, 1 £ i £ r, 1 <_ j < K holds: 1 <. st £ m and 1 g. ktJ <. n + i 
and lt = <5S(, 

(2) either akiA, ..., akijt(nSt) \- an+l, or an + i = akiil, if nSl is not applicable to 
ak.A, ..., aklJ. (in the usual sense) 

is called analyzed proof in X. 

Let ylt ..., ym„ m! <. m, be the sequence of all numbers from «5., 32, ..., 5m 

without repetitions. Choose an algorithm which ascribes, to each finite sequence 
of A-words, the list of all possible y rtuples, y2-tuples, . . . , ym,-tuples of words from 
this sequence. For each t, of the type (7.3) the list ascribed by our algorithm to the 
sequence at, . . . , a„ an + 1, ..., an+r will be called X-dual to £. We suppose that 
in the list Jf-dual to £ all sequences containing only the words a x, ..., ak, k < n + r, 
precede all sequences containing at least one of the words ak + u ...,ak+r. T h e 
number of sequences in the list which is X-dual to £ is denoted by d^). 

Using these notions we can easily generalize the notion of probabilistic tabel and 
probabilistic system, also the probabilities of analyzed proofs and proofs are defined 
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as above. An element of such a tabel is called fictive, if it correspond; to a schema 
with y premises and, simultaneously, to a sequence of y' words with y' =|= >', the 
fictive elements of a tabel are supposed to be zero. All conditions and restrictions 
occurring in definitions of various types of algorithms are supposed to be related only 
to non-fictive elements. 

Now, Theorems 7.2 to 7.4 remain to be valid in their verbal form. Let us introduce 
an example. 

Consider the system with alphabet {( , )}, axiom ( ) and only deduction schema 
p, qY (p, q). Construct a correct equiprobable algorithm which ascribes, to each £, 
of the length k, the tabel, in which the probability of all pairs, already used in £, 
equals 0 and for all other pairs it equals (k2 — k + l ) " 1 . The obtained system will 
be a conservative one with memory; in a natural sense this algorithm is the best 
correct equiprobable algorithm, t h e word (()()) will be generated by this pro
babilistic system with the probability 1, however, taking the word ( ( ) ( ( ) ( ))), 
there is a positive probability, namely 

n _"2^ji 2 n fe2 ~ I = I 
»Un2 -n + 1 > 3 * - 2 k2 3 ' 

that this word will never be derived. 

Let us briefly mention the case of ambiguous deduction rules, i.e., the case when 
a deduction schema, applied to a particular appropriate sequence of premises can 
give more than one result (the Post's restrictions imposed to the form of possible 
deduction schemata guarantee that the number of such possible results will be finite). 
Ambiguous deduction rules can be eliminated by defining the so called "working" 
or "operating zones" in words and joining some new deduction schemata for appro
priate transpositions of these zones. This method is well-known and often used, e.g., 
in the theory of normal algorithms (cf. [2]). 

Such an inclusion needs several small changes. First, we add to the definition 
of analyzed proof this condition: for all i, 1 ^ i ^ r, if bu ..., bk is the list (without 
repetitions and in the lexicographical order) of all words derivable from akiA ... 
..., akil. by an application of ns. then either k = 0 and a„+i = ak.^, or k > 0 and 
there exist i", 0 g i" :g r — k, such that for all / , 1 g j ^ k, bj = a^ + j . Now, in the 
point (2) of Definition 7.2 we must prolong n by a finite number of words. Let us 
remark, that considering the definition of f-regularity (and some other notions), 
the second disjunctive member in this definition guarantees, that we can find in £ 
not only a'k, but also other words derivable from the same premises by the same 
schema. As can be easily seen, Theorems 7.2 to 7.4 remain to be valid, however, 
Theorem 7.5 (a consequence of Theorem 7.4 in the case of equiprobable correct algo-
ithms) need not to be valid neither for multiple-premised nor for the ambiguous 

r eduction schemata. 
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The model of Maslov and Rusakov as explained above can be seen as a kind 
of machine which generates new and new theorems according to some probabilistic 
laws, and from this point of view the model is close to that of experience-based 
statistical deducibility testing as explained in Chapter 6. Now, let us briefly describe 
the method of statistical theoremhood testing proposed by S. C. van Westrhenen 
in [12] which is, in a sense, more close to the model explained in Chapter 5. For the 
sake of simplicity we begin with the propositional calculus. 

Let r, k,nun2, ..., nk be natural numbers, let plt p2, ... be the sequence of all 
propositional indeterminates. Define 

(7.4) K(nu n2, . ..,nk, r) = {F : F = A V «y} , 
i = i j = i 

where a;j- e Ar = {p,, 1 V\,Vi, ~~1 V2, • • •> Pr, ~1 Pr], ' e - K(nu ..., nk, r) is the set 
of all propositional formulas in conjunctive normal form (sets of clauses, in terms 
of Chapter 3), in which only first r indeterminates and their negations may occur. 

If there are, for each i 5̂  k, such indices jj_(i),j2(i) ^ «,-, that «y.(.) is la^ , , - ) , or 
ni k n, 

vice versa, then clearly V a i ; a s w e ' l a s A V aj a r e theorems (of the propositional 
j=i 1 = 1 j = i 

calculus). Van Westrhenen studies and numerically solves the following problems: 

((i) The determination of the probability that a formula, sampled from 
K( nu . . . , nk, r) by the uniform probability distribution is provable; 

(ii) for a given real number e > 0 we shall determine a natural number N(e) ^ k 
such that an at random sampled formula F of the form (7.4) (sampled by the 
uniform probability distribution) will be estimated provable, with the proba
bility of error smaller than s, if at least N(e) members of the conjunction contain 
at least one propositional indeterminate together with its negation. 

Consider a triple sequence {XiJr}, i,j,r= 1 , 2 , . . . of mutually independent 
random variables, defined on a probability space <£2, £P, P), taking their values, 
for each r, in stfr and such that P({a> : co e Q,XU r(co) = a}) = (2r) _ 1 for each 
a s r f , and each i,j, r = 1, 2, . . . As an abbreviation we also introduce the random 

ni 

variables Cir = Xiir v Xi2r v . . . v Xin.r = \/Xijr, clearly, 
J = I 

(7.5) P({co :coeQ, Cir(a>) = ay v . . . v «„,}) = 

- ft P({o>: co e O , X J » = «i}), 
J = I 

ccj e stfr, 7 = 1 ,2 , . . . , nt. The random sample od an element from K(nu ..., nk, r) 
is formalized by the random variable. 

(7.6) q>k,ni „k,r = A V*0>-
( = 1 j = i 
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The probability distribution of <pMl „ k i , easily follows from the definition, i.e., 

k nt 

P({co :coeQ, </>Ml „k,r(co) = A V «,;}) = 
i = i j = i 

ft P({v :<oeQ, c , » = V %}) = (l /2r)" '+" J +-+ ' , f c 

i = i j = i 

k ni 

for each A V au e ^(« i> • • -,nk, r). 
i = i j = i 

A conjunction member (clause) of a formula F e iC(n,, . . . , nk, r) is called closed, 
iff it contains a propositional indeterminate together with its negation. Hence, F 
is provable (F is a theorem) iff all its clauses are closed. Let w be the characteristic 
function of the set of all theorems from K(nl, ..., nk, r). Set 

(7.7) K0(nun2, ..., nk, r) = {F : F e K(n{, ..., nk, r), w(F) = 0} , 

Kx(n„ n2, ...,nk,r) = {F : FeK(nt, . . . , nk, r), w(F) = 1} . 

Consider the so called Stirling numbers of the second kind, denoted by S(n,j) and 
defined by 

J\ m,+ . . . + mj = n , m ; > 0 , l g i g j \ » J j ! . . . tUj\) 

n = 1,2, . . . , ; = 1,2, ...,n, 

(cf., e.g., [4], for more details about these numbers). 

Theorem 7.7. 

(7.8) P({co :coeQ, cpXnr((o) e K0(n, r)}) = N(n, r)/(2r)n, 

where 

N(n,r)= E S(n,j).(r)j.2\(r)j=j\(r). 
l§jgmin(n,r) \jj 

Proof. Cf. Theorem 2.1, in [12], and its proof. 

Theorem 7.8. Denote p(n, r) = N(n, r)/(2r)n, then 

(1) lim p(n, r) = 0 monotonically for each r. 

(2) lim p(n, r) = 1 for each n. 

Proof. Cf. Theorem 2.2 for (1) and Theorem 2.3 for (2), in [12], and their proofs 
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Theorem 7.9. 

(7.9) P({co :coeQ, 9kM,...MlA<o)eKl(ni. ...,nk, r)}) = FT (1 - p(np r)) , 
J = I 

verbally, a formula sampled at random and with respect to the uniform probability 
k 

distribution from K(nr, ...,nk,r) is provable with probability f ] (l - p(nj, r)). 
j = i 

Proof. Cf. Theorem 2.4, in [12], and its proof. 

Clearly, when increasing nt (the length of the i-th sequence) simultaneously for 
each i, the probability of sampling a theorem tends to 1, when r increases, this pro
bability tends to zero. Both these facts seem to be quite intuitive. 

The trivial decision procedure for a formula F, F e X , ^ , , . . . , nk, r) is the in
spection of the 1st, 2nd, . . . , k-tb. clause for a closure. In order to avoid sets without 
provable formulas or formulas with disjunctions consisting of one propositional 
indeterminate, we shall assume nt ^ 2 , i = 1, 2, . . . , k. This means that if F is 
sampled at random from K(nt,..., nk, r) by the uniform probability distribution, 
then the values of the stochastic variables_" ; jr,; = 1 ,2 , . . . , « ; of the clauses Cir,i = 
= 1, 2, ..., k, are inspected for a closure. 

The procedure may be altered in such a way that not all the values of the random 
variables XiJr of the clause Cir are inspected but only the first s;, 2 ^ s; ^ «;, i = 
= 1, 2, . . . , m, m <; k; therefore we define C'ir = Xilr v Xilr v . . . v Xis.r, 
i = 1,2, ...,k. 

This means that the sampled formula is estimated provable, if the values of the 
first s ; propositional indeterminates of the i-th clause contain a pair A„ ~]A, for 
i = 1,2, . . . , m. It is clear that in this case an error can be made. The formal descrip
tion of the estimation procedure will be given by a random variable h,„SI...s„,r with 
two possible values 0,1 and such that 

(7.10) P({co :coeQ, hmSl,„Smr(co) _ l}) = f\ P({co :coeQ, w(Cir) (co) = l } ) , 
; = i 

P({co :coeQ, fcmSl.,.Smr(ta) = 0}) = 1 - P({co :coeQ, hmSi_Smr(co) = l} ) , 

the last probability is equal to the probability that at least one of the m checked 
clauses is not closed. In what follows we shall write also hm and cpk instead of 
!W..w and cpkni„,nkr. 

The purpose of the statistical procedure is to estimate the probability of the value 
of cpk on the basis of the provability of the value of hm. The procedure called Hm 

is defined as: if the value of hmSlSmr equals 1 (0, resp.) then the value of cpkn,...nk, 
is estimated as provable (unprovable). 

The error probability q(Hm, r) reads 

q(Hm, r) = P({co :coeQ, hm(co) = 0, w(cpk) (co) = l}) + 

+ P({co :coeQ, hm(co) = 1, w(cpk) (co) = 0}), 
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m = 1, 2, . . . , k. If s, = nt for (' = 1, 2, . . . , k, then 

(7.11) P({co :coeQ, hm(co) = 0, w(cPk) (co) = l}) = 0 , 

m = 1, 2, . . . , k; w(cpk) = 0 means cpkeK0i w(cpk) = 1 means cpkeKv For fixed 
m, Hm is called Bayes, if 

P({_ : <B e Q, w(cpk) (co) = 1} | {co : co e Q, hm(co) = l}) ^ 

> P({co : co e Q, w(cpk) (co) = 0 } \{co:coe Q, hm(co) = l}) , 

(7.12) P({co :coeQ, w(cpk) (co) = 0} | {co : co e Q, hm(co) = 0}) > 

> P({co :coeQ, w(cpk) (co) = 1} \ {co : co e Q, hm(co) = 0}) . 

These inequalities express that w(cpk) = 1 (0, resp.) is the most probable under the 
condition hm = 1 (0, resp.). The following theorem expresses that for a properly 
chosen m the estimation procedure Hm is the best Bayes one. Denote 

P* = ft (1 - P(»J. r)), K = I I (1 - P(*p r)), K = P'm\Pm . 
J' = l j = l 

Theorem 7.10. If the (un) provability of the value sampled by the random variable 
(Ptn1...nkr is estimated on the basis of the value of the random variable hmsi Smr, n ; 2; 
2: s, S 2, i = 1, 2, . . . , m, ns _ 2, j = m + 1, . . . , k, according to the procedure 
Hm and if Pk — P'k < 1 — Pk then there exists a natural number m0 < k such that 
the procedure Hm is Bayes for m = m0, . . . , k. The error probability for such m 
reads: 

q(Hm, r) = Pk~ Xm(2Pk - Pm) , 

clearly, q(Hm, r) < 1 - Pfc, g(_f_, r) < Pk. 

Moreover, there exists, if s ; = nt, i = 1, 2, . . . , k for each real e > 0 a natural 
N(e), N(e) < k, such that the procedure Hm is Bayes and q(Hm, r) < e for n = N(e), 
N(e) + 1, . . . , / c . 

Proof. Cf. Theorem 2.5, Corollary 2.1 and their proofs in [12]. 

Van Westrhenen has made an experiment consisting in implementation of his 
testing procedure on a computer and compared the results with those theoretically 
forecast ones; he also used these practical results in order to propose some optimal 
or appropriate values of free parameters in his test. About 20 000 formulas have 
been sampled and tested within an hour, more detailed information about these 
experiments and their results can be found in Chapter 2 of [12] and cannot be refer
red here because of the limited extend and rather theoretical character of this work. 

In [12] also some attempts to extend this testing procedure to the case of the 
first-order predicate calculus can be found. Let us recall the well-known Herbrand 
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Theorem (cf. Chapter 3) in a form appropriate for our purposes: There exists a con
struction which assigns to every well-formed formula E of the first-order predicate 
calculus a sequence of well-formed formulas Slt S2, . . . of the propositional calculus, 
with the following property: E is provable iff there is a natural number n such that 
S, v S2 v . . . v S„ is provable. The S;, i = 1, 2, . . . , are the (substitution) in
stances of E. 

The way how to obtain such instances of E via the process of skolemization can 
be found in Chapter 3 of this work or in, e.g., [1.1]. Let us demonstrate the use 
of probabilistic methods on the relatively simple decision proceduie consisting 
in searching for an appropriate provable disjunction. Namely, instead of generating 
the disjunctions in a systematic way, they are stochastically selected by the uniform 
probability distribution from the following finite sets (E is a given well-formed 
formula of the first-order predicate calculus) 

X,(F,N) ={SUS2, ...,SN}, N=l,2,..., 

X{F, M) = (D : D = Sai v Sa2 v . . . v Sa: ; 

are natural numbers such that 1 rg a« & oc2 = . . . = cc, rg M}, M = i, i + I, ... 

. . . , 1 = 2 ,3 , . . . 

Now, we introduce the sequence Xri(F, iV,), Xri(F, N2), ... naturals rh Nb are 
selected in such a way that they satisfy the conditions 

(7.13) r, = \ , ri+i>rt, N, > r , , £ I ' ) = oo . 

A sequence {rt,Ni}f=1 is called sampling plan. The stochastic sample of the dis
junction D for a given E takes place as follows: s samples, s ^ 1, are made, by the 
uniform probability distribution, from each set Xr.(F,N,), I = 1, 2, . . . 

Formally, introduce mutually independent random variables <piJF, i = 1, 2, . . . 
. . . , j = 1, 2, . . . , s, E is a first-order predicate calculus formula. The range of 
(ptjF is Xr.(F, N,) for each j 5S s, at the same time, 

(7.14) P({w :coeQ, <piJF(w) = D}) = (N*\ \ j=l,2,...,s, 

i = 1,2, . . . , D e X r , . ( E , N ; ) . 

For the sake of an easy description we introduce the stochastic vector variable 
$iF — (VHF, <Pi2F> • • •, (PISF} with the following s-valuation ws of <PiF: 

w,(*.f) = 0, iff w(<piJF) = o for each; = 1, 2, . . . , s, 

ws(<PiF) = 1, iff there is at least one j 0 £ s such that w(<p,JoF) = 1. 
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A finite sequence $ 1 F , $ 2 f , . . . , 4>„F is called a sample of length n with respect 
to F. Finally, we introduce a random variable, called the value function of a sample 

of length n with respect to F, namely, W„F = £ vvs($iF). 
i = 1 

Clearly, !PnF 2 1 iff at least one of the n x s sampled disjunctions is provable. 
I.e., F is estimated to be provable iff W„F 2; 1, otherwise^ is estimated to be un
provable. Only in the last case we can make an error. 

The described sampling technique can be proved to be a "good one" in the sense 
that the provability of a given provable formula F can be estimated on the basis 
of a sample (with respect to F) of finite length. The condition laid upon the sampling 
plan {r,, Nt) will appear to be of crucial importance. 

This is intuitively clear. In order to select one of the provable disjunctions D it is 
necessary that the relevant sets Xr.(F, JV4) be "big enough". Otherwise we could 
never draw a provable disjunction D. The divergence part of the condition (7.13) 
has been built in for technical reasons of the proof. 

Theorem 7.11. If F is a provable formula, then its provability will be eventually 
discovered with probability one on the basis of a finite sample with respect to F. 

Proof. Cf. Theorem 3.1, in [12], and its proof. 

With respect to a given well-formed formula F we introduce the hypothesis Hra(F), 
where ra is equal to one of the natural numbers rur2, ...,r„ of the truncated 
sampling plan {r„ iV;}, i = 1,2, . . . , n; Hra(F) means that the set Xra(F, Na) contains 
at least one provable ^-disjunction. If Hr~(F) holds, then 

(7.15) P({co -.coeQ, W„F(aj) = 0}) < f[ (1 - pj , 
j=a 

where 

It can be shown (cf. [12]), that /?, can be approximated in the same way as the 
hypergeometric distribution. Hence, if WnF ~ 0, then the hypothesis Hra(F) may be 
rejected with a risk probability (the first kind probability of error) smaller than 

f j (1 - prj)
s. The second kind probability of error (i.e., W„F 2 1 and F unprovable) 

y-a 

is clearly equal to zero. This result may be used as a heuristic aid for the determina
tion of the m sets XTn+ i(F, Nn+1), ..., Xrn+m(F, Nn+m), from which the next random 
selections are to be made and the hypothesis HTx(F, Nx), n + 1 < x S m, to be 
tested next. 

Let us apply this procedure to the case of provability estimation of at random 
sampled well-formed formulas from a set 91 of well-formed formulas of the first-order 
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predicate calculus. Denote by 91 j , the set of all theorems among 91, 910 = 91 — 911 

suppose that 91, 9t0, 9ti 4= 0. 

Random sampling of an element from 91 is represented by a random variable cp 
which takes its values in 91 and such that 

0 < P({co :coeQ, cp(co) e 91,}) = p < 1 . 

The estimation procedure T„ is defined as follows: sample an element from 91, realize 
a sample of length n and compute the value of the value function Tnip. If Wn(f> = 1, 
proclaim the tested formula cp(co) to be provable, if Wn(l> = 0, proclaim it to be un
provable. The error probability for this estimation procedure reads 

(7.16) q(rn) = P({co :coeQ, TnipM(co) = 0, cp(co) e 91,}) + 

+ P({co : co e Q, V^Jto) £ 1, cp(co) e 910}), 

the last term being equal zero. Analogously we say that the estimation procedure 
is Bayesian iff 

(7.17) P({co :coeQ, cp(co) e SRj/fco :coeQ, Vn<pilo)(co) ^ l}) = 

> P({co :coeQ, cp(co) e 910}/{co : co e Q, T^Jat) =? -}) » 

P({co :coefi , <p(co) e 9t0}/{o> : o> e fl, !PBKw)(a)) = 0}) > 

> P({o> :coeQ, cp(co) e 9l,}/{o> : co e Q, VmJa>) = 0}). 

Theorem 7.12. If the value of cp is estimated as (un)provable on the basis of W^ 
according to decision procedure E„, then there exists, for each real e > 0 a natural 
N(e) such that for all n > N(e) the procedure F„ is Bayes and q(r„) < e. 

Proof. Cf. Theorem 3.2, in [12], and its proof. 

Let us close this short review of basic ideas and results from [12] with an applica
tion to a special class of formulas. It is a well-known fact of mathematical logic, 
that the class of first-order predicate formulas of the form (Vx) (By) (Vz) M(x, y, z) 
with the matrix M containing no free indeterminates other than x, y, z, is decidable. 
Moreover, a formula F of this type is provable iff the disjunction 

4 F = V M ( 1 , J , ] + 1), N = 2 \ 
j = i 

is provable, when v is the sum of the weights of the different predicates appearing 
in F (the weight of an n-ary predicate A is equal to the number of different formulas 
of the form A(uu ..., u„) occurirng as elementary parts in M(x, y, z) with the ex
ception of A(v, ..., v), which will not be counted). Cf. [2.1] for more details. 
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Theorem 7.13. Let 

F = (Vx)(3y) (V Z )AD j (x^ ) Z ) 
i = l 

be a given formula. If all the clauses determined by a sample of length 5 with respect 

to F are closed, then F is estimated provable with a risk probability smaller than 

(m — s)jm, m = kN. 

Proof. Cf. Theorem 3.4, in [12], and its proof. 

We remark that analogous statistical procedures may be applied in many other 

decision procedures, provided the number of cases from which the selection have to 

be made is not too large. Cf. [ l ] for some informal comments in this direction. 

Some ideas from [12] are presented also in an earlier van Westrhenen's paper [11]. 
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8. APPLICATIONS OF STATISTICAL DEDUCIBILITY TESTING 

At the very beginning of this chapter we have to say that is is beyond our powers 

to describe all possible applications of statistical deducibility testing procedures 

within our limited scopes. It is caused by the simple fact, that formalizing a decision 

problem, whatever its special features may be, we arrive always at the problem 

80 



of deducibility testing, i.e., we convert the original problem into that whether a for
mula is or is not a theorem of an appropriate formalized theory. Remember the two 
very general examples which we mentioned in Chapter 4 in order to realize that the 
class of problems which can be subsumed under the two models is large enough. 

It is why we limit ourselves by a more detailed explanation of one particular appli
cation of theorem proving, namely, in the domain of the so called automated problem 
solving (or artificial intelligence, in general). The methods derived from such consi
derations are, first, general enough to cover a large class of situations and, second, 
they can be applied, say, in robotics. Our explanation here will be based on a very 
informal level in order not to make the reading of this chapter too difficult by intro
ducing special formalisms (they can be found in references). 

Consider a situation well-known in experimental robotics; a room with several 
boxes of various sizes, colours or forms and a robot which is to transform the con
figuration of the boxes into another, a priori prescribed one (e.g., to put them one 
onto another in a given order). In the most simple cases the robot is given an in
struction or a sequence of instructions, in other words, a plan how to solve the 
problem, however, some more sophisticated experimental robots are able to find 
themselves an appropriate plan. Of course, the robot is expected to have at its dis
posal a scale of operators enabling to change the configuration of the boxes, more 
generally, to change the state of the environment with the aim to reach a (or the) 
goal state. 

This example can serve as an illustration of the very general notion of state space. 
Formally, state space is a pair <S, <$>, where S is a nonempty set the elements of 
which are called states, and <t> is a nonempty set of partial mappings defined in S and 
taking their values again in S, the elements of <P are called operators. The partial 
character of mappings from <P corresponds to the fact that there are, in general, 
for each operator, some states in which it is not applicable. If (p e <P, s e S, and (p(s) 
is defined, then, clearly, <p(s) denotes the state resulting when q> is applied in the state s. 

As we have already mentioned a problem consists in transforming a state (a given 
or initial one) into another state (a or the goal one). Formally, a problem in a state 
space <S, <P> is a pair <s0, G>, s0 e S, G a S, where s0 is the initial state and G is the 
set of goal states. A sequence (q>u q>2, • • •, <?>„> e <P" is called a (linear) solution 
to the problem <s0, G> in the state space <S, <£>, iff, for each i g n, (Pi((Pi-u ... 
..., (pt(s0) ...) is defined, and <?„(</>„_(, - . . , <p,(s0) . . . ) e G. Instead of solution 
we can speak also about a plan for solving the problem in question (i.e., about 
a linear plan in this case). 

Sometimes a generalization of the notion of linear solution to that of'a generalized 
or branching solution or plan can be useful. Let F be a finite set of finite sequences 
of operators, i.e., F e $*, E e 3?rm(<$) in symbols. Identifying the identical initial 
segments of sequences from F we can consider F as a tree (a branching structure); 
if r = {<<pfl, (ph, . . . , </>(„(,)>, i = 1,2, ..., fc, (pt e$ for each i g k, j S n(i), then 
we can ascribe to each (pij the set Sc(<pf.) of its successors, clearly, Sc((ptj) may be 
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empty. Now, T is called a branching plan (this term will be used in what follows), 
if at least one of the operators (p(l, i ^ k, is applicable to s0, and if, having applied 
an operator q>( , either a goal state is already reached, or at least one of the successors 
from Sc(cpi^) is applicable. Intuitively said, the notion of branching plan corresponds 
to the case when we must take into consideration several possibilities how to solve 
the problem, paralelly (simultaneously), as we are not able to choose apriori the ade
quate linear solution; it is just during the process of execution when we decide which 
way will be actually followed. 

Having a problem, it may be, and usually is, a very complicated and difficult 
matter to find a solution to this problem or even to decide whether a solution exists 
or not. It is why automated problem solving is taken for an important, if not the 
key, branch in the domain of artificial intelligence. Let us briefly describe a possibility 
how to"apply proof theory when searching for a solution of a problem. 

Before all, we need a formalized language appropriate for our goals. Let JSf be 
a language describing the environment and expressing its properties. E.g., in the case 
of a room with boxes S£ must contain names of particular boxes (A, B, . . . ) , names 
of their properties (green, black, iron, wooden, . . . ) and names of relations between 
them (greater than, to lie o n , . . . ) . 

However, such a language, no matter how rich it may be, is static in the sense 
that it is not able to reflect the changes of the environment caused by applications 
of operators. It is why we replace if by another two-sorted (or more than two 
sorted if i f itself is many-sorted) language ££*, enriching each formula of JS? by 
a new, situation indeterminate or constant (or term, in general); this term will be 
listed as the last one in the list of terms, indeterminates or constants occurring in a 
formula of £C*. There is just one situation term in each formula of if*. Namely, s0 is 
the unique situation constant (corresponding to the initial situation), s, st,s2, ... 
are situation indeterminates. There is, in the alphabet of JS?*, a special functional 
symbol f(q>) for each operator cp e $ ; if t is a situation term (indeterminate, con
stant) and (p e $, then f((p) (t) is again a situation term. For each formula A e Ji? and 
each situation term t we denote by A[f] the formula of if* resulting from A when 
the list of terms occurring in A is enriched by r. 

Now, we are to express the formalism of state space by the means of the language 
if*. Each operator cp e $ will be represented by a pair <C(f/>), R(<p)} of sentences 
from J? (the condition of cp and the result of q>) and to cp a special formula of if*, 
called operator (or transition) axiom for <p will be ascribed, namely the formula 

(8-1) (Vs)(C(<p)ls]->R(cp)[f(<p)(s)]). 

The intuition is as follows: the operator cp is applicable just in the states of environ
ment satisfying certain formula (condition) C((p). Moreover, if cp is applicable in 
a state s (i.e., if C((p) [s] holds) and if it is actually applied (executed), then, no matter 
which state will be reached, we can be sure that a formula R(<p) (result of cp) will 

82 



hold. The term f(q>) (s) occurring in (8A) can be understood as a name of the state 
resulting from s when q> applied, hence, the function symbols f(<p), <P e <P, play the 
role of Skolem functions (cf. Chapter 3). 

Besides the operator axioms consider as axioms also logical axioms of appro
priate kinds and state-independent assertions of Sf*, i.e., general assertions which 
are valid in all states (e.g., transitivity of the relations "greater than", "to lie on", 
etc.). Denote by T, the formalized theory generated in Sf* by axioms and the usual 
deduction rules (the so called core theory). If A is a formula of Sf*, denote by T,[A] 
the theory resulting from T, when the set of axioms is enriched by A. Such theories 
T,[A\ are called images and the space of such theories is called image space I. 

The notion of problem can be formalized by the means of i f as a pair <[X, Y> 
of sentences with the following intuition: if the initial state satisfies X, we search 
for an operator (sequence of operators, branching tree of operators) which would 
bring us to a state satisfying Y. A sequence (q>u q>2, ..., <p„> e <Pn is a (linear) solu
tion (plan) to a problem <Z, Y> in the given image space, if T, V C(cpl) [s0] , 
T,[R((Pi<Pi-1 . . . <7>i(s0))]h C(<p;+i) [<?;</>;_! . . . <Pi(s0)] for each i = 1, 2, . . . , « - 1, 
and if T,[R(cpn ... <?>i(s0))] r Y[q>n ... <Pi(s0)] (we write <pt ... cpi(s0) instead of 
(PiWi-i • • • (<Pi(so)) • • •))• The notion of solution can be, again, generalized to the 
branching one replacing the demand of derivability (in the corresponding image) 
of the condition of the following operator by the demand of derivability of the 
disjunction, consisting of Yand of conditions of all successors of the operator which 
has been applied as the last. We present the necessary formalism at a very rough 
level, the necessary details can be found in [6], [7]. 

Consider a certain formula F,(X, Y) of Sf* proclaiming, in a sense, the solvability 
of {X, F>, namely 

(8.2) E,(X,Y)=dfX[s0]->(3s)Y[s]. 

Now, under some conditions concerning the consistencies of the occurring theories 
(as a matter of fact, these conditions represent an important and serious theoretical 
problem, but we will not discuss it here) the formula F,(X, Y) is provable in T,, i.e., 
T, V F,(X, Y), iff there exists a solution (a linear or branching one) to the problem 
(X, Y> in I. Even more can be said: if T, h F,(X, Y) holds and if F,(X, Y) is proved 
from T, using the resolution principle, then, due to skolemization, we can always 
find in this proof a provable formula of this type: 

(8.3) X[s0] -> [Y(j, Jl2... ji„(1)(s0)) v Y(j21j22 . . . j2„(2)(s0)) v . . . 

• • • v Y(fkJk2 ... A„(t)(s0))] , 

(we write ftJ as an abbreviation for /(<?>„))• Clearly, F,(X, Y) follows from (8.3) 
by the deduction rule consisting in introduction of the existential quantifier. At the 
same time, {<<Pj,„(i), <Pi,n(i)-i, • • •> <?>;,i>> i ^ &} c a n De proved to be a solution to the 
problem (X, Y> (possibly a linear one, if k -- 1). In other words said, the solution 
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can be immediately read, in the reverse order, from the longest (and last) occurred 
during the resolution based theorem proving of Fj(X, Y) situation term (or terms). 

This application of theorem proving has all the features typical for the examples 
mentioned in Chapter 4. The theoremhood testing is not the final stage of the deci
sion process, but is followed by other actions (solution or plan derivation and applica
tion) which have to be executed in real time and according to the changes taking 
place in the environment. Hence, we are in a position when an approximate, not 
quite sure, but quick statistical deducibility testing procedure may be of greater value 
than a correct but rather slow deterministic method. 

Let us briefly mention at least three possibilities how to introduce probability and 
statistics into this domain. First, trying to verify whether T{ V F,(X, Y), we may 
apply the method of statistical deducibility testing in at random sampled extensions. 
Consider the case when this test proclaims F,(X, Y) to be derivable from Tt. In this 
case the test gives, as a by-product, a sequence <a,, a2, ..., am>, m ^ M (the thres
hold value of the test in question, cf. Chapter 5), of formulas from if* together with 
proofs of formulas a ; -> Fk(X, Y) from Tj. These proofs can be taken as proofs 
of F,(X, Y) from T;[a;] ( = T u {a,}) and can be easily combined into a proof 

of ( V at) ~* Fi(X> Y) from T,, i.e., into a proof of Ft(X, Y) from Tr, of a new image 
1 = 1 m 

space T, corresponding to a state space in which \/ at is supposed to be valid and, 
; = i 

hence, included among the axioms of/'. Now, we can transform the obtained proof 
of F,(X, Y) from T{, into a resolution-based form and derive a solution (plan) T 
from this proof in the way mentioned above. According to the Corresponding 
Theorems, T is a solution to the problem <Z, Y>, but in the image space T. If we 
execute this solution in the state space corresponding to T we may arrive at a failure, 

of course, as T supposes something (namely V ai) to be valid in the environment, 
; = i 

but in fact this may be invalid. Nevertheless, the probability of a failure of T in / is 
majorized by the probability of error connected with the statistical deducibility 
testing procedure applied to F,(X, Y) and Tx. Hence, T may serve as an approximate 
or "statistically good" solution to <X, Y> in I. At present, this way of approximating 
plans or solutions is studied in more details. 

When trying to verify T7 h Fj(X, Y), we may use probability and statistics also 
in another way (cf. [2]). Clearly, the richer the core theory T, is, the simpler may be 
to find the desired proof. So we may consider as operators also some actions which 
are not quite safe from the point of view of their results, i.e., which may fail when 
applied. This may be caused by technical failures, unprecisely known or simplified 
conditions, etc. Joining the operator axioms connected with such unprecise operators 
makes the looking for the desired proof (and solution or plan, after all) more easy, 
however, the obtained solution is not safe and is subjected to a possible failure, as it 
uses unprecise or unprecisely known operators. So, again, the obtained solution 



may serve as an approximation of the originally desired correct or ideal solution. 
Some types of such stochastic approximations or plans are described and discussed 
in [2]. 

Finally, let us mention another probabilistically based approximation of solutions, 
specially the branching ones. In practical applications the number of possibilities 
which must be considered together when looking for a plan is usually great enough, 
for the resulting branching plan to be unpractically large (from the point of view 
of a computer storage, say). In everyday life we solve such a problem by neglecting 
those possibilities (i.e., branches) which are little probable. In the case when, against 
our expectation, such a little probable case occurred, we should have to consider 
the actually occurred situation and to take adequate measures, i.e., to find a new plan. 
It is just this consideration according to which we do not think of possibility of an 
earthquake when settling our plans for tomorrow, even if we are not able to exclude 
this possibility on the ground of a logical deduction. In [5] we studied the possibility 
of such a reduction of branching plans based on the idea of erasing all the nodes 
for which the probability of their execution during an actual application of this 
plan is below a given value. As can be shown, the reduction of the extent of the 
branching plan is essential; roughly speaking, if e > 0 is the threshold value decisive 
for adhering the node in question into the restricted version of the original plan, 
then the extend of the restricted plan can be majorized by (l/e) log2 (l/e). Let us recall 
that this majorant does not depend on the length of branches in the original plan 
in spite of the fact that the extent of this original plan is an exponential function 
of the lengths of branches. In [4] also some applications to hierarchic planning are 
studied and some estimations of the total extent of the corresponding hierarchic 
plans are derived. 

Let us close this chapter by mentioning the fact that there are also other applica
tions of probability theory and statistics in mathematical logic and proof theory 
which cannot be (or at least usually are not) expressed in the model of statistical 
deducibility testing as developed in this work. Some of such approaches and results 
will be very briefly mentioned in the next chapter. Some general remarks concerning 
the three types of probabilistically modified solutions or plans as discussed above 
can be found also in reviewal papers [ l ] and [3]. 
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9. OTHER CONCEPTIONS OF STATISTICAL APPROXIMATIONS 
IN PROOF THEORY 

In Chapters 5 to 8 above we suggested several possibilities how to implement 
statistical decision theory into the domain of theorem proving and theoremhood 
testing. All these investigations as well as the necessary formalisms and preliminaries 
explained in Chapters 2 to 4 have one important and restrictive, in a sense, common 
feature. Namely, we have always supposed, that the formalized theories which 
served as objects of our statistical samples, experiments or studies are based one an 
appropriate classical two-valued logical calculus. In other words, no intuitionistic, 
many-valued, probabilistic, fuzzy, or other non-classical logics have been taken 
into consideration until now. Under this general assumption we were entitled to 
consider the meta-property of theoremhood as a classical two-valued one. I.e., at 
least from the platonistic or Omniscient point of view, each formula of the investigat
ed theory either was a theorem or not with no uncertainty admitted at this level. 
It is only our subjective knowledge about the actual state of affairs, concerning the 
tested formula, which can be wrong, unprecise or charged by an uncertainty. The 
priority given in our work to this special way of understanding and introducing 
uncertainty and probability into the domain of theorem proving seems to be suffi
ciently justified by the very title, if the words "proof theory" used in it are understood 
in the sense "classical proof theory" or "proof theory in classical logic". For the 
other possibilities how to introduce probability theory and statistics into theorem 
proving, i.e., for various non-classical probabilistically oriented proof theories 
we limit ourselves to several short remarks and comments in this chapter. 

A great part of non-classical probabilistically oriented logics can be reduced to the 
basic notions and assertions of the theory of fuzzy sets. This theory was conceived by 
Zadeh in 1965 (cf. [10]) as a straighforward generalization of the naive set theory. 
Having a nonempty space (universe) X, any subset Yof X can be, clearly, identified 
with its characteristic function XY\ XY(X) = -> if xe Y XY(X) = 0> if xeX — Y. 
Zadeh's idea was to consider each function defined on X and taking its values in the 
set <0, 1> of real numbers as a (generalized) subset of X, called fuzzy set. Hence, 
formally, a fuzzy set A is a pair <X, XA '• X ~* <0> 1>>. If x e l , then the real value 
XA(X) can be understood as the degree in which x belongs to A or as the probability 
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with which x belongs to A (until now, the semantics of fuzzy sets has not been deve
loped enough to investigate in more details the similarities and differences with 
respect to probability theory). The mappings XA, with A ranging over the space 
of fuzzy sets in X, are subjected to some requests which generalize the usual set-
theoretic notions and operations. Namely, if A and B are fuzzy sets in X, then their 
complement Ac, union A u B and intersection A n B are, again, fuzzy sets in X, 
defined, for each x e X, by the relations 

XA*(x) = 1 - XA(X) , 

(9.1) XAUB(X) = max {xA(x), XB(X)} , 

XAnB(x) = min {XA(X), XB(X)} • 

Some basic properties of set-theoretic operations remain to be valid, e.g., the de 
Morgan rules (as can be easily checked), however, some other properties of fuzzy 
sets seem to be rather counterintuitive, e.g., if A is the fuzzy set for which XA(X) = 
= 1/2 for all x e X, then Ac = A = Ac n A = Ac u A. 

The basic idea of fuzzy sets is usually implemented into mathematical logic in such 
a way that the set i ? of all well-formed formulas is taken as the universe of discourse 
and the set ST of theorems is generalized to a fuzzy set in S£. Instead of Xr(x) w e w r i t e 

often T(x), x e &, hence, T(x) e <0, 1> is the degree or probability with which x is 
taken as a theorem. As a rule, the mapping Tis supposed to satisfy these conditions: 

(9.2) (1) T(lA) = 1 - T(A), 

(2) T(A A B) = min (T(A), T(B)), 

(3) T(A v B) = max (T(A), T(B)), 

(4) T((Vx) A) = inf {T(A(x)) : x e D} , if D is the domain of x , 

(5) T((3x) A) = sup {T(A(x)) : x e D} , if D is the domain of x . 

Hence, it suffices to define T(x) for atomic formulas x e £, the rules (9.2) enable 
to extent T unambiguously to all =Sf. 

The following theorem shows some connections between the truth-values (i.e., 
values of T) of premises and consequences in resolution-based theorem proving. 
Recall that, for each set S of clauses, R"(S) is the set of all resolvents of n-th level 
obtainable from S (cf. Chapter 3). 

Theorem 9.1. Let S be a set of clauses, let C,, C2, . . . , CM be clauses in S. Denote 
b = max {T(Ct), T(C2), . . . , T(CM)}, a = min {r(C.) , T(C2), . . . , T(CM)}, let a > 
> 1/2. Then, for each n ^ 0 and each clause C e R"(S), a = T(C) £ b, 

Proof. Cf. Theorem 9, in [6], and its proof. 
Theorem 9.1 shows that if every clause in S is something "more than a half-truth" 

and the most unreliable clause has truth-value a, then we are guaranteed that all the 
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logical consequences obtained by repeatedly applying the resolution principle will 
have truth-value at least equal to a, but never exceeding the truth-value of the most 
reliable clause. 

The assertion of Theorem 9A seems to be of a great practical worth, but it depends 
substantially on the min-max property of the mapping T((2) and (3) in (9.2)) which 
is often subjected to a serious criticism, namely from specialists working in probability 
theory. Let A and B be two formulas the validity of which in the environment de
pends on one or two random experiments (e.g., A and B describe a particular result 
or results of these experiments). Then A and B can be identified with the correspond
ing sets of their models (i.e., relational structures of appropriate signatures in which A, 
resp. B, are valid) and these sets of models can be taken as random events in the 
classical probability theory (more details on these transformations can be found 
in [4]). Hence, A and B themselves can be seen as random events to which some pro
babilities may be ascribed. Clearly, the random events A and B may be statistically 
independent or dependent, so P(A n B) may vary from 0 to min {P(A), P(B)} and 
P(A u B) may vary from max {P(A), P(B)} to P(A) + P(B). This means that the 
demands (2) and (3) from (9.2) are equivalent to the assumption that there is a strictly 
defined type of dependence between A and B, namely, that A is a sufficient condition 
for B or vice versa. However, such a restriction seems to be too strong to be adequate 
for expressing all the types of uncertainty in surrounding us world. 

In [4.1] and [4.2] we made an attempt to obtain results similar to Theorem 9A 
without the request of validity of (9.2). We begin with the truth-values of axioms 
and try to examine in which degree these truth-values are preserved by the conse
quences obtained from the axioms using the deduction rules. First of all, and this 
seems to be quite intuitive, no uniform positive lower bjDund (like a in Theorem 9.1) 
can be found (omitting the trivial case when the truth-values of all axioms are 1). 
In other words, if at least one axiom is not "quite sure", then there always exists 
a theorem (i.e. formula provable from axioms) the truth-values of which is below 
an a priori given positive real number. It is why a desirable positive lower bound for 
the truth-values of the consequences derived from uncertain axioms can be given 
only in the form of an expected value with respect to an a priori given probability 
distribution over the set <£ of well-formed formulas. A general, but rather abstract 
result of this type can be found in [4.2] (Theorem 1), here we shortly present an 
application of this general result to the case of the so called Gentzen-like random 
axiomatic systems. 

Consider a formalization of the first order predicate calculus with the following 
properties: 

(1) No individual constants and no functional indeterminates occur, only a finite 
number of functional constants may occur. 

(2) If qu q2, ..., q„ is a formalized proof and if qs results from qh qk, i, k < j 
with respect to a deduction rule then to every occurrence of a subformula of qt 



or qk an occurrence of the same subformula (up to differences in indeterminates 
or terms) in qs can be shown (different occurrences in a; for different occurrences 
in qt or qk). This is the so called subformula property or Gentzen property; 
for more details cf., e.g., [2.2] or the original Gentzen's paper [5.3]. This condi
tion excludes, e.g., modus ponens from the set of deduction rules which are 
at our disposal. 

(3) The only operators are those of implication and general quantifier, A -> B 
being written as [A ] [_B] and (Vx) A as [*[A]]- There is one propositional con
stant F having the semantic interpretation "falsehood", hence, ~1A is written 
as [A] [F]. For more details cf. the end of Chapter 5 or [5.7]. 

Let us define a random variable G on a probability space <£2, y, P>, taking its 
values in the set of all well-formed formulas of the theory just described, which is 
a slight modification of the random variable F defined by operations ( i ) -(VII) 
in the final part of Chapter 5 or in [5.7]. 

Let K0, M0, N0 be positive integers, let to the left bracket [integers 1,2, . . . , K0 be 
ascribed, to the right bracket] the integers K0 + 1, ..., 2K0, to F the integers 2K0 + 
+ 1, ...,2K0 + M0. To every individual indeterminate xh i g rV0, the integer 
2K0 + M0 + i is ascribed, to every elementary formula containing only indeter
minates among xlt x2, ..., xNo one integer beginning with 2K0 + M0 + N0 + 1 
is ascribed. Let N2 be the greatest integer used in this enumeration, let N3 > N2 be 
an integer, let 0 be an auxiliary symbol not occurring in the considered formalized 
theory; the indices At2 + 1, .. .,N3 are ascribed to 9. 

Let pu P2, ... be a sequence of random variables defined on <0, S*, P>, taking 
their values in the set (1, 2, . . . , 2V3} of integers, mutually independent and equally 
distributed in such a way that 

(9.3) P({co :coeQ, pj(co) = i}) = N J 1 , j = 1, 2, . . . , i = 1, 2, ..., N3 . 

Now, we define G(co) = A (the empty formula) if no occurence of an elementary 
formula of F preceeds the first occurrence of 9 in {^(co), p2(co), ...}, G(co) = 
= F(f5Y(co), ..., pk(co)), if there is no occurrence of 0 and at least one occurrence of F 
or an elementary formula among Pi(co), ..., pk(co) and if, at the same time, (3k+ x(co) = 
= 9, i.e., Pk+l(co) > N2, where F is the mapping generated by operations (I) —(VII) 
mentioned above. It means that G generalizes F in such a way that formulas of all 
lengths as well as the empty formula have a positive probability to be sampled. 
Immediately follows that G(co) is always the empty or a well-formed formula. 

Definition 9.1. Let (Q, S", P> be a probability space, let T = <0, oo) be a set 
of parameters, letiV„ denote the set {1, 2, . . . , n} ofintegers. Then random axiomatic 
system of degree n, over the language 5£ and with respect to the probability space 
<[Q, &", P> is a mapping X of the Cartesian product N„ x T x Q into 2? such that 
for every i ^ n and t ^ 0 the mapping X(i, t, •) is a random variable defined on <£>, 



$", P> and taking its values in S£, i.e., because of the countability of Z£, 
for every p e if, {co : co e Q, X(i, t, co) = p} e £f'. 

The parameter t, which can be interpreted as time, expresses the dynamics of 
a random axiomatic system, the possibility and necessity to modify the representa
tion of the environment as the time passes with respect to its development and 
changes. 

In order to be able to describe and judge somehow the quality of a random axiom
atic system X we suppose that the state of the environment at the time instant t is 
represented by a subset &"(t) c if, namely by the set of all formulas valid in this 
time instant. If A <= if, we denote by Cn(A) the set of all formulas derivable from 
the set A of formulas by considered deduction rules, i.e., A c Cn(A) c <g. Using 
this notation we can easily see that a random axiomatic system X is an ideal repre
sentation of the environment iff, for each t e T, 

(9.4) Cn({X(l, t, co), X(2, t,co), ..., X(n, t, co)}) = ST(t). 

However, usually this is not the case, so we have to measure somehow such a situation. 

Definition 9.2. Characteristic function of the i-th axiom X(i,.,.) of a random 
axiomatic system X is defined as 

(9.5) p(i, t) = P({co :coeQ, X(i, t, co) e &-f(t)}). 

For example, if X(i, t, co) is a logical axiom or an axiom describing the fundamen
tal time-and-space relations (and such axioms are necessary in any formalized 
representation of an environment, cf. Chapter 8), then X(i, t, co) does not depend 
on co and t and p(i, t) = 0. A more detailed classification of random axioms can be 
found in [4.1]. To be able to measure somehow the quality of a random axiomatic 
system as a whole we must have at our disposal a random variable measuring the 
importance of particular formulas. 

Definition 9.3. Let X be a random axiomatic system with respect to the probability 
space <£2, £f, P>, let a be a random variable defined on <[Q, y, P> and taking its 
values in ^£. Reliability of X with respect to a is defined as the conditional probability 

(9.6) R(t, a) (X) = P({co : co e Q, a(co) e y(t)}j{co : co e Q, a(co) e 

e Cn({Z(l, t, co), X(2, t, co), .. .,X(n, t, co)})}). 

This means that R(t, a) is the probability that a formula sampled at random with 
respect to a is valid in the environment under the condition that it is derivable from 
the random axioms. Instead of deriving a general expression for R(t, a) (X) (cf., 
as mentioned above, Theorem 1 in [4.2]) we apply Definition 9.3 to the case of the 
random variable G defined above. 
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Theorem 9.2. Consider a formalization of the first order predicate calculus satis
fying the conditions (l) —(3) above. Let X be a random axiomatic system over this 
language such that the random variables G, X(i, t,.), i ^ n, are mutually indepen
dent for each fixed z e T. Let y be a function defined on T, taking its values in <0, 1> 
and such that for all i 5S n and all teT the inequality p(i, t) :g 1 — y(t) holds. 
Suppose that p(i, t) = 0, if X(i, t, co) does not contain any elementary formula and 
that the non-validity of the empty formula can be proved without any possibility 
of an error. Then 

(9.7) R(t, G) (X) = f- + (^& ) . (1 -
e(l - y(t)) + S \e + Sj \ e(í - y(t)) + S 

= ( l + ^ ( l - 7 ( 0 ) ) _ 1
5 

-where 

e = P({co :coeQ, 2K0 + M0 + N0 < ^(co) ^ N2}) = 

= (N2-2K0-M0-N0)N;1, 

S = P({co :coeQ, N2 < ^(a) < N3}) = (N3 - N2). N;1 . 

If y(t) -+ 1 uniformly for all t e T, then R(t, G) (X) -> 1 uniformly for all t e T. 

Proof. Cf. Theorem 2, in [4.2], its proof and its corollary. 
The second inequality in (9.7) is rather interesting as it does not depend on the 

number of axioms and tends to 1 if y does. This fact offers a simple strategy when 
a random axiomatic system is formed: it is better to have a great number of reliable 
axioms than a small number of less reliable ones. This agrees with the effort to ato
mize the data into the most detailed form. The model based on the notion of random 
axiomatic system as explained above has been used in order to formalize and handle 
the stochastic and dynamic character of the environment needed for an automaton 
(e.g., robot) to make senseful and goal-oriented decision and actions in this environ
ment (cf. a series of papers [ l ] , [2], [3]). 

Theorems 9.1 and 9.2 serve as examples of such an approach when uncertainty 
or fuzziness are introduced in proof procedures by a fuzzification of assumptions 
(premises) leaving the deduction rules unchanged. However, the idea of fuzzy sets 
can be applied immediately to generalize the notion of deduction rule. Usually, 
n-ary deduction rule or deduction rule with n premises is a partial mapping defined 
in S£n, i.e., in the set of ordered n-tuples of formulas and taking its values in the set 
of finite subsets of .§? (because of the fact that, in general, a deduction rule may be 
applied in more than one way to a given sequence of premises). Using the technique 
of working zones and trivial extensions as mentioned in Chapter 7 we may assume 
that each n-ary deduction rules is a mapping from if" into if. An easy generaliza
tion gives that a fuzzy deduction rule may be defined as a mapping ascribing to each 
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n-tuple of premises (au . . . , o„> e i ? " a function %<at „n> taking <£ into <0, 1>; 
X<aj 0„>(a)> a e ££, defines the degree or probability with which a formula a can 
be considered as the consequence of aua2, ...,a„ by the fuzzy deduction rule 
in question. This corresponds to the intuitive situation when the deduction rule may 
"fail" and give an uncorrect consequence (with respect to the "usual" deduction 
rules). As this uncertainty or risk may cummulate when the length of a proof 
increases, we arrive at a situation similar to that in random axiomatic systems; the 
reliability of a derived formula depends on the length of its proof. This version has 
been elaborated in details in [8]. 

Let us mention, before closing this chapter, two things. First, we do not take into 
consideration here a great number of papers dealing with the problems how to ascribe 
probabilities to well-formed formulas of a formalized theory in such a way that 
some more or less intuitive conditions of syntactical or semantical character were 
satisfied. We have taken such a decision because of the fact that, as a rule, these papers 
do not work with the notion of proof, i.e., they do not consider the dynamics of 
a formalized theory. Moreover, when discussing such problems we should evoke 
many problems penetrating into the most fundamental parts of probability theory 
and mathematical logic and such reasonings would bring us far beyond the planned 
scope and extent of this work. 

Before closing this chapter let us mention briefly an interesting and perspective 
modification of the basic problem of statistical deducibility testing as studied in this 
work. Our interest has been always oriented to the problem whether there exists or 
does not exist a proof of the tested formula and we have completely neglected the 
length, complexity or other qualitative or quantitative characteristics of the potential 
proof. However, from the applicational point of view the length of proof may be an 
important aspect, remember, e.g., automated plan formation mentioned in Chapter 8 
or the automated experiment planning in [3]. So it may seem quite useful to replace 
the hypothesis "p is a theorem" by another hypothesis "p is a theorem for which 
there exists a formalized proof of a length not exceeding a given natural R" (p is 
the tested formula). Of course, also the alternative must be appropriately changed 
in order to remain the logical complement of the hypothesis. Some recent results 
show that the testing procedure developed in Chapter 5 can be used also in this 
case with probability of error slightly enlarged. A special test of constructivistic char
acter for these goals is proposed in [5.10]. At present, a special paper dealing with 
these results in under preparation and it is why we limit ourselves to this short note 
(cf. [5]). 

In [7] and [9] the authors investigate a particular resolution-based theorem-
proving algorithm and define the length of the potential proof by the number of reso
lution principle applications used in this proof. Supposing the candidates for reso
lution are sampled at random, the length proof becomes a random variable. The two 
mentioned works give some upper and asymptotic estimates for the expected value 
and dispersion of this random variable; however, they do so only under very special 
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and rather artificial conditions. In every case, the modified testing problem as men
tioned above seems to be very often more realistic than the original one and its more 
detailed study may bring interesting results of practical as well as theoretical nature. 
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10. CONCLUSIVE REMARKS 

As usual, the aim of such concluding chapters usually is to review and survey 
what has been done and to confront these results with the intentions and goals 
having been promised in the introduction. However, such a recapitulation is always 
only of subjective and relative worth. Having finished a work, probably each author 
feels that everything should and could have been done better, more precisely, more 
understandingly . . . But this constant feeling of dissatisfaction and disquiet — it is 
an external curse and blessing, blessing and curse of every intellectual and creative 
activity. 

Our intention in this work has been to survey the possibilities of various applica
tions of probability theory and mathematical statistics in the domain of classical 
proof theory. When considering the results presented here as answers to some 
questions about such possibilities we must admit that the answers offered in this 
work are only of partial and relative character. Moreover, each of these answers 
is followed by a number of new questions, sometimes more peculiar to answer than 
the original one. First of all, it is the author which is to be blamed for this situation 
and we are far from trying to refuse the corresponding responsibility. On the other 
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hand, the process of continual revoking and relativizing of the obtained results 
and answers as well as the arising of new and more sophisticated questions are eternal 
attributes of each science — as far as it is to be considered for a real science, not for 
a dogma or doctrine. 

It is why, instead of a detailed revision of what has been said, we shall concentrate 
our attention to several aspects of the investigated domain which seems to be perspec
tive for a further development, at least from our subjective point of view. The scope 
of such problems is very wide and it ranges from purely theoretic and even philo
sophic matters to questions of extremely applicational and implementational nature. 

A serious theoretical problem consists in comparing the subjective and objective 
aspects of uncertainty connected with statistical theorem proving. Namely, either 
we can consider a classical two-valued logic (or a theory based on it) seen by the 
medium of statistical experiments which charge our knowledge by some degree 
of uncertainty, or we may take the world surrounding us as internally indeterministic 
and stochastic and a fuzzy logic as an adequate and true formalization of this world. 
The open question is, whether the preference of one of these two approaches is only 
a matter of technical and mathematical convenience or whether such a choice in
volves some deeper consequences as far as the corresponding stochastic approxima
tions of formalized proofs are concerned. Even in case the two approaches are equi
valent in the sense that they may be "translated" into each other by appropriate 
mathematical transformations the question of their relative adequacy from mathema
tical and implementational points of view arises. 

The same problems of adequacy and appropriateness can be related to the used 
formalization of probability theory and statistics. Here we used the classical Kolmo-
gorov conception, but perhaps some other may be better. As an extremely interesting 
case we take the so called Boolean-valued probability theory, namely when the 
abstract values of the corresponding probability measures are elements of the 
Lindebaum-Tarski algebra over a formalized theory (cf. [2.6]), i.e., classes of for
mulas. Such a probability theory would eliminate the difficulties with two incoherent 
and hardly comparable structures over the set of formulas — the logical and the 
probabilistic ones. 

Another group of problems are those connected with various possibilities which 
particular parts of a theorem-proving procedure should be randomized. We have 
concentrated our attention mainly to the case when the choosing of auxiliary pre
mises is subjected to a randomization, i.e., is replaced by a random sampling. An 
advantage of this approach consists in the fact, that we are allowed to make the best 
profit of the already existing deterministic theorem-provers (e.g., the resolution-
based ones, it is why we have devoted all the Chapter 3 to an explanation of such 
algorithms). In fact, we replace the original deducibility problem by a sequence of 
such problems with antecedents enriched by an at random sampled auxiliary one. 
However, the process of randomization may penetrate much more deeply into the 
very process of resolution-based theorem proving, e.g., we may sample at random the 
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candidates for resolution (as mentioned in [9.7] and [9.9]) or the introducing of a resol
vent into the class of resolvents of the corresponding level may be preceeded by a sta
tistical test (i.e., only the resolvents passing successfully this test are placed into the 
corresponding class to be considered as possible candidates for a further resolution). 
Also other parts of various theorem-proving procedures can be subjected to a rando
mization and various such possibilities can be compared from the viewpoint of, e.g., 
probability or probabilities of an error. Another open and important problem of this 
branch is that of a reverse interaction between the stochastic and the deterministic 
theorem-proving methods, i.e., the question whether, and in which sense and degree, 
the statistical results may influence, perhaps in the form of appropriate heuristics, 
the deterministic theorem-provers giving arise, say, to some new refinements of 
resolution-based theorem proving. 

A great deal of further effort in the field of statistical theorem proving should 
be devoted also to the problem of computational complexity of various procedures. 
These questions can be seen as special instances of more general problems connected 
with problems of computational (or algorithmical) complexity of statistical procedures 
and approximations in general. Or, when accepting a statistical decision rule or 
approximate computation we admit some risk, some possibility of failure, but we 
know (or at least are justified to expect) that the decision or computation will be 
"much more" simple or shorter and, under the particular external circumstances, 
we prefer this complexity saving to the possible risk of an error or failure. However, 
statistical decision theory, at least in its present state, does not describe and formalize 
these both sides of one problem at the same or similar level. As we have seen (the 
end of Chapter 4 or elsewhere in this work), the notions of risk or possibility of 
a failure are precisely formalized by the notion of probabilities of errors of the two 
possible kinds; these notions are strictly described, defined and handled within the 
formal framework of the classical (Kolmogorov) probability theory. On the other 
hand the argumentation in favour of statistical tests or approximations is based 
either on the theoretical impossibility of a deterministic and precise decision or 
computation procedure (this is the case of theoremhood testing in indecidable theories) 
or on argumentation of informal and intuitive kind (it is supposed to be "intuitively 
clear" that the statistical procedure is „much more easy and simple" than a deter
ministic one for the some problem. Perhaps the complexity theory of computational 
processes, possibly enriched by appropriate oracles in order to formalize the random 
sampling, seems to be an adequate background for a description and handling of 
computational complexity for various statistical procedure. Some positive and 
concrete results in this direction, i.e., certain expressions or estimations for com
putational complexity of particular statistical deducibility testing or theorem-proving 
methods, are necessary in order to be able to say the final word about these methods 
when compared with deterministic theorem-proving algorithms. Appropriate results 
on computational complexity will be useful also for mutual comparing of various 
statistical theoremhood testing procedures. 
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Last but not least, we have to mention the problems connected with the possibilities 
of computer-oriented implementations and realizations of statistical theoremhood 
testing procedures introduced in this work. As far as the method based on random 
extensions is concerned (cf. Chapter 5), the original implementation theoretical 
difficulties have been overcome and the method has been modified in such a way 
that it makes the greatest profit of deterministic theorem-proving algorithms (as 
statistical theoremhood testing is reduced to a sequence of time-and-space limited 
deterministic theorem-proving problems). The only necessary supplementary sub
program is that one realizing a random sampling of well-formed formulas, i. e., 
a random generator of formulas. Such a generator has been developed; it is based 
on a simple pseudo-random number generator and on the procedure transforming 
each sequence into a well-formed formula (cf. the end of Chapter 5). This algorithm 
seems to be relatively very quick (in average, one formula is sampled within less 
than one second), its disadvantages consist in unknown output probability distribu
tion which can be estimated only in a very difficult and unprecise way, and in a special 
formalism of output formulas which must be, hence, transformed into a form more 
adequate for common, e.g., resolution-based theorem-proving methods. At present, 
a program is under construction which tries to combine this random formula genera
tor with an appropriate theorem prover. In any case, the implementation of statistical 
theorem-proving methods will request still great effort of theoretical as well as 
of experimental nature in order to choose (or develop) programming language and 
other apparatus and tools the most adequate for the sake of such an implementa
tion. There are many open problems here, as our statistical orientation may bring 
new adequacy or appropriateness criteria for judging the qualities of various 
theorem-provers, and these criteria may be quite different from and even contra
dictory to the commonly used ones. 

The list of open questions, problems and possible problems of further develop
ment, as presented above is, of course, far from being exhaustive and it is even 
impossible to give an exhaustive survey. Moreover, each of these open problems will 
surely produce and involve many new problems and questions as soon as it is studied 
in details. This is the continual flow of scientific development and research beginning 
somewhere at the very roots of our civilization and tending beyond the horizons 
of our perspectives. Our work is nothing else than a short stopping and small looking 
out in this flow — and each surveyal work, no matter with which branch of science 
it deals, can be only something like this. Of course, this changes nothing on the fact 
that the qualities of such a work may be very various; as far as this aspect is considered, 
the author takes all the responsibility for the weak (in various sense.) points of this 
work which he knows very well — as well as for those more weaknesses which will be 
highly probable, discovered by careful readers. On the other hand, the author believes 
that there are at least few positive aspects in what he has written, that at least some 
of the readers have found in it certain help and, maybe, partial answers to their 
questions. In short, the author believes that this work can be considered as a contri-
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bution. Very likely, this belief is too pretentious and not justified — but such a belief 
is a virtual essence and necessary attribute of each creative effort. 
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